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Abstract. Outlier detection has recently become an important prob-
lem in many industrial and financial applications. In this paper, a novel
unsupervised algorithm for outlier detection with a solid statistical foun-
dation is proposed. First we modify a nonparametric density estimate
with a variable kernel to yield a robust local density estimation. Out-
liers are then detected by comparing the local density of each point to
the local density of its neighbors. Our experiments performed on sev-
eral simulated data sets have demonstrated that the proposed approach
can outperform two widely used outlier detection algorithms (LOF and
LOCI).

1 Introduction

Advances in data collection are producing data sets of massive size in commerce
and a variety of scientific disciplines, thus creating extraordinary opportunities
for monitoring, analyzing and predicting global economical, demographic, med-
ical, political and other processes in the World. However, despite the enormous
amount of data available, particular events of interests are still quite rare. These
rare events, very often called outliers or anomalies, are defined as events that oc-
cur very infrequently (their frequency ranges from 5% to less than 0.01% depend-
ing on the application). Detection of outliers (rare events) has recently gained a
lot of attention in many domains, ranging from video surveillance and intrusion
detection to fraudulent transactions and direct marketing. For example, in video
surveillance applications, video trajectories that represent suspicious and/or un-
lawful activities (e.g. identification of traffic violators on the road, detection of
suspicious activities in the vicinity of objects) represent only a small portion
of all video trajectories. Similarly, in the network intrusion detection domain,
the number of cyber attacks on the network is typically a very small fraction
of the total network traffic. Although outliers (rare events) are by definition in-
frequent, in each of these examples, their importance is quite high compared to
other events, making their detection extremely important.
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Data mining techniques that have been developed for this problem are based
on both supervised and unsupervised learning. Supervised learning methods typ-
ically build a prediction model for rare events based on labeled data (the training
set), and use it to classify each event [1, 2]. The major drawbacks of supervised
data mining techniques include: (1) necessity to have labeled data, which can be
extremely time consuming for real life applications, and (2) inability to detect
new types of rare events. On the other hand, unsupervised learning methods
typically do not require labeled data and detect outliers (rare events) as data
points that are very different from the normal (majority) data based on some
pre-specified measure [3]. These methods are typically called outlier/anomaly
detection techniques, and their success depends on the choice of similarity mea-
sures, feature selection and weighting, etc. Outlier/anomaly detection algorithms
have the advantage that they can detect new types of rare events as deviations
from normal behavior, but on the other hand suffer from a possible high rate of
false positives, primarily because previously unseen (yet normal) data are also
recognized as outliers/anomalies, and hence flagged as interesting.

Outlier detection techniques can be categorized into four groups: (1) sta-
tistical approaches; (2) distance based approaches; (3) profiling methods; and
(4) model-based approaches. In statistical techniques [3, 6, 7], the data points
are typically modeled using a stochastic distribution, and points are labeled as
outliers depending on their relationship with the distributional model.

Distance based approaches [8–10] detect outliers by computing distances
among points. Several recently proposed distance based outlier detection al-
gorithms are founded on (1) computing the full dimensional distances among
points using all the available features [10] or only feature projections [8]; and (2)
on computing the densities of local neighborhoods [9, 35]. Recently, LOF (Local
Outlier Factor) [9] and LOCI (Local Correlation Integral) [35] algorithms have
been successfully applied in many domains for outlier detection in a batch mode
[4, 5, 35]. In addition, clustering-based techniques have also been used to detect
outliers either as side products of the clustering algorithms (as points that do not
belong to clusters) [11] or as clusters that are significantly smaller than others
[12].

In profiling methods, profiles of normal behavior are built using different data
mining techniques or heuristic-based approaches, and deviations from them are
considered as outliers (e.g., network intrusions). Finally, model-based approaches
usually first characterize the normal behavior using some predictive models (e.g.
replicator neural networks [13] or unsupervised support vector machines [4, 12]),
and then detect outliers as deviations from the learned model.

