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Abstract

Merging local maps, acquired by multiple robots,
into a global map, (also known as map merging) is one
of the important issues faced by virtually all cooper-
ative exploration techniques. We present a novel and
simple solution to the problem of map merging by re-
ducing it to the problem of SLAM of a single ”virtual”
robot. The individual local maps and their shape infor-
mation constitute the sensor information for the virtual
robot. This approach allows us to adapt the framework
of Rao-Blackwellized particle filtering used in SLAM of
a single robot for the problem of map merging.

1 Introduction
One of the key challenges for insuring the autonomy

in multi-robot systems is to cooperatively explore and
build the world model of their environment. In a typical
multi-robot system, the individual robots build maps in
their local coordinate frames. These local maps have
to be transformed into a common (global) coordinate
frame. The problem of estimating these transformations
is known as the map-merging problem. In virtually all
existing work the problem is treated as a search problem
by iteratively proposing candidate transformations and
verifying the quality of the proposal. The differences
are characterized by factors guiding their proposal and
verification processes. A general heuristic guiding the
techniques is the solution must produce ”perceptually
good and consistent maps”.

For example, [4] designed an adaptive random walk
based motion planning which they use for proposal.
They use an image dissimilarity metric based on [2] for
verifying the transformations and adapting the sampling
distribution for their random walk. Their approach is
superior to most of the existing approaches, but their
main drawback is the fact that their random walks need
to be sampled from Gaussian distributions for conver-
gence. If the initial set of transformations places local
maps too far apart in the global frame, their metric can-
not properly modify the distribution appropriately and

∗This work was support in part by the NSF Grant No. IIS-0534929
and by the DOE Grant No. DE-FG52-06NA27508.

puts convergence at risk. In the proposed approach we
employ Sequential Monte Carlo estimation of transfor-
mations in the merging process by tracking multiple hy-
potheses. The estimation process is guided by shape
information in the local maps. The main difference be-
tween straightforward multi-robot SLAM as in [10, 6]
and our ViRtual SLAM (VR-SLAM) is that we restrict
the state space to that of a trajectory of the single (vir-
tual) robot. As a consequence we do not estimate the
joint trajectories of individual robots. This makes our
technique more scalable in the number of local maps,
and more robust when overlap among local maps is
minimal (at least one common structure). This can be
observed in our results where maps built by up to 10
individual robots are merged. This can be compared to
results in [4] where they merge up to 6 maps.

2 Overview of VR-SLAM
In a single robot SLAM a joint posterior over tra-

jectories, x1:t, and maps, mt, is maximized con-
strained by a sequence of range measurements, z1:t

and odometry readings, u1:t. The goal is to find
argmax
x1:t,mt

p(x1:t,mt|z1:t, u1:t). For more details see

[11]. A very successful framework for such optimiza-
tion is Rao-Blackwellized particle filtering as presented
in [7]. In this framework the posterior is represented
using a set of particles. Each particle represents a tra-
jectory and an associated map. At every time step t, the
most likely particle is used by the robot for navigational
purposes. A range measurement zt at time t captures a
small part of the environment as a local scan. An odom-
etry reading ut provides the update information for the
robot’s pose. Hence this optimization can be viewed as
the process of consistently merging a sequence of local
scans into a global map by tracking multiple hypothe-
ses.

In the proposed VR-SLAM a similar optimization
is performed. For ease of understanding the optimiza-
tion process we imagine a virtual robot trying to nav-
igate using the individual robots as its sensors. The
local maps built by the individual robots replace the
range measurements (local scans). The odometry read-
ings are derived from registration of similar structures



