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Abstract. We present a novel geometric model for robot mapping suited
for robots equipped with a laser range finder. The geometric represen-
tation is based on shape. Cyclic ordered sets of polygonal lines are the
underlying data structures. Specially adapted shape matching techniques
originating from computer vision are applied to match range scan against
the partially constructed map. Shape matching respects for a wider con-
text than conventional scan matching approaches, allowing to disregard
pose estimations. The described shape based approach is an improvement
of the underlying geometric models of todays SLAM implementations.
Moreover, using our object-centered approach allows for compact repre-
sentations that are well-suited to bridge the gap from metric information
needed in robot motion and path planning to more abstract, i.e. topo-
logical or qualitative spatial knowledge desired in complex navigational
tasks or communication.
Keywords: cognitive robotics, robot mapping, shape matching

1 Motivation

The problems of self-localization, i.e. localizing the robot within its internal
map, and robot mapping, i.e. constructing the internal map autonomously, are
of high importance to the field of mobile robotics [18]. Coping with unknown or
changing environments requires to carry out both tasks simultaneously, therefore
this has been termed the SLAM problem: Simultaneous Localization and Map-
ping [5]—it has received considerable attention [5, 8, 18]. Successful stochastical
approaches have been developed that tackle representation and handling of un-
certain data which is one key point in SLAM. As todays stochastical models are
powerful, even linking them to a simple geometric representation like reflection
points measured by a range sensor already yields impressive results. Advances
in stochastical means have improved the overall performance leaving the basic
spatial representation untouched. As the internal geometric representation is a
foundation for these sophisticated stochastical techniques, shortcomings on the
level of geometric representation affect the overall performance.

We claim that an improved geometric representation enhances the overall
performance dramatically. A compact, object oriented representation based on
shape is an universal yet slender one. It can outperform often-used occupancy
grids in storage as well as in computational resources, since smaller sets of data
need to be processed. Object-centered representations have been judged neces-
sary to represent dynamic environments [18]. Moreover, a more comprehensive



spatial representation can allow to mediate between different aspects of spa-
tial information that are desired or even necessary in applications. We propose
a shape representation of the robot’s surrounding that grants access to metric
information as needed in robot motion or path planning alongside with more
abstract, qualitative or topological knowledge which is desired in navigational
tasks and a well-suited foundation for communication.

2 Related Work

Any approach to master the SLAM problem can be decomposed into two aspects:
handling of map features (extraction from sensor data and matching against the
(partially) existing map) and handling of uncertainty.

To address uncertainty mainly statistical techniques are used, e.g., particle
filters, the extended Kalman filter, a linear recursive estimator for systems de-
scribed by non-linear process models and/or observation models, are used in
most current SLAM algorithms [17, 18, 8]. As this paper focusses exclusively on
the map’s geometric representation, we now review related aspects in detail.

Typically, map features extracted from sensor data (esp. range finder data)
are either the positions of special landmarks [5], simple geometric features, es-
pecially lines [12, 13, 3], or range finder data is used rather directly [18].

Direct use of data, that is without further interpretation despite noise fil-
tering, results in constructing a bitmap-like representation of the environment
termed occupancy grid [6]. The simplicity of this approach causes its strength,
namely universality: It may be used in unstructured, unprepared environments.
However, harmful features show off as well. First, the crucial method of matching
a scan against the map in order to localize the robot is formulated as a mini-
mization [12, 18, 8]. Therefore, a good estimation of the robot’s pose is required
to prevent minimization getting stuck in local minima. Second, occupancy grids
grow with the environment’s size, not its complexity. As grids need to fine, using
these maps can easily end up in handling large data sets. This is not only a
problem of storage, but, far more important, it affects run-time of algorithms
handling the map as huge amounts of data need to be processed. To keep path
planning in a once constructed map feasible, a topological representation can be
coupled with the metric one [16].

