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Piecewise Linear Models with Guaranteed
Closeness to the Data

Longin Jan Latecki, Marc Sobel, and Rolf Lakaemper

Abstract—This paper addresses the problem of piecewise linear approximation of point sets without any constraints on the order of
data points or the number of model components (line segments). We point out two problems with the maximum likelihood estimate
(MLE) that present serious drawbacks in practical applications. One is that the parametric models obtained using a classical MLE
framework are not guaranteed to be close to data points. It is typically impossible, in this classical framework, to detect whether
a parametric model fits the data well or not. The second problem is related to accurately choosing the optimal number of model
components. We first fit a nonparametric density to the data points and use it to define a neighborhood of the data. Observations inside
this neighborhood are deemed informative; those outside the neighborhood are deemed uninformative for our purpose. This provides
us with a means to recognize when models fail to properly fit the data. We then obtain maximum likelihood estimates by optimizing the
Kullback-Leibler Divergence (KLD) between the nonparametric data density restricted to this neighborhood and a mixture of parametric
models. We prove that, under the assumption of a reasonably large sample size, the inferred model components are close to their
ground truth model component counterparts. This holds independently of the initial number of assumed model components or their
associated parameters. Moreover, in the proposed approach, we are able to estimate the number of significant model components
without any additional computation.

Index Terms—Maximal Likelihood Estimate (MLE), Expectation Maximization (EM), Kullback-Leibler divergence (KLD), sparse EM,
piecewise linear approximation.
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1 INTRODUCTION

The main issue addressed by this paper is the relation
between the number of model components and goodness
of fit. Maximum likelihood estimators (MLEs) are one of
the main statistical tools for assuring optimal parameter
estimation. In this paper, we point out some serious
drawbacks of parametric maximum likelihood estima-
tors from the point of view of modeling data for practical
applications. We propose an approach removing these
drawbacks. It is illustrated by a line fitting example
coming from the area of pattern recognition. Consider
the set of points on the plane shown in Fig. 1(a). The
best fitting line is computed using parametric maximum
likelihood (which is equivalent to least squared fitting
here). Note that the line does not fit the data properly.
The approximation in Fig. 1(a) is bad, since the middle
part of the line is not supported by the data (i.e., not
close to any data points), and large portions of the data
points are not in proximity to the line. It is obvious that
the model in Fig. 1(b) is significantly better than that
given in Fig. 1(a). Note that both segments in Fig. 1(b)
are contained in the neighborhood of the data points.

The problem is related to the number of model com-
ponents of the parametric density used in estimation.
As we show below, it is frequently impossible to de-
cide the optimal number of model components; this is
a consequence of the presence of many local optima.
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Parametric maximum likelihood estimators correspond
to the local optimum closest to the initial parameter
values. Hence maximum likelihood estimates of param-
eters in mixture models depend on the initial values
of the model parameters. Moreover, for a fixed number
of model components, it is impossible to recognize bad
models like the single line in Fig. 1(a) calculated using
the (classical) MLE framework.
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Fig. 1. This figure illustrates the relation between the
number of components and goodness of fit, which is the
issue addressed by this paper. It is obvious to us that the
approximation in (b) of the underlying data points is sig-
nificantly better than the approximation in (a). (a) shows
the best possible maximum likelihood approximation. (b)
shows the result obtained by the proposed method.

Here we propose an approach that uses a nonpara-
metric density estimate (NPDE) of the data points to
define a neighborhood of the data points. Using this
neighborhood we can easily recognize bad fits to the
data. Any model component that is not contained in
the aforementioned neighborhood is easily recognized
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as providing a bad fit to the data, e.g., the estimated
line in Fig. 1(a). Moreover, we are not only able to
identify bad fits (between the model and the data) but
also to improve on them. The main idea underlying this
improvement is to keep only those parts of the model
components that are contained in the aforementioned
neighborhood. By doing so, we automatically provide an
optimal assessment of the number of model components,
and guarantee that the resulting model components are
a good fit to the data.

Below, we discuss the second serious drawback of
MLEs. The goal is to approximate the ground-truth
density q(x) with a member pΘ(x) of a parametric family
{pΘ(x) : Θ ∈ S} of parametric mixtures of densities,
where Θ is a vector of parameters from a parameter
space S . As is well-known, Kullback-Leibler divergence
(KLD) can be used to measure dissimilarity between the
ground-truth and parametric family of density mixtures.
By definition, the KLD between the ground truth q(x)
and the density, pΘ(x) is:

D(q(x)||pΘ(x)) =
∫

q(x) log
q(x)

pΘ(x)
dx

=
∫

q(x) log q(x)dx−
∫

q(x) log pΘ(x)dx (1)

It is easily shown that the parameters Θ̂ minimizing (1)
are given by

Θ̂ = argmaxΘ

{ ∫
q(x) log pΘ(x)dx

}
(2)

The classical maximum likelihood estimator is obtained
by applying the MC (Monte Carlo) integral estima-
tor to (2) under the assumption that the observations
x1, ..., xn are i.i.d. (independently and identically dis-
tributed) sample points selected from the ground truth
distribution q(x).