In this paper, we propose an outlier detection approach that can be classified
both into statistical and density based approaches, since it is based on local
density estimation using kernel functions. Our experiments performed on several
simulated data sets have demonstrated that the proposed approach outperforms
two very popular density-based outlier detection algorithms, LOF [9] and LOCI
[35].
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2 Local Density Estimate

We define outlier as an observation that deviates so much from other observa-
tions to arouse suspicion that it was generated by a different mechanism [13].
Given a data set D = {x1,x2, ...,xn}, where n is the total number of data sam-
ples in Euclidean space of dimensionality dim, we propose the algorithm that
can identify all outliers in the data set D. Our first step is to perform density
estimate. Since we do not make any assumption about the type of the density,
we use a nonparametric kernel estimate [39] to estimate the density of majority
data points q(x), also referred to as a ground truth density. Consequently, all
data samples that appear not to be generated by the ground truth density q(x)
may be considered as potential outliers.

However, it is impossible to directly use density estimate to identify outliers if
the estimated distribution is multimodal, which mostly is the case. Data points
belonging to different model components may have different density without
being outliers. Consequently, normal points in some model components may have
lower density than outliers around points from different model components.

In order to detect outliers, we compare the estimated density at a given data
points to the average density of its neighbors. This comparison forms the basis of
most unsupervised outlier detection methods, in particular of LOF [9]. The key
difference is that we compare densities, which have solid statistical foundation,
while the other methods compare some local properties that are theoretically
not well understood.

One of our main contributions is to provide proper evaluation function that
makes outlier detection based on density estimate possible.

There is a large body of published literature on non-parametric density esti-
mation [39]. One of the best-working non-parametric density estimation methods
is the variable width kernel density estimator [39]. In this method, given n data
samples of dimensionality dim, the distribution density can be estimated as:

q̃(x) =
1
n

n∑

i=1

1
h(xi)dim

K(
x− xi

h(xi)
), (1)

where K is a kernel function (satisfying non-negativity and normalization condi-
tions) and h(xi) are the bandwidths implemented at data points xi. One of the
main advantages of this sample smoothing estimator is that q̃(x) is automati-
cally a probability density function [39] if K is a probability density function.
In our case, K is a multivariate Gaussian function of dimensionality dim with
zero mean and unit standard deviation:

K(x) =
1

(2π)dim
exp(−||x||

2

2
), (2)

where ||x|| denotes the norm of the vector. The simplest version of the bandwidth
function h(xi) is a constant function h(xi) = h, where h is a fixed bandwidth.
However, for real data sets, local sample density may vary. Therefore, it is nec-
essary to have a method that is adaptive to the local sample density. This may
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be achieved for h(xi) = hdk(xi), where dk(·) denotes the distance to the kth
nearest neighbor of point xi. The usage of the kth nearest neighbor in kernel
density estimation was first proposed in [38] (see also [37]).

Since we are interested in detecting outlier data samples based on comparing
them to their local neighborhood, the sum in Eq. 1 needs only to be taken over a
sufficiently large neighborhood of a point x. Let mNN(x) denotes the m nearest
neighbors of a sample x. Thus, from Eq. 1 and 2 we obtain the following formula
for distribution density at data sample xj :

q̃(xj) ∝ 1
m

∑

xi∈mNN(xj)

1
h(xi)dim

K(
xj − xi

h(xi)
)

=
1
m

∑

xi∈mNN(xj)

1

(2π)
dim
2 h(xi)dim

exp(−d(xj ,xi)2

2h(xi)2
). (3)

Here,
d(xj ,xi) = ||xj − xi||2 (4)

is the squared Euclidean distance between samples xi and xj . Restricting the
sum in Eq. 1 to a local neighborhood as in Eq. 3 has a computational advantage.
While the computation of q̃ for all data points has O(n2) complexity, the average
computation in Eq. 3 can be accomplished in O(mn log n) time, where n is the
number of data samples in a data set D and O(m log n) refers to the cost of search
for m nearest neighbors of a data sample if a hierarchical indexing structure like
R-tree is used [46].

Observe that Euclidean distance from Eq. 4 may be very small if there is a
neighbor xi very close to sample xj . In such a case, it is possible to misleadingly
obtain a large density estimate q̃(xj). To prevent such issues and increase the
robustness of the density estimation, following the LOF approach [9], we compute
reachability distance for each sample y with respect to data point x as follows:

rdk(y,x) = max(d(y,x), dk(x)), (5)

where dk(x) is the distance to kth nearest neighbor of point x. Eq. 5 prevents
the distance from y to x to become too small with respect to the neighborhood
of point x.