To maintain a map at manageable size from the beginning, representations
based on features or landmarks provide excellent means. These so-called object
maps represent only position of landmarks and their distinctive features. Thus,
these maps grow with the environment’s complexity (i.e. the number of land-
marks visible). This allows for an efficient processing. Using natural landmarks
is of special interest as environments do not need to be prepared, like, e.g., by
installing beacons [5]. For example, mapping based on line segments has been
shown to improve performance in office environments [13]. A key point in feature-
based approaches is a matching of perceived features against the ones represented
in the map. Wrong matchings result in incorrect, hence, useless maps. Complex
features help to prevent a mixup when matching the robot’s perception against



its map. As features’ presence is required, application is often limited to special
environments only. On the contrary, choosing simple, omnipresent features can
easily inhibit a reliable matching of perceived features against the map. Unreli-
able feature extraction, e.g. extracting line segments from round objects causes
problems, too, as additional noise gets introduced. As noise gets propagated, it
sums up and can cause inconsistent maps.

To overcome these problems, we propose a shape based representation that
is (a) universal as employed shape features can be extracted in any environment,
but (b) features provide distinctive information as shape respects a wide spatial
context. Matching of features is, thus, based on a shape matching which has
received much attention in the context of computer vision.

The idea of applying shape matching in the context of robot mapping is not
new. In the fundamental paper by Lu & Milios [12], scan matching has already
been considered similar to model-based shape matching. Thrun considers this
connection underexploited [18]. Recent advances in shape matching provide a
good starting point to bring these fields together. Our approach utilizes a model
based similarity measure.

In the domain of robot mapping mainly two key aspects dictate to the ap-
plicability of shape descriptors, namely partial shape retrieval and the ability to
deal with simple shapes. Firstly, as only partial observations of the environment
can be made, any approach to shape representation that cannot handle par-
tial shapes renders itself unemployable. This includes, for example, encoding by
feature vectors like Fourier or momenta spectra. Secondly, any robot’s working
environment must be representable in the framework of the chosen shape descrip-
tor. Besides these confinements, investigating into shape information available
in typical indoor environments displays another feature required: Much shape
information perceivable is often rather poor, like for instance straightaway walls
with small protrusions only. Therefore, shape recognition processes must be very
distinctive, even on rather featureless shapes.

Structural approaches represent shape as a colored graph representing met-
ric data alongside configurational information. Amongst these so-called skeleton
based techniques, especially shock graphs (cp. [15]) are worth consideration3.
Though primarily structural approaches may very well bridge the gap from met-
ric to more abstract qualitative or topological information (cp. [16]), recognizing
shapes lacking of a rich structure of configuration, has not yet proven feasible.
Moreover, a robust computation and matching of a skeleton in the presence of
noise has not yet been solved.

Therefore, we propose the utilization of a boundary based approach. Consid-
ering the discrete structure provided by sensors, using polygonal lines to repre-
sent the boundaries of obstacles may be achieved easily. Related techniques for
matching rely on a so-called similarity measure. Various measures, often metrics,
have been developed. Arkin et al. ([1]) accumulates differences in turning angle
in straightforward manner; it fails to account for noise, esp. if not uniformly

3 Skeleton based approaches relate closely to Voronoi based spatial representations
used in the field of robotics (cp. [16, 15]).



distributed, adequately. Basically all improvements in similarity measures, thus,
employ a matching of boundaries to establish a correspondence prior to sum-
ming up dissimilarities of corresponding parts. Basri et al. propose a physically
motivated deformation energy ([2]). More recently, an alignment-based deforma-
tion measure has been proposed by Sebastian et al. which considers the process
of transforming one outline into another ([14]). However, common to these ap-
proaches is that an equal sampling rate of the outlines is required. The emerging
problem of comparing two, let us assume identical outlines with different sample
points, can be illustrated easily: Computing a correspondence of either points
or line-segments introduces large deformations due to mismatches in point cor-
respondence, hence, underestimating similarity dramatically. Considering shape
information obtained by a range sensor, scanning the same object from different
positions generates this effect.