Θ̂ = argmaxΘ

∑

i

log pΘ(xi) (3)

We show below that the derivation of (3) from (2) is
based on an assumption that is not satisfied in practical
applications. The derivation of (3) follows from the fact
that we can approximate the integral of a continuous
function f (in our case, f(x) = log pΘ(x)) by its Monte
Carlo estimate if x1, . . . , xn are i.i.d. sample points drawn
from the probability density function (pdf) q(x).

∫
f(x)q(x)dx ≈ 1

n

∑

i

f(xi) (4)

In the usual approach to inference, it is a commonly
accepted assumption that sample data points x1, . . . , xn

are distributed according to the ground truth density
q(x). This assumption is the key to insuring that maxi-
mum likelihood estimators are appropriate for purposes
of estimating parameters of interest. However, this as-
sumption is incorrect in practical applications, since real
datasets are usually noisy. This noise cannot be properly
characterized by the ground truth density q(x). As a

consequence, we cannot properly model the data using
the ground truth density q(x).

We propose a solution to this problem in Section
2. We demonstrate that the ground-truth density q(x)
can be estimated from the data using a nonparametric
density estimate. This allows us to use Kullback-Leibler
divergence (KLD) to fit an optimal model to this estimate
rather than to the noisy data.

There is a close relation between the unrealistic deriva-
tion of (3) from (2), and the estimation of the number
of model components. When using KLD it is possible
to estimate the optimal number of significant model
components of pΘ. This is due to the fact that KLD
D(q||pΘ), viewed as a functional on the space

{
pΘ

}
of

Gaussian mixtures, is convex and hence has a minimum;
this minimum does not have to be a finite mixture of
Gaussians, since the space of finite Gaussian mixtures is
not closed. The set of finite Gaussian mixtures is dense
in the space of continuous functions. Therefore, we can
estimate the minimum with any required precision when
we minimize KLD in the space of finite Gaussian mix-
tures. In particular, this means that we can estimate the
number of significant mixture components, although it is
impossible to determine precisely the optimal number of
components, since this number may be large or infinite
(e.g., some ground truth model components could be
very small). Therefore, we use KLD to estimate the
number of significant model components.

When optimizing the log likelihood in formula (3), we
cannot estimate the number of model components. It is a
known fact that the log likelihood function (3) increases
when the number of model components is increased.
The unrealistic derivation of (3) from (2), explains why
the ability to estimate the number of significant model
components using KLD is lost when we adopt the MLE
framework (3).

We derive a properly weighted version of maximum
likelihood estimation from (2) in Section 2 and demon-
strate experimentally that it accurately estimates the
number of significant model components. We also show
that in the proposed framework, our version of EM
converges to an optimal solution even if the initial values
of model parameters are not close to being globally
optimal.

As we prove in Section 4, our model estimates are
close to the ground truth. This is a consequence of the
fact that we minimize the Kullback-Leibler divergence
between the ground truth and those models. This result
does not depend on the number of model components
or parameter values assumed at the outset. However, the
question arises regarding how to actually minimize the
KLD; in particular, how to properly adjust the number of
mixture components. The sparse EM algorithm proposed
in Neal and Hinton [9] provides a nice framework
for adjusting the number of model components. The
algorithm of Neal and Hinton allows us to freeze the
probabilities for most values of hidden variables, and
recompute the probabilities for only a small fraction
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of ’plausible’ values. The values of hidden variables
range over the indices of model components. We observe
here that this framework also allows us to change the
number of ’plausible’ values, which is tantamount to
changing the number of model components assumed.
For example, we can (i) freeze the probabilities for all
values of hidden variables except those of two model
components, and then (ii) replace the two indices with
a single new index if KLD is smaller. This effectively
merges two model components into a single component.

Our approach is presented in a unified mathematical
framework with a single target function (KLD) that is
optimized in classical E and M steps as well as in the
proposed split, merge, and component insertion steps,
which are needed to adjust the number of model compo-
nents. The results given in [9] guarantee the convergence
of our algorithm. In comparison to the classical EM
algorithm, based on the log likelihood of the data, the
proposed algorithm is less susceptible to converging to
locally optimal estimators which are not also globally
optimal. Merge, split, and insert steps, when taken,
explicitly improve the quality of the inferred model. As a
consequence, in contrast with the classical EM algorithm,
we are able to take care of egregious outliers. We stress
that it is not possible to accurately estimate the number
of model components in the original approach of Neal
and Hinton [9].