in local maps. The main differences between a sin-
gle robot SLAM and our VR-SLAM are due to the
differences in motion model and perception model of
the virtual robot. This leads to differences in designing
the proposal distribution and computing the importance
weights of the particles when using the particle filter-
ing framework. The design of the proposal is based on
the motion model of the robot while computing weights
is based on the perception model. Thus, once we for-
mulate the navigational behavior of our virtual robot,
the framework used in [7] can be adapted for maximiz-
ing the joint posterior of ”virtual” trajectories and maps
built by the virtual robot. This results in a solution to the
map-merging problem. The motion model and proposal
are described in Section 3. The perception model and
importance weights are described in Section 4. Hence-
forth we use the following notation: (i) Z to denote the
set of local maps to be merged, and (ii) ϕt to denote
the index of the local map that is merged at time step
t. Usually the individual robots can be ordered based
on their proximities; this gives us the sequence of local
maps i.e. Z[ϕ1:t]. Even if such an ordering is not avail-
able, the framework remains similar except that the mo-
tion model distribution has a larger number of modes
because at each time step structure registration is per-
formed between merged and all unmerged local maps
instead of just one unmerged map.

3 Motion from structure registration
We use the optimal proposal with ability to handle

multiple modes as described in [5] which is an im-
provement over [7]. There are two key differences be-
tween implementing the proposal for regular SLAM
and that for VR-SLAM: (1) Drawing the follower poses
from the distribution modeling the motion of the robot
i.e. p(xt|xt−1, ut), which is explained in this sec-
tion. (2) The computation of the likelihood of poses i.e.
p(zt|xj ,mt−1) (Section 4). The rest of the procedure
remains same as described in [5]. Simulation from the
above distribution is based on the motion model of the
robot. Now we explain the structure registration based
motion model for our virtual robot. The virtual robot al-
ways moves in the global frame. Its pose is initialized at
the origin of one of the local maps, which becomes the
reference coordinate frame (global frame). Its motion
update is then guided by ”structure registration” among
local maps. Its position in a local map is always at
the local origin. Similar structures among local maps
are extracted and registered using closed form solutions
like in [9, 8, 1]. The correspondences are obtained by
shape matching between similar structures. ut encap-
sulates the motion updates by registering similar struc-
tures between local maps Z[ϕt−1] and Z[ϕt]. There

could be several similar structures between Z[ϕt−1] and
Z[ϕt]. As a consequence, our proposal distribution is
multi-modal with peaks around the poses predicted us-
ing structure registration. Distribution of typical, odom-
etry based motion model is shown in Fig. 1 (a) while
that in our case is shown in Fig. 1 (b). Fig. 2 shows a
sample motion update process with two modes. We note
that each possible pose update is actually a transforma-
tion of the local map into the global frame of mt−1.

(a) (b)

Figure 1. (a) Typical distribution of odom-
etry based motion model in a single robot
SLAM. (b) In our case the distribution is
multi-modal with number of modes being
equal to the number of pairs of similar
structures.

4 Perception model using image similarity
The main component in recursively estimating im-

portance weights as described in [7] is p(zt|xj , mt−1),
which is also used in implementing the optimal proposal
[7]. The computation of the above likelihood is based
on the perception model of the robot. As mentioned ear-
lier the local maps built by the individual robots form
the sensor readings of the virtual robot. Hence zt is
characterized by the occupancy grid of the local map
Z[ϕt]. Our approach is motivated by correlation based
models used in regular SLAM [11]. The standard cor-
relation metric based on the normalized quadratic dis-
tance does not address the ”see through walls” problem
[11]. A correlation metric ∆ based on image distance ψ
(introduced in [2]) and a heuristic to address the incon-
sistent merge issue was introduced in [3]. The heuristic
is based on the idea of ”locking” the merge process to
avoid slipping into inconsistent merges with small ψ.
This heuristic although preventing slipping into incon-
sistent merges, fails to guide the process. This is be-
cause their random walks are guided by the gradients
computed on ψ.

We present a correlation metric that addresses the
”see through walls” issue better than heretofore. The



Figure 2. Left: The virtual robot’s pose in the global frame is shown with an arrow inside the
circle. The new local map, Z[ϕt] is shown in its local frame. The dotted red lines are the
trajectories of the individual robots. Middle: One possible structure registration updates the
pose of the virtual robot. The virtual robot’s jump is shown in dotted blue line. Right: Another
possible structure registration leads to a different pose update for the virtual robot.

local maps are converted into digital images by dis-
cretizing cell probability values into a set C =
{free, occupied, unknown}. There are two main
components of the proposed measure viz. Ψ and γ.
Ψ takes account of the ”overlap” between two maps,
m1,m2 in a common coordinate frame and γ takes ac-
count of the ”see through walls” issue.