An improved performance in similarity measures for closed contours has been
achieved by Latecki & Lakämper who consider a matching on basis of a a priori
decomposition into maximal arcs (cp. [10]). We will formulate the presented
approach on this basis. However, it is adapted such that it is tailored to deal
with any kind of open polyline and addresses the problem of noisy data in a direct
manner. The representation is complemented by a structural representation of
robust ordering information. Applicability of the elementary shape similarity
measure has been shown in [11].

3 Structural Shape Representation

Shape information can directly be derived from sensor readings obtained by
a range sensor, typically a laser range finder (LRF). Shape is represented as
a structure of boundaries. Polygonal lines, called polylines, serve as the basic
entity.

Polylines represent obstacles’ boundaries. Much of the spatial information
represented in the map can be captured by individual polylines which form vi-
sual parts (cp. [10]). The variety of perceivable shapes in a regular indoor scenario
already yields a more reliable matching than other feature-based approaches, as
mixups in determining corresponding features are more unlikely to occur. At
the same time, we are able to construct a compact representation for an ar-
bitrary environment. However, we exploit even more context information than
represented by a single polyline considering shape as a structure of polylines.
This allows us with basically no extra effort to cope with environments display-
ing mostly simple shapes. The structure captured is ordering information. For
any given viewpoint, perceivable objects can be ordered in a counter-clockwise
manner. Thus, for a map containing polylines the structure of ordering can be
expressed as a mapping from a point (the robot’s position in the map) to a vector
of polylines. Given a polygonal map, computing the vector of visible polylines
can be achieved by applying a sweep line algorithm used in computational geom-
etry to determine visibility [4]. A first step in the presented approach, however,
is to extract shape information, i.e. polylines from data acquired by the LRF.



3.1 Grouping and Simplification of Polylines

Let us assume that the range data is mapped to locations of reflection points
in the Euclidean plane, using a local coordinate system. Now, these points are
segmented into individual polylines which represent visual parts of the scan.
For this grouping a simple heuristic may be employed: Traversing the reflection
points in the (cyclic) order as measured by the LRF, an object transition is
said to be present wherever two consecutive points are farer apart than a given
distance threshold. For obtaining the experimental results we used a threshold
of 20cm, however the precise choice is not important, as differences in grouping
are accounted for (cp. section 4.2).

Polylines extracted this way still carry all the information (and noise) re-
trieved by the sensor. To make the representation more compact and to cancel
out noise, we employ a technique called Discrete Curve Evolution (DCE) intro-
duced by Latecki & Lakämper ([9]) to (a) make the data more compact without
loosing valuable shape information and (b) to cancel out noise. DCE is a context-
sensitive process that proceeds iteratively: Irrelevant vertices get removed until
no irrelevant ones remain. Though the process is context-sensitive, it is based
on a local relevance measure for a vertex v and its two neighbor vertices u, w4:

K(u, v, w) = |d(u, v) + d(v, w) − d(u, w)| (1)

Hereby, d denotes the Euclidean distance. The process of DCE is very simple and
proceeds in straightforward manner. The least relevant vertex is removed until
least relevance exceeds a given simplification threshold. Proceeding this way we
obtain a cyclic ordered vector of polylines. Consequently, as no relevance measure
is assigned to end-points, they remain fixed. The choice of a specific simplification
threshold is not crucial, since only the overall shape needs to be preserved. The
precise classification of noise will done in the context of corresponding polylines
(cp. section 4.1). Exemplary results for applying DCE to LRF data are shown
in Figure 1; Figure 2 demonstrates suitability for curved boundaries.

4 Matching of Shapes

To match two shapes means to match two ordered set of polylines against each
other. Whereas one shape has been extracted from a sensor reading, the other
is determined by the partially built map. Based on an estimation of the robot’s
position in its internal map, the shape perceivable according to the map is com-
puted. To localize the robot and update its map, visual parts perceived by the
sensor need to be matched against those extracted from the map. Hence, we
need to seek for the best correspondence of individual polylines that preserves
the shapes’ structure, i.e. which does not violate their order. Shape similarity is
the key point to quantify quality of a correspondence.