There exist many possible applications that require
optimal adjustment of model components. We focus on
polygonal approximation in this paper. We note that the
proposed framework has a broader scope of possible
applications. We illustrate our approach on polygonal
approximation of point sets forming curves in digital
images. In [7] we demonstrate the application of the
proposed approach to fitting line segments to laser range
data. An overview of techniques for polygonal approxi-
mations of curves, which require that the order of data
points is known, can be found in [10].

The main difficulty of fitting polylines in such appli-
cations is that the segmentation (or correspondence) of
data points to line segments as well as the order of data
points is unknown. The Expectation Maximization (EM)
algorithm [3] provides a particularly useful framework
to solve this correspondence problem. The use of the EM
algorithm for purposes of line fitting is known as the
Healy-Westmacott procedure in statistics, and predates
the EM algorithm by many years [5]. However, polyg-
onal approximation of point data requires preliminary
estimates of the model parameters and the number of
model components (line segments) but, as observed
above, in the classical EM framework the number of
model components must be known and fixed in advance.

The failure of maximum likelihood estimates in para-
metric mixture models to provide a good fit to the
data has not yet received the attention it deserves in
the literature. In contrast, the problem of characterizing
the optimal number of model components has received
a significant amount of attention in the literature, see

e.g., [1]. A correct characterization of the number of
components and their parameter values for a statistical
model is crucial in all EM applications. This task is
made more difficult as a consequence of the propensity
of algorithms to get stuck in local optima; as a result,
this problem is one of the most challenging in statistical
reasoning.

EM extensions proposed in the literature that estimate
the number of model components are based on split and
merge steps applied to the existing model components.
We observe that the existing split and merge approaches
(e.g., Green [4] and Ueda et al. [14]) cannot be guaran-
teed to correctly estimate the optimal number of model
components due to the fact that they cannot distinguish
between locally optimal and globally optimal solutions.
The approach presented in [13] explicitly estimates the
distribution of model parameters and the number of
model components in an extended EM framework. How-
ever, this approach as well as the approaches in [4], [14]
do not guarantee that the model components are close
to the data points.

Even if the number of model components is properly
estimated, EM may not yield a globally optimal solution.
We give a simple example that illustrates the fact that EM
yields a locally but not globally optimal solution if the
initial values of the model parameters are not close to
their globally optimal values in Fig. 2. We observe again
that they can be recognized by the fact that parts of the
lines are not close to the data points.

(a) (b) (c)

Fig. 2. The data points follow horizontal and vertical
lines in a cross-like pattern. (a) and (b) show two locally
optimal approximations of the data points obtained by the
classical EM algorithm for two different initial positions of
two lines. (c) shows the optimal approximation obtained
using the proposed method on the same input.

2 OPTIMIZING KLD
In all applications, the sample data points are corrupted
by a certain amount of noise. Usually the proportion
of noisy points does not decrease when the number
of sample points is increased. We quantify this corrup-
tion by assuming that the data follow a distribution
consisting of a mixture of an unknown ground-truth
distribution q(x) and an unknown noise distribution
η(x). Let u(x) = αq(x) + (1− α)η(x) denote this mixture
distribution. The quantity, α is the probability that an
observation comes from the ground-truth distribution
q(x) and (1−α) is the probability that it comes from the
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noise distribution. Since the observed sample data points
follow the noisy distribution u(x) rather than the ground
truth distribution q(x), we obtain a more accurate Monte
Carlo estimate of the integral in (4):

∫
f(x)q(x)dx =

∫
f(x)q(x)dx∫

q(x)dx
=

∫
f(x) q(x)

u(x)u(x)dx
∫ q(x)

u(x)u(x)dx
≈

∑
i f(xi)

q(xi)
u(xi)∑

i
q(xi)
u(xi)

(5)

The ratio
αq(x)
u(x)

=
αq(x)

αq(x) + (1− α)η(x)
(6)

can be interpreted as the conditional probability,
P (ground truth|x), that an observed data point x is
selected from the ground truth density q(x). We note that
large values of P (ground truth|x) indicate that the data
point x is of significant interest for inferential purposes;
small values indicate the reverse.