We obtain our local density estimate (LDE) by replacing the Euclidean dis-
tance in Eq. 3 with the reachability distance:

LDE(xj) ∝ 1
m

∑

xi∈mNN(xj)

1

(2π)
dim
2 h(xi)dim

exp(−rdk(xj ,xi)2

2h(xi)2
)

=
1
m

∑

xi∈mNN(xj)

1

(2π)
dim
2 (h · dk(xi))dim

exp(− rdk(xj ,xi)2

2(h · dk(xi))2
). (6)

The name of local density estimate (LDE) is justified by the fact that we sum
over a local neighborhood mNN compared to the sum over the whole data set



5

commonly used to compute the kernel density estimate (KDE), as shown in Eq.
1.

LDE is not only computationally more efficient than the density estimate in
Eq. 1 but yields more robust density estimates. LDE is based on the ratio of two
kinds of distances: the distance from a point xj to its neighbors xi and distances
of the neighboring points xi to their k-th neighbors. Namely, the exponent term
in Eq. 6 is a function of the ratio rdk(xj ,xi)

dk(xi)
, which specifies how is the reachability

distance from xj to xi related to the distance to the k-th nearest neighbor
of xi. In fact, we use dk(xi) as a ”measuring unit” to measure the Euclidean
distance d(xj ,xi). If d(xj ,xi) ≤ dk(xi), then the ratio rdk(xj ,xi)

dk(xi)
is equal to one

(since rdk(xj ,xi) = dk(xi)), which yields the maximal value of the exponential
function (exp(− 1

2h2 )). Conversely, if d(xj ,xi) > dk(xi), then the ratio is larger
than one, which results in smaller values of the exponent part.

The bandwidth h specifies how much weight is given to dk(xi). The larger
h, the more influential are the k nearest neighbors that are further away. The
smaller h, the more we focus on k nearest neighbors.

Observe that we compare a given point xj to its neighbors in mNN(xj). It
is important that the neighborhood mNN(xj) is not too small (otherwise, the
density estimation would not be correct). Overly large m does not influence the
quality of the results, but it influences the computing time (to retrieve m nearest
neighbors).

Having presented an improved local version of a nonparametric density es-
timate, we are ready to introduce our method to detect outliers based on this
estimate. In order to be able to use LDE to detect outliers, the local density
values LDE(xj) need to be related to the LDE values of neighboring points. We
define Local Density Factor (LDF) at a data point as the ratio of average
LDE of its m nearest neighbors to the LDE at the point:

LDF (xj) ∝
∑

xi∈mNN(xj)
LDE(xi)

m

LDE(xj) + c ·∑xi∈mNN(xj)
LDE(xi)

m

. (7)

Here, c is a scaling constant (in all our experiments we used c = 0.1). The scaling
of LDE values by c is needed, since LDE(xj) may be very small or even equal
to zero (for numerical reasons), which would result in very large or even infinity
values of LDF if scaling is not performed, i.e., if c = 0 in Eq. 7. Observe that the
LDF values are normalized on the scale from zero to 1/c. Value zero means that
LDE(xj) À

∑
xi∈mNN(xj)

LDE(xi)
m while value 1/c means that LDE(xj) = 0.

The higher the LDF value at a given point (closer to 1/c) the more likely the
point is an outlier.

The normalization of LDE values makes possible to identify outliers with a
threshold LDF (xj) > T chosen independently for a particular data set.

Observe that it is possible to use the Eq. 6 with covariance matrix of the
Gaussian that automatically adjusts to the shape of the whole neighborhood
mNN . Let Σi be the covariance matrix estimated on the m data points in
mNN(xi). If we use a general Gaussian kernel with covariance matrices Σi,
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then Eq. 3 becomes:

q̃(xj) ∝
n∑

i=1

1
hdim|Σi| 12

exp(−dΣ(xj ,xi)2

2h2
), (8)

where dΣ(x,y)2 = (x − y)T Σ−1
i (x − y) is the Mahalanobis distance of vectors

x and y. It can be shown that

dΣ(x,y)2 = (x∗ − y∗)T · (x∗ − y∗). (9)

Here,
x∗ ≡ (ΛT )−

1
2 VT (x∗ − µ), (10)

where Λ = diag(λ1, . . . , λk) is the diagonal matrix of eigenvalues and V =
[v1, . . . ,vk] is the matrix od corresponding eigenvectors of Σi and µ is the mean
of the vectors in the mNN neighborhood. Therefore, Eq. 8 can be, using Eq. 9
and Eq. 4 represented in the form:

q̃(xj) ∝
n∑

i=1

1
hdim|Σi| 12

exp(−d(x∗j ,x∗i)2

2h2
). (11)