4 Context is respected as in the course of simplification the vertices’ neighborhood
changes.
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Fig. 1. Extracting polylines from a scan. Raw scan points (a) are grouped to polylines
(b), then simplified by means of DCE. The threshold used in (c) is 1.0 and 5.0 in (d).
The two additional rectangles show magnifications of marked parts. The grid denotes
1 meter distance.

(a) (b) (c) (d)

Fig. 2. Extracting shape information from curved synthetic data by DCE. The original
data is shown in (a), (b) displays the result using 1.0 as stop threshold. A threshold of
2.5 was used in (c) and 5.0 in (d) (cp. Figure 1 for real LRF data). The grid denotes
1 meter distance.

4.1 Similarity of Polylines

The similarity measure utilized in our approach is based on a measure introduced
by Latecki & Lakämper which we first will summarize very briefly and indicate
changes made as it is necessary in this context; for details refer to [10].

To compute the basic similarity measure between two polygonal curves, we
establish the best possible correspondence of maximal left- or right-arcuated
arcs5. To achieve this, we first decompose the polygonal curves into maximal
subarcs which are likewise bent. Since a simple one-to-one comparison of max-
imal arcs of two polylines is of little use, due to the fact that the curves may
consist of a different number of such arcs and even similar shapes may have
different small features, we allow for 1-to-1, 1-to-many, and many-to-1 corre-
spondences of maximal arcs. The main idea here is that we have at least on one
of the contours a maximal arc that corresponds to a part of the other contour
composed of adjacent maximal arcs. The best correspondence can be computed
using Dynamic Programming, where the similarity of the corresponding visual
5 The original work is based on convex and concave arcs respectively. As we deal with

open polylines here, the terms convex or concave would be meaningless.



parts is as defined below. The similarity induced from the optimal correspon-
dence of polylines C and D will be denoted S(C,D).

Basic similarity of arcs is defined in tangent space, a multi-valued step func-
tion representing angular directions and relative lengths of line-segments only.
It was previously used in computer vision, in particular, in [1]. Denoting the
mapping function by T , the similarity gets defined as follows:

Sa(C,D) = (1 + (l(C) − l(D))2) ·
∫ 1

0

(TC(s) − TD(s) + ΘC,D)2ds (2)

where l(C) denotes the arc length of C. The constant ΘC,D is chosen to minimize
the integral (cp. [10]) (it respects for different orientation of curves) and is given
by

ΘC,D =
∫ 1

0

TC(s) − TD(s)ds. (3)

Obviously, the similarity measure is a rather a dissimilarity measure as the iden-
tical curves yield 0, the lowest possible measure. This measure differs from the
original work in that it is affected by an absolute change of size rather than a
relative one. It should be noted that this measure is based on shape information
only, neither the arcs’ position nor orientation are considered. This is possible
due to the large context information of polylines.

A problem of comparing polylines extracted from LRF data is that often
the amount of noise and the size of shape features present is challenging. Ap-
plying DCE to a degree that would certainly remove all noise would remove
many valuable shape features as well. DCE makes vertex removal decisions in
the context of a single object. A better noise identification can made in the con-
text of comparing corresponding polylines. Therefore, we encapsulate the basic
similarity measure S in another process that masks out noise in the context
of corresponding polylines. It is similar to the initial curve evolution employed.
When comparing a polyline C perceived by the sensor and a polyline D extracted
from the map, C might still contain extra vertices caused by noise. Therefore, we
continue evolving polyline C if the resulting similarity measure improves. The
maximal similarity obtained this way, i.e. the lowest value of S(C,D), is denoted
S?(C,D). To make this process robust against local minima, a small lookahead
is used. This means that evolution is continued as long as removing the next
3 vertices according to the simplification rule yields a gain in similarity. The
reason for delaying the final curve evolution steps to the matching is to enable
the exploitation of even small shape features. Already starting the DCE process
on sensor data, on the contrary, allows to benefit from DCE’s lower computa-
tional complexity. Proceeding this way, only a few simplification steps need to
be carried out during the matching. An example is depicted in Figure 3. To en-
hance presentation, the preceding DCE has been left out. When comparing the
two polylines shown in Figure 3 (a) and (b), vertices from the perceived contour
(b) are removed in the order of vertex (ir-)relevancy while the shape similarity
improves. The similarity values in the course of the evolution and the resulting,
simplified polyline are shown.
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Fig. 3. Computation of the model based similarity measure. A perceived, distorted
polyline (a) is compared with one extracted from the robot’s internal map (b). Curve
evolution of distorted polyline is continued as long as the similarity between the two
polylines improves. The development of similarity values in the course of the simplifi-
cation is given in (c), the X axis represents simplification stages (decreasing number
of remaining vertices). The evolution would stop at the position marked 2, the best
similarity. (d) Different stages in the evolution process marked in (c). The polyline
resulting from the model based evolution is marked 2.