We define a smoothed data density sdd(x) as

sdd(xi) =
q(xi)
u(xi)∑
i

q(xi)
u(xi)

(7)

By plugging sdd into (5), we obtain one of our key
equations

∫
f(x)q(x)dx ≈

∑

i

f(xi)sdd(xi) (8)

In Section 3 we show that the estimate of sdd is equal
to the estimate of the ground-truth density q. In the
proposed framework, (8) replaces (4). It can be easily
shown that (8) leads to a substantially smaller mean
squared error in the estimation of the integral than (4).
Consequently, if some proportion of the observations
x1, ..., xn are noisy, we obtain from (8) that a more
accurate estimator of Θ in (2) is given by:

Θ̂ = argmaxθ

∑

i

log pθ(xi)sdd(xi). (9)

In the proposed framework, (9) replaces (3). It is well
known that (3) cannot be used to estimate the correct
number of model components, since (3) increases when
the number of model components increases. In contrast,
we are able to determine the correct number of signifi-
cant model components by (9). Thus, the modified EM
algorithm that maximizes (9) accurately estimates both
the right number of significant model components and
their associated model parameters.

In Fig. 3 we illustrate the difference between the
proposed (9) and the classical equation (3) in the case
of classical maximum likelihood estimators when the
parametric model specifies a single line segment. Fig.
3 shows a real data set obtained from a microscopic
analysis of a wafer. The visible curve is a scratch that
needs to be detected. All other points are background
noise. The initial line segment is shown in red in (a).

The result of the classical MLE estimate based on (3) is
shown in (b). The proposed MLE estimate based on (9) is
shown in (c). The superior result of (9) can be intuitively
explained by the fact that sdd downweights noisy points.
Therefore, the line segment is able to reach the globally
optimal position in (c). Observe that it is impossible
to obtain the result in (c) with any distance-weighted
regression [11], with point weights computed based on
distances to the model line. In contrast, the weights of
points in our approach are based on a nonparametric
density estimate and thus more accurately reflect the
spatial density of the data points (see Section 3).

In order to better fit the scratch curve, we need more
line segments, which requires that we identify the op-
timal number of model components. Our approach for
achieving this goal is described in the rest of this paper.
The experimental results are presented in Section 7.

3 ESTIMATING THE DATA DENSITY AND THE
INFORMATIVE DATA POINTS

In this section we show that sdd is equal to the estimate
of the ground-truth density q, i.e., sdd ≈ q̂. We recall that
u(x) is the density of the observed data. Following the
assumptions made in calculating bootstrap samples, we
can take the value of the density, u(x) at the observed
i.i.d. sample points x1, . . . , xn drawn from u(x) to be
û(x1) = · · · = û(xn) = 1

n . Thus, estimating the ratio (6)
reduces to estimating the ground truth density q(x):

q(xj)
u(xj)

≈ nq̂(xj). (10)

Since sdd(xj) ∝ q(xj)
u(xj)

, and both sdd and q̂ are normalized
(to sum to 1) we obtain sdd ≈ q̂.

We use kernels to estimate the ground truth distri-
bution; these are the most widely used nonparametric
density estimation method. There is a large body of
published literature on nonparametric density estima-
tion. One of the most efficient approaches is the class
of variable width kernel density estimators defined by,

f(x) =
1
n

n∑

i=1

1
h(xi)d

K(
x− xi

h(xi)
) (11)

where d is the dimension of the Euclidean space, K is
a kernel function, which we take to be Gaussian, and
h(x1), . . . , h(xn) are the bandwidths defined at the re-
spective data points x1, , xn. One of the main advantages
of (11) is that if K is a density, then so is f [12]. The
simplest version of the function h is a constant function
h(xi) = h, where h is a fixed bandwidth. However,
for the kind of datasets met in practice, local sample
densities may vary, e.g., a robot scans one part of the
wall more frequently than the other parts. Therefore, it
is necessary to have a method that is adaptive to changes
in local density. This adaptation is obtained, for example,
by taking h(xi) = hdk(xi), where dk is the distance to
kth nearest neighbor of point xi. The use of kth nearest
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(a) (b) (c)

Fig. 3. A real data set from a microscopic analysis of a wafer. The visible curve is a scratch that needs to be detected.
All other points are background noise. The initial line segment is shown in red in (a). The result of the classical MLE
estimate based on formula (3) is shown in (b). The proposed MLE estimate based on formula (9) is shown in (c).

neighbors for this purpose was first proposed in [8], see
also [2]. In our approach, we compute (11) in two steps.
First we estimate, the weight at each sample point xj

w(xj) ∝ f(xj) =
1
n

n∑

i=1

1
h(xi)d

K(
xj − xi

h(xi)
), (12)

where proportionality refers to the fact that
∑

w(xi) = 1.
We do not attempt to estimate q̂ using (12), but instead
we estimate q̂ by convolution of f with a Gaussian kernel
φ

q̂(x) =
1
hd

n∑

i=1

φ(
x− xi

h
)f(xi) =

n∑

i=1

w(xi)
hd

φ(
x− xi

h
).