Now, analogous to Eq.6, we may generalize the LDE measure to:

LDE(xj) ∝ 1
m

∑

xi∈NN(xj)

1

(2π)
dim
2 hdim|Σi| 12

exp(−rdk(x∗j ,x
∗
i )

2

2h2
) (12)

Equation 12 can be replaced within Eq. 7 to obtain generalized measure of the
local density factor.
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Fig. 1. The ROC curves for different detection algorithms
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3 Performance Evaluation

Outlier detection algorithms are typically evaluated using the detection rate,
the false alarm rate, and the ROC curves [44]. In order to define these metrics,
let us look at a confusion matrix, shown in Table 1. In the outlier detection
problem, assuming class ”C” as the outlier or the rare class of the interest,
and ”NC” as a normal (majority) class, there are four possible outcomes when
detecting outliers (class ”C”)-namely true positives (TP ), false negatives (FN),
false positives (FP ) and true negatives (TN). From Table 1, detection rate and
false alarm rate may be defined as follows:

DetectionRate =
TP

TP + FN

FalseAlarmRate =
FP

FP + TN
.

Table 1. Confusion matrix defines four possible scenarios when classifying class ”C”

Predicted Outliers Predicted Normal
–Class C Class–NC

Actual Outliers True Positives False Negatives
–Class C (TP) (FN)

Actual Normal False Positives True Negatives
–Class NC (FP) (TN)

Detection rate gives information about the relative number of correctly iden-
tified outliers, while the false alarm rate reports the number of outliers misclassi-
fied as normal data records (class NC). The ROC curve represents the trade-off
between the detection rate and the false alarm rate and is typically shown on
a 2 −D graph (Fig. 1), where false alarm rate is plotted on x-axis, and detec-
tion rate is plotted on y-axis. The ideal ROC curve has 0% false alarm rate,
while having 100% detection rate (Fig. 1). However, the ideal ROC curve is
hardly achieved in practice. The ROC curve can be plotted by estimating detec-
tion rate for different false alarm rates (Fig. 1). The quality of a specific outlier
detection algorithm can be measured by computing the area under the curve
(AUC) defined as the surface area under its ROC curve. The AUC for the ideal
ROC curve is 1, while AUCs of ”less than perfect” outlier detection algorithms
are less than 1. In Figure 1, the shaded area corresponds to the AUC for the
lowest ROC curve.

4 Experiments

In this section, we compare the performance of the proposed LDF outlier detec-
tion measures (Eq. 7) to two state of the art outlier detection algorithms LOF [9]
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and LOCI [35] on several synthetic data sets. In all of our experiments, we have
assumed that we have information about the normal behavior (normal class) and
rare events (outliers) in the data set. However, we did not use this information
in detecting outliers, i.e. we have used completely unsupervised approach.

Recall that LOF algorithm [9] has been designed to properly identify outliers
as data samples with small local distribution density, situated in vicinity of
dense clusters. To compare LOF to our proposed LDF algorithm, we created
two data sets Dataset1 and Dataset2. Dataset1 shown in Fig. 2(a) has two
clusters of non-uniform density and sizes (with 61 and 27 data samples) and two
clear outliers A and B (marked with stars in Fig. 2(a)). Data sample C does
not belong to the second cluster, but as argued in [9] is should not be regarded
as an outlier, since its local density is similar to its neighbors’ local densities.
Although points A and C have equal distances to their closest clusters (cluster1
and cluster2 correspondingly), the difference in clusters density suggests that
A is an outlier while C is a normal data point. Recall that one of the main
motivations for LOF in [9] is based on a data set of this kind.

As shown in Fig. 3, both methods LOF and the proposed LDF correctly
identify the outliers A and B in Dataset1 without classifying C as an outlier (as
in all figures presented here, the larger the circle and the darker its color, the
higher the outlier factor value). However, observe that LOF assigns a significantly
smaller LOF value to point B than A. This is counter intuitive, since point B
is definitely the strongest outlier, and may lead to incorrect outlier detection
results.