4.2 Matching of Polylines

Computing the actual matching of two structural shape representations ex-
tracted from scan and map is performed by finding the best correspondence
of polylines which respects the cyclic order. For the ease of description, let us
assume that no information about the robot’s movement since the last matching
is available. Consequently, the shape is extracted from the map according to
the last view point determined (cp. 5.1). Shape similarity is the key to measure
quality of a matching. Additionally, we must take into account that (a) not all
polylines may get matched as features’ visibility changes and (b) that due to
grouping differences (cp. section 3.1) not necessarily 1-to-1 correspondences ex-
ist. Noise or change of view point, for example, may lead to a different grouping.
Moreover, since every correspondence of polylines induces an alignment that
would align scan and map, we demand all induced alignments to be very sim-
ilar. This criterion is helpful to correctly match featureless shapes, e.g. short
segments like obtained when scanning a chairs’ legs. The clue in our approach is
exploiting correspondence of salient visual parts to correctly identify featureless
ones even if no a priori alignment is available (cp. [8]).

An estimation of the alignment, or equivalently: the robot’s position in the
internal map, is necessary to utilize an efficient matching algorithm. We will
show in (Section 4.3) how to compute it using shape similarity. Clearly, it can
be derived from odometry if odometry data is available.

Let us now assume that such an estimation exists. Let us further assume that
B = (B1, B2, . . . , Bb) and B′ = (B′

1, B
′
2, . . . , B

′
b′) are two cyclic ordered vectors



of polylines. Denoting correspondence of Bi and B′
j
6 by relation ∼, the task can

formulated as minimization.∑
(Bi,B

′
j)∈∼

(S?(Bi,B
′
j) + D(Bi,B

′
j)) +

∑
B∈B̃

P (B) +
∑

B′∈B̃′

P (B′) != min (4)

Hereby, B̃ (rsp. B̃′) denotes the set of polylines not belonging to any matching.
P denotes a penalty function for not matching a polyline. This is necessary, as
not establishing any correspondence would otherwise yield the lowest possible
similarity 0. The penalty function is chosen to linearly grow with the polyline’s
size modeling a higher likelihood for smaller polylines to appear or disappear7.
D denotes the aforementioned alignment measure quantifying the deviation of
the estimated alignment from the one induced by the correspondence Bi ∼ B′

j .
The best correspondence can so be computed by applying an extended Dynamic
Programming scheme. The extension regards the ability to detect 1-to-many and
many-to-1 correspondences of polylines. The basic idea here is to consider in each
step of the computation if it is advantageous to establish a grouping with the
latest correspondence determined so far, i.e. if the summed up (dis-)similarity
values and skipping penalties can be decreased. This results in a linear extra
effort such that the overall complexity for matching two vectors of n polylines
each is O(n3)—low enough that our prototypical implementation on a standard
computer can process several scans per second.

4.3 Matching in the Absence of Odometry

The outlined matching is already capable of tracking complex shapes even if no
estimate of the induced alignment is available, because shape similarity is very
distinctive. We will detail now on obtaining an alignment estimation purely by
shape similarity.