(13)

Equation (13) amounts to using a larger bandwidth of√
h2 + h(xi)2 = h

√
1 + dk(xi)2 in (11). The convolu-

tion in (13) makes sense intuitively, since the observed
density is not the ground-truth density q but a noise
corrupted density u(x) = αq(x) + (1−α)η(x). Therefore,
the convolution with a Gaussian kernel allows us to
downweight the noise component η, and consequently,
more accurately estimate the ground-truth density q.

We define the neighborhood U(X) of the data points
X = x1, . . . , xn. This is a central concept of the proposed
approach. The intuition behind it is that, instead of
calculating maximum likelihood estimates based on the
entire observation space D, we restrict attention to a
subset U(X) ⊂ D that includes sufficiently informative
regions of the data points X . Thus, from the topological
point of view U(X) is the neighborhood of only a subset
of the full set X of data points. We assume that the
observation space is D = <d, where < are the real
numbers, and d = 1, 2, . . . .

Since the values of q̂ are extremely small outside a
bounded region around the dense part of the sample
points X = x1, . . . , xn, we define the neighborhood
Uδ(X) = {x ∈ D : q̂(x) ≥ δ}. We note that Uδ(X) is
a compact set, since it is closed and bounded.

As is demonstrated below, maximum likelihood esti-
mators restricted to Uδ(X) perform significantly better
than their unrestricted counterparts. Restricting EM to
Uδ(X) allows us to prevent convergence to local optima
which are not global optima. This is a consequence of the

fact that the uninformative parts of model components
(lying outside the compact neighborhood U(X)) are
removed. For example, convergence to the locally op-
timal solution in Fig. 1(a) is impossible in our approach,
since the middle part of the line segment is removed;
effectively splinting one model component to two. Con-
sequently, only parts of the two line segments around the
sample points remain. This allows to correctly reposition
the two remaining line segments. We obtain the model
with two components (line segments) with good fit to
the data as shown in Fig. 1(b).

4 GLOBAL CONVERGENCE

We prove that the parametric models generated by the
proposed approach converge in the observation space to
the ground-truth model. Convergence in the observation
space means that the estimated model components are
close to their ground-truth component counterparts. As
is illustrated in Fig. 2, this result does not hold for the
classical EM algorithm even if the number of model
components is correct. We note that the convergence in
the observation space does not imply convergence in the
parameter space, i.e., the parameters of the estimated
model components may not be close to the parameters
of the ground truth components. Usually statisticians
talk about convergence in the parameter space; we focus
here on convergence in the observation space. We stress
that this aforementioned convergence leads to improved
convergence in the parameter space. We demonstrate
this fact with experimental results.

We impose a hard constraint on the estimated para-
metric model; we suppose that each of its model com-
ponents is contained in the set Uδ(X) (defined in Section
3). The hard constraint restricts the domain over which
we estimate the parametric density.

Let s1, . . . , sk be line segments that generate the
ground truth model components, and let q be a ground
truth distribution generated from this model. We as-
sume that the distribution of sample points along line
segments is sufficiently dense (i.e., there are no sample
point gaps along the ground truth line segments). We
assume that data points have a Gaussian likelihood as
function of their distances to the model components with
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a common standard deviation σ. (The assumption of a
common σ is not essential, i.e., we can have a different
standard deviations for each model component.)

We define a topological ε neighborhood of the model
components to be Uε(

⋃k
j=1 sj); this is the set of all point

whose minimum distance to the model components is
less or equal to ε.
Theorem. For any ε > 0, there exists δ > 0 such that,
for sufficiently large number of sample points n, with
probability approaching 1,

k̂⋃

j=1

ŝj ⊆ Uε(
k⋃

j=1

sj)

for every parametric model pΘ with model components
determined by the line segments ŝ1, . . . , ŝk̂

estimated by
our approach from sample points x1, . . . , xn.

Proof: Let ε > 0. By choosing δ so that, δ = φσ(ε)
where φσ is a Gaussian with mean zero and std σ, we
have that q(x) ≥ δ implies x ∈ Uε(

⋃k
j=1 sj) for any point

x.
The key observation is the fact that the nonparametric

density estimate q̂ approaches the ground truth distri-
bution q as the sample size n increases (this refers to
convergence in the function space of pdfs). Therefore,
if x ∈ Uδ(X), i.e., q̂(x) ≥ δ we obtain, with probability
approaching one, that q(x) ≥ δ. This implies that x ∈
Uε(

⋃k
j=1 sj). Thus, we have shown that, with probability

approaching one, Uδ(X) ⊆ Uε(
⋃k

j=1 sj).
Let pΘ be the parametric model generated by our

approach with model components determined by line
segments ŝ1, . . . , ŝk̂

. Since we impose the hard constraint
that each line segment representing a model component
is contained in the set Uδ(X), any part of any line
segment outside Uδ(X) is removed (see the split step

defined in Section 6). Consequently, we have
⋃k̂

j=1 ŝj ⊆
Uδ(X). It follows that with probability approaching one⋃k̂

j=1 ŝj ⊆ Uε(
⋃k

j=1 sj) as the sample size n goes to
infinity. This proves the theorem.