We illustrate the main problem of LOF on the second data set with two
clusters of different densities shown in Fig. 2(b). The data set contains 41 points
in sparse cluster1, 104 points in the dense cluster2, and four outstanding outliers
A, B, C andD (marked with stars). While samples C and D are clearly outliers,
we regard samples A and B as outliers in analogy to sample A from Dataset1
(see Fig. 2(a)). Like sample A in Dataset1, their local density is lower then
the local density of their neighbors from cluster1. In other words, samples A
and B are too far from the closet cluster to be regarded as normal data points.
However, the outlier values for points C and D should be significantly larger
than for points A and B.

LOF was not able to detect points A and B as outliers for any value of its
parameter k. We illustrate this fact in Fig. 4 for k = 5 and 20. Observe also that
for larger k values, the LOF value of point C actually decreases. In contrast,
as shown in Fig.5(a), LDF is able to clearly identify all four outliers. Fig. 5
also illustrates a multiscale behavior of LOF as a function of the bandwidth
parameter h. For small values of h, more weight is given to close neighbors of
a sample, while for larger values of h, the more distant neighbors also receive
higher weight. In other words, with smaller h values, we have higher sensitivity
to local situations, and therefore are able to detect all four outliers in Fig. 5(a)
for h = 0.5. In contrast, with larger h, we smooth local variations. Consequently,
for h = 5, LDF detects only two outliers, while for h = 1, LDF detects all four
outliers, while assigning higher LDF values for the two clear outliers C and D.
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Fig. 5. LDF results on two cluster data set in 2(b) for k = 5 and bandwidth (a) h = 0.5,
(b) h = 1, (c) h = 5

To further compare the results of the proposed algorithm with existing algo-
rithms [9, 35], we generated synthetic data sets similar to those used in [35] (origi-
nal data from this reference were not available to us). The data set Dens contains
two uniformly distributed rectangular clusters (coordinates (12, 22; 15, 25) and
(80, 120; 30, 70) respectively) with 200 samples in each and one outlier at coordi-
nates (32, 20). The second data set Multimix contains a Gaussian cluster, two
uniform clusters, 3 outstanding outliers (with coordinates (80, 110), (85, 110) and
(20, 50) and three points linearly positioned on top of the uniform cluster. The
Gaussian cluster has 250 samples with mean at (20,110) and diagonal covariance
matrix with both variances equal to 5. The first uniform cluster has 400 samples
uniformly distributed in the rectangle (130, 150; 95, 105). The second uniform
cluster had 200 points uniformly distributed in the circle with center at (80, 50)
and radius 20.

In Fig. 6(a,b), we demonstrate the performance of the LDF algorithm with
parameters h = 1, k = 10,m = 30 on these data sets. We compare results of the
proposed algorithm with LOF [9]. Fig. 6(c,d) contains results of executing LOF
algorithm for the same value of k = 10.

As we can see, the proposed LDF and the LOF algorithm performed similarly.
LDF values for samples on the boundaries of the Gaussian cluster of Multimix
tend to be higher, but the computed high rank correlation [48] between LDF
and LOF values (0.85) indicates similar order performance (since the outlier
detection is performed by thresholding). We also compare the performance of
the proposed algorithm with exact LOCI algorithm with parameters suggested
in [35]. LOCI results are shown in Fig. 6(e,f) for nmin = 20, α = 2, kσ = 2. The
visualization in Fig. 6(e,f) is different from (a-d), since LOCI outputs only a
binary classification for each data point (outlier or not an outlier). As can be
clearly seen, LOCI has trouble with data points on cluster boundaries. It tends
to identify samples on boundaries of clusters as outliers.

’
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Fig. 6. LDF results on synthetic data sets (a) Dens (b) Multimix. Corresponding
results for LOF are in (c) and (d), and for LOCI in (e) and (f)
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5 Conclusions

A novel outlier detection framework is presented that is closely related to statis-
tical nonparametric density estimation methods. Experimental results on several
synthetic data sets indicate that the proposed outlier detection method can re-
sult in better detection performance than two state-of-the-art outlier detection
algorithms (LOF and LOCI). Data sets used in our experiments contained differ-
ent percentage of outliers, different sizes and different number of features, thus
providing a diverse test bed and illustrating wide capabilities of the proposed
framework. Although performed experiments have provided evidence that the
proposed method can be very successful for the outlier detection task, future
work is needed to fully characterize the method in real life data, especially in
very large and high dimensional databases, where new methods for estimating
data densities are worth considering. It would also be interesting to examine the
influence of irrelevant features to detection performance of LDF method as well
as to investigate possible algorithms for selecting relevant features for outlier
detection task.
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