If we had two corresponding polylines, hence, the induced alignment, we
could use this as the estimation in the matching. Observing that many shapes
can be matched only in consideration of shape similarity, the matching can be
employed to obtained this correspondence8 Thus, the matching can be com-
puted in a two pass process. Within the first matching pass the consideration of
induced alignments’ similarity is ineffective. Then, the most reliable correspon-
dence is selected. Finally, the actual matching is computed using the alignment
induced by the selected matching. To quantify reliability, a measure based on
shape similarity and shape complexity has been proposed [11]. A polyline’s shape
complexity may be expressed by summing up inner points’ relevance measures
6 To be more precise: correspondences of either Bi and {B′

j , B
′
j+1, . . . , B

′
j′} or

{Bi, B
′
i+1, . . . , B

′
i′} and B′

j since we consider correspondences of types 1-to-many
and many-to-1, too.

7 When comparing likewise noisy polylines, similarity values grow linearly with the
polylines’ size, too.

8 As there are not necessarily 1-to-1 correspondences, it might not be sufficient to only
consider individual similarities.



*

(a) (b) (c)

Fig. 4. Exemplary results of the shape based matching. Shape perceived by the LRF
(a) is matched against the shape extracted from the map (b). Shapes are matched in a
two step process. In the first step, only the most reliable matching (marked ? in (c)) is
used to align perception and map. In the second step, the final matching is computed
and the perception is aligned. (c) Shows the alignment of (a) and (b), using thick lines
for the map shape and thin lines for the perceived shape. The grid in the illustrations
denotes 1m distance.

(cp. equation 1). If a polyline has no inner points, complexity is given by half
the Euclidean distance of its end points. Terming this complexity measure C,
the reliability is defined as

Q(P,Q) = C(P ) + C(Q) − S?(P,Q). (5)

The idea is expressing reliability as high similarity of complex shapes (cp. [11] for
details). An exemplary result is presented in Figure 4 where a scan is matched
against the shape extracted from the map (a). Based on the most reliable cor-
respondence the estimated alignment, i.e. the position of the robot within the
map, is computed. Accordingly aligned scan and map excerpt is shown together
with the computed matching in (b). The presented technique can cope with dif-
ferences in position estimates of more than 1m; rotational changes that retain
the visibility of most salient objects are mastered, too. Observe, that this is a
dramatical improvement compared to the precision required by standard scan
matching approaches which typically rely on a hill climbing strategy (cp. [8]).

5 Map Update

Once the shape extracted from the map and the shape perceived by the sensor
have been matched, the internal map can be updated. The first step is to align
perceived shape and map. Next, corresponding polylines can be merged to obtain
a single polyline in the map comprising existing map and new shape information.
Perceived polylines not corresponding to a polyline in the map are considered
to be a newly emerged features. Thus, they are added to the map.



5.1 Alignment & Localization

To localize a robot within its map, the perceived scan needs to be aligned with
the internal map. This yields the position of scan’s origin in the map’s frame of
reference, hence, provides the localization. To align perceived scan and map, we
adapt a scan matching technique originally developed by Cox [3] and improved
by Gutmann [7].

The adapted approach is based on a scan point to line matching, i.e. reflection
points measured by the LRF are matched against model lines represented in the
map. Distance of scan points and model lines is minimized by aligning the scan.
Given a correspondence of points and lines, the optimal alignment, i.e. a rotation
around the scan’s origin and a translation, can be computed in a closed form (cp.
[7]). The correspondence, however, might not be correct from the beginning, since
it is based on rather simple rule. The idea to overcome this problem is carrying
out several steps of matching and aligning iteratively, to allow convergence of
correspondences and, thus, alignment. Limitations of this procedure are due to
the rather simple matching rule which considers no large spatial context than a
simple line. A good a priori alignment are therefore a prerequisite for successful
operation. Even with small distortions, some scan points may get matched to the
wrong model line. This can cause the process to get trapped in a local minima.