As illustrated in Figs. 1(a) and 2(a,b), this theorem
does not hold for line models fitted in the classical EM
framework.

5 E AND M STEPS

Beginning with this section we present an extension of
the standard EM framework that allows us to compute
the proposed MLE estimate in formula (9). We also show
that we optimize the same target function in E and M
steps as in component split and merge steps.

We introduce latent variables z1, ..., zn which serve to
properly label the components of the respective data
points x1, ..., xn. It is assumed that the pairs (xi, zi) for
i = 1, . . . , n are i.i.d. with common (unknown) joint
(ground truth) density, q(x, z) = q(x)q(z|x); q(x) is the
marginal x-density and q(z|x) is the conditional density
of the label z given x. In this new framework, the

KLD between the joint density q(x, z) and a parametric
counterpart density pΘ(x, z) is

D(q(x, z)‖pΘ(x, z)) = D(q(x)q(z|x)‖pΘ(x)pΘ(z|x))

=
∫

x

∫

z

{
log

[
q(x)

pΘ(x)

]
+ log

[
q(z|x)

pΘ(z|x)

]}
q(x)q(z|x)dzdx

=
∫

x

log
[

q(x)
pΘ(x)

]
q(x)dx +

∫

x

q(x)
∫

z

log
[

q(z|x)
pΘ(z|x)

]
q(z|x)dz

(14)

We are now ready to introduce the expectation (E) and
maximization (M) steps. Both steps aim at minimizing
the same target function (14) in our framework. The
expectation step yields the standard EM formula; con-
siderations discussed above lead to a different solution
for the maximization step.
Expectation Step: For a fixed set of parameters Θ, we
want to find a conditional density q(z|x) that minimizes
D(q(x, z)||pΘ(x, z)). Since KLD is always nonnegative,
and the second summand in (14) is minimized for
q(z|x) = pΘ(z|x) (in which case it is equal to zero), we
obtain from (14) that

q(z|x) = pΘ(z|x) minimizes D(q(x, z)||pΘ(x, z)).

In particular, for given sample points x1, . . . , xn, we
obtain

q(zi = l|xi) = pΘ(zi = l|xi) = p(zi = l|xi, Θ)

=
p(xi|zi = l, Θ)p(zi = l|Θ)

p(xi|Θ)
=

p(xi|zi = l, Θ)πl∑k
j=1 p(xi|zi = j, Θ)πj

,

(15)

where πl = p(zi = l|Θ) and πj = p(zi = j|Θ) are the prior
probabilities of component labels l and j respectively.
Maximization Step: For the fixed marginal distribution
q(z|x) = pΘ(z|x), we want to find a set of parameters
Θ that minimizes (14). Substituting q(z|x) = pΘ(z|x) in
(14), we obtain

D(q(x, z)||pΘ(x, z)) =
∫

log(
q(x)

pΘ(x)
)q(x)dx = D(q(x)||pΘ(x))

(16)
Thus, minimizing D(q(x, z)||pΘ(x, z)) in Θ is equivalent
to minimizing D(q(x)||pΘ(x)) in Θ. Using the estimate
derived in equation (9), minimizing (16) in Θ is equiva-
lent (in the MC setting discussed above) to maximizing
the weighted marginal density

WM(Θ) =
∑

sdd(xi) log pΘ(xi)

=
n∑

i=1

sdd(xi) log[
k∑

l=1

p(xi|zi = l, Θ)p(zi = l|Θ)]

=
n∑

i=1

sdd(xi) log[
k∑

l=1

p(xi|zi = l, Θ)πl] (17)

where πl = p(zi = l|Θ) are the prior probabilities of
component labels l = 1, . . . , k.

We explicitly use the incremental update steps of the
EM framework. Using the prior probabilities of compo-
nent labels π

(t)
l = p(zi = l|Θ(t)) obtained at stage t for
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l = 1, ..., k, we obtain from (17) that an update of WM(Θ)
is estimated by maximizing

WM(Θ; Θ(t)) =
n∑

i=1

sdd(xi) log[
k∑

l=1

p(xi|zi = l, Θ)π(t)
l ]

(18)
in Θ with Θ(t) denoting the value of Θ computed at stage
t of the algorithm. The crucial difference between this
and the standard EM update is that our target function
is weighted with terms sdd(xi). We note that the known
convergence proofs for the EM algorithm apply in our
framework, since appending the weights sdd(xi) in (18)
does not influence the convergence.