Ψ is computed in a similar fashion to that of ψ pre-
sented in [3]. The main difference is that we compute
similarity between images in a way similar to that used
to compute likelihood fields of maps [11]. The basic
idea is to treat the images as arrays of pixels and reward
matching pixels based on their values and relative posi-
tions. The arrays are scanned for each class of pixels.
For each pixel, the distance to its closest similarly val-
ued pixel in the other image is computed and its score is
taken to be proportional to a Gaussian transform of this
distance. Fortunately the distances can be computed in
linear time in the number of pixels in the images using
”distance-maps” [3].

The inconsistency of a merge is defined as the mis-
match in the perception of the robot between two differ-
ently calculated positions. γ is designed in such a way
that its magnitude is made proportional to this merge in-
consistency. The mismatch in robot perception is based
on the number of disagreeing pixels in the two images.
Thus its computation involves similar steps as those for
Ψ. The larger the number of matching pixels (c1 = c2),
the larger Ψ is. In contrast to this, the larger the number
of mismatched pixels (c1 6= c2), the larger gamma is.
Each pose update of the virtual robot represents a trans-
formation of the local map into the global frame (cf.,
3). The likelihood scores for the poses are computed by
normalizing Ψ and γ over all the set of poses, {xj}n

j=1

at time t as:

Ψ̃j =
Ψj∑n

j=1 Ψj
, where Ψj = Ψ(mt−1, Txj (zt))

γ̃j =
γj −min(γj)∑n

j=1(γj −min(γj))
, where γi = γ(mt−1, Txj (zt))

Txj is the homogenous transformation matrix obtained
using the pose xj . The {Ψ̃j}n

j=1 and {γ̃j}n
j=1 form dis-

crete independent probability distributions. The like-
lihood score p(zt|mt−1, xj) is given by the product
Ψ̃j .γ̃j . The likelihood scores of a typical set of poses is
shown in Fig. 3. The figure also shows how neither Ψ̃
nor γ̃ by itself is sufficient but their combination helps
improve the likelihood scores.

5 Experimental results
We applied our technique to the data collected by

National Institute of Standards and Technology (NIST)
in a ”maze” type of environment1. We are provided
only with the local maps without any initial estimate
of the relative poses. For feature extraction we fit lines
to the data points and determine corners. For typical
indoor local maps, corners are sufficiently distinct fea-
ture descriptors to represent the environment structure.
Sample corners extracted from two partial maps can be
seen in Fig. 3. On average there were about 10 cor-
ners in a local map and there were about 5 matching
corner pairs between two local maps. The results are
shown for merging maps from 3, 5, 6 and 10 robots in
Fig. 4. We used an average of 50 to 100 particles. As
can be seen we could successfully merge maps of 10

1We would like to thank Raj Madhavan (NIST) for providing the
dataset.



Figure 3. The scores for a set of 11 poses are shown. The 8th, 9th and 11th poses have high Ψ̃
indicating good overlap but low consistency scores as seen by γ̃. The final likelihood scores
obtained by their product reflect scores in which both overlap and consistency are satisfied.
Corners extracted from two local maps (green and red) are shown above in blue. A pair of
similar corners are marked with green circles. The merged map obtained by registering the
two similar corners is shown in the right.

Figure 4. Merged maps of 3, 5, 6 and 10 robots. The map indices are placed at the local origins
of the individual maps. The sequence of the maps merged is shown in the respective titles.

robots. Since we did not assume the sequence of lo-
cal maps our process estimates the sequence also au-
tomatically as mentioned in Section 2. For e.g. the
optimal sequence of maps for 10 robots (Fig. 4) is
(3, 2, 4, 1, 5, 6, 7, 8, 9, 10). The time complexity of our
algorithm depends on the number of local maps to be
merged (N ), the average number of corners in each map
(c) and the number of particles (Np). If the sequence of
local maps to be merged (Z[ϕ1:t]) is known then the
complexity is O(Npc

2N2) otherwise it is O(Npc
2N3).
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