To apply the method of Cox, we need to improve the matching of points and
model lines. The knowledge of matching shapes is the key here. Only correspon-
dences between corresponding shapes are considered in the alignment process.
For each perceived shape sample points are determined. To obtain the experimen-
tal results in this paper, we used a sampling of 10 cm. Additionally, we ensured
that at least one sampling point lies on each of the polyline’s line segments. Us-
ing these sampling points, corresponding line segments of corresponding shapes
are determined based on proximity. For every sampling point the nearest point
contained in the corresponding polyline is computed and the scan is aligned.
The procedure is repeated until convergence is reached, i.e. the alignment does
not change significantly any more. Experiments show that this rather simple,
straightforward adaption already yields good results.

5.2 Merging of Polylines

After perceived shape and map have been aligned, we need to merge correspond-
ing polylines to obtain a single, comprehensive one. This way, newly detected
features can be added to a polyline. Moreover, it can be mediated between dif-
fering perceptions of the same polyline. We need to account that due to change
of visibility only some parts of the polylines may actually correspond. Hence, we
first decompose each polyline into head, body, and tail (cp. Figure 5). The body
part refers to the corresponding part of the polyline. Head and tail denote the
remaining parts.

To obtain the merged polylines, the merged body parts are appended with
head and tail parts. Note that there exists at most one head and one tail. To
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Fig. 5. Illustration of the merging process. (a) Two aligned polylines (solid and dashed
lines) are the starting point. (b) End points are mapped to nearest points on the other
polyline (For illustration purposes the lines have been shifted apart). The nearest points
induced determine beginning of head and tail parts. (c) To average the corresponding
body parts, a laser scanner is simulated. The solid line shows the result of averaging
the two dashed lines which show a magnified excerpt from the body parts shown in
(b).

determine the body parts of corresponding polylines, the shortest distance be-
tween a polyline’s end points and the other polyline are computed. This induced
two additional points on the other polyline. The body parts are said to be deter-
mined by the points whose nearest points not coincide with an end point. Refer
to Figure 5 for illustration.

To merge the body parts, we use a simple technique. A laser range finder
located at the robot’s current position in the map is simulated. It scans both
body parts simultaneously. Averaging the distances measured yields a new, com-
prehensive body part. To obtain a more sophisticated mediation between newly
perceived shape and map, a weighted average can be used. For example, as a
polyline in the map may result from many measurements, a single new measure-
ment should not change the polyline dramatically any more. Since this closely re-
lates to handling of uncertainty and stochastical models which have been masked
out in this paper, this issue is not detailed any further here.

6 Experimental Results

In our experiments, we have processed data obtained from SICK LMS laser range
finders mounted on a Pioneer-2 robot or on the Bremen autonomous wheelchair
[13]. Figure 6 shows the resulting map from processing 450 scans taken at a
rate of aprox. 15 scans per second. The average robot speed was 0.5 m/sec. No
odometry information has been used to obtain the results.
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Fig. 6. A shape based map consisting of only a few polygonal lines. It has been con-
structed autonomously from processing 450 laser range finder scans recorded at Uni-
versity of Bremen. The unit size is 1m.

7 Conclusion and Outlook

We have presented a comprehensive geometric model for robot mapping based
on shape information. A shape matching has been specially tailored to match
shape perceived by a laser range finder against a partially existing polygonal
map. The matching is powerful enough to disregard any pose information and
cope with scans significantly differing from the map. Based on corresponding
shapes, the process of localization and map update have been detailed.

We are aware that statistical methods are needed to guarantee robust perfor-
mance, but did not include any as we concentrated on geometric models exclu-
sively. So, future work comprises the coupling with a state-of-the-art stochastical
model. Since object centered approaches are judged well-suited to handle dynam-
ics and shape matching enables us to identify corresponding objects, explicit
handling of dynamics within our architecture is of great interest to us. Addition-
ally, as we believe that our shape based approach is particularly promising in
attacking the problem of cycle detection, we plan to investigate into this topic.
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