6 SPLIT, MERGE, AND COMP. INSERTION

We introduce new split, merge, and component insertion
steps needed to adjust the number of model components.
We stress that we always optimize the same target
function (18) when performing these steps. This means
that each of these steps is performed only if the value of
the target function (18) is improved.
Split: We remove parts of the model components that
lie outside Uδ(X). Thus, for a given model component
(line segment) l, the split is performed by calculating
the intersection l∩Uδ(X). This may yield, (i) new model
components which consist of shorter subsegments of l, or
(ii) the segment l may be removed entirely. For simplicity
of presentation, assume that component l is split into two
disjoint components, i.e., sl1 ∪ sl2 = sl ∩Uδ(X), where sj

is a geometric entity representing model component j
(e.g., sj is a line segment in our applications). Then we
compute the new parameters for the components l1, l2
by performing sparse E and M steps [9].

In the sparse E step, we freeze all posterior probabil-
ities p(zi = j|xi, Θ) for j 6= l, where j ∈ {1, . . . , k} is the
index of the model components existing at step t, and
compute the posterior probabilities p(zi = j|xi, Θ) for
j = l1, l2.

In the sparse M step, we only recompute the pa-
rameters of components l1, l2 based on the probabilities
computed in the sparse E step. We obtain the parame-
ters maximizing the equation (18) by differentiating (18)
with respect to these parameters. The new parameters
obtained are for lines that we need to trim to get
the line segments. The trimming results from selecting
line segments which belong to the intersection of the
lines with the set Uδ(X). This is computed by placing
sample points on a line (with a sufficient density), and
computing the values of sdd at the sample points. Then
parts of the line with sample points having sdd values
below δ are removed. Then component l is replaced
of with components l1, l2. This replacement does not
decrease the value of our target function (18), since in the
worst case components l1, l2 will be aligned with parts
of component l ⊂ Uδ(X).

Merge: Given a candidate component l, we merge two
existing model components l1, l2 to l if for j ∈ {1, . . . , k}

WM(Θ;Θ(t)) =
n∑

i=1

sdd(xi) log[
∑

j

p(xi|zi = j, Θ)π(t)
j ]

>

n∑

i=1

sdd(xi) log[
∑

j 6=l

p(xi|zi = l, Θ)π(t)
l

+ p(xi|zi = l1, Θ)π(t)
l1

+ p(xi|zi = l2,Θ)π(t)
l2

] (19)

We only need to perform sparse computations to per-
form the merge test. We need to compute the corre-
sponding probabilities for the candidate component l,
subject to the constraint π

(t)
l = π

(t)
l1

+ π
(t)
l2

. If (19) holds
and we replace l1, l2 with l, the convergence of our
algorithm follows from the results of Neal and Hinton
[9]. The parameters are estimated after the sparse EM
step in equation (15) in [9] is taken. Since such local
computations are performed only if the target function
increases, our algorithm is guaranteed to converge. (Here
we talk about local convergence in the parameter space.)
Component Insertion: Assume that the model is com-
posed of k components, and we consider adding a com-
ponent k+1. Since our goal is maximizing WM(Θ;Θ(t))
in formula (18), we simply need to check whether adding
a component k + 1 increases WM , where j ∈ {1, . . . , k}:

WM(Θ;Θ(t)) =
n∑

i=1

sdd(xi) log[
k∑

j=1

p(xi|zi = j, Θ)π(t)
j ]

<

n∑

i=1

sdd(xi) log[
k+1∑

j=1

p(xi|zi = j, Θ)π(t)
j ] (20)

Prior to evaluating this inequality but after adding the
new component, we perform the E step in order to
compute the corresponding probabilities for the compo-
nents 1, . . . , k, k + 1 after the new component k + 1 has
been added. Thus, the probabilities and the components
weights π

(t)
1 , . . . , π

(t)
k on the right hand side of (20) may

have different values than those on the left hand side.
Our framework is very general in that it allows many

possible selections of the candidate components for the
component insertion step. We use a simple heuristic to
obtain new components for insertion. We assign each
data point to the most likely component. A new com-
ponent is computed with a weighted regression that fits
a single line to all data points that are not sufficiently
close to the assigned components.

The component insertion step yields a natural stop
criterion of the proposed algorithm. The algorithm ter-
minates if all inserted components are removed by split
and merge steps. A component removal by a split step
means that a new component does not have sufficient
support in the data points, while the removal by a merge
step means that it is very similar to one of the existing
components.
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7 APPLICATIONS

Since we added split, merge, and component insertion
steps in addition to the E and M steps, the question
arises regarding what is the best order of these steps.
To produce the experimental results presented in this
section, we used the following order, which was deter-
mined experimentally: component insertion, split, E, M,
and merge. We call the sequence of these five steps one
iteration of our algorithm. Clearly, we first computed sdd
for a given data set before these steps were applied.

Our first application involves finding scratches and
other defects in data obtained from microscopic analysis
of wafers. In this application there is no initial estimate
of a possible position of defects, and the number of
background noise points is significantly larger than the
number of signal points. Additionally, the point density
of the signal as well as that of the noise varies signifi-
cantly for different images. Fig. 4 shows some example
input images (left) and our results as line segments
superimposed on the input images (right). In all experi-
ments we initialized our algorithm with two crossed line
segments like the ones shown in top left of Fig. 4. The
red line segments (right) show the final results obtained
by our algorithm after only five iterations. We obtained
results of this quality on over 100 test images of this kind.
Some of the test data sets did not contain any signal
points, and in this case, our algorithm correctly did not
fit any line segments. The number of data points for
each wafer vary from few hundred to several thousand
points. The numbers of input data points and the output
line segments for our examples are shown in the caption.
We used the same parameters for all test images: h = 5,
σ = 0.5, and δ = 10−7 for sets with more than 2,000
points and δ = 10−6 for sets with the smaller number
of points. Our Matlab implementation needed between
one and two minutes for each image on Pentium 4 CPU
3.2GHz. About half of the total CPU time was spent on
KDTree indexing.

Our second application is learning one-dimensional
manifolds. We sampled 10,000 points from a normal
distribution around a spiral in Fig. 5. Fig. 5(a) shows two
initial model components. Fig. 5(b) shows an approxi-
mation obtained after two iterations. Fig. 5(c) shows the
final approximation obtained after only five iterations.
Our algorithm automatically determined the shown 50
line segments as model components. By comparison, the
SMEM algorithm in [14] needed 353 iterations to con-
verge to a simpler spiral. We used parameters: h = 0.5,
σ = 0.05, and δ = 0.00005.

Figs. 5(a,b) illustrate the advantage of the proposed
approach. In this setting we have parts of model com-
ponents (i.e., line segments) that lie in the regions of
the observation space containing no data points. Our
algorithm simply removes these parts. This limits the
observation space to the set Uδ(X), which has the ef-
fect of splitting the model components. In contrast, the
SMEM algorithm ([14]) and the classical EM algorithm

Fig. 4. We applied our algorithm to finding scratches and
other defects in data obtained from microscopic analysis
of wafers. (left): input image, (right): the obtained line seg-
ments in red overlaid over the input image. The numbers
of input points and output line segments are (row 1): 4128
→ 6, (row 2): 1543 → 10 (row 3): 5463 → 7.

may generate model components that are not supported
by data points, which then are trapped in local optima.

8 CONCLUSIONS

We propose to infer parametric models from nonpara-
metric density estimates constructed from the data using
kernel density functions. The proposed approach has
several advantages in comparison to classical EM ap-
proaches that infer parametric models directly from the
data. We proved that the model components obtained
by our algorithm are close to the ground-truth model
components in the observation space. This implies that
the model components obtained by our algorithm are
guaranteed to be close to the data points. This fact
entails many strong convergence properties of model
components in the parameter space, and consequently,
improves goodness of fit. It is also possible to infer
the number of significant model components in the
proposed approach. Moreover, the convergence of the
inferred parametric models do not depend on the initial
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(a) (b) (c)

Fig. 5. (a) 10,000 points sampled from a normal distribution around a spiral in 3D, and two line segments as initial
model components. (b) An approximation obtained after two iterations. (c) The final approximation obtained after only
five iterations with 50 line segments shown in red.

values and the number of the model parameters. We
demonstrate these properties with experimental results
on several real and simulated data sets, in which the
model components correspond to line segments. Our
approach is presented in a unified mathematical frame-
work with a single target function that is optimized
in classical E and M steps as well as in the proposed
split, merge, and component insertions steps, which are
needed to adjust the number of model components. We
use KLD to compare the parametric and nonparametric
densities. The main challenge faced by our approach is
the estimation of the nonparametric density from the
data points.

We have focused on using the proposed algorithm
to fit line segments. However, it can be extended to
fit planar polygons to point clouds in 3D. Examples
illustrating fitting planar polygons to 3D range data
obtained from a moving robot are given in [6].
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