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Abstract. We estimate the speed of texture change by measuring the spread of 
texture vectors in their feature space. This method allows us to robustly detect 
even very slow moving objects. By learning a normal amount of texture change 
over time, we are also able to detect increased activities in videos. We illustrate 
the performance of the proposed techniques on videos from PETS repository 
and the Temple University Police department. 

1   Introduction 

Motion detection algorithms are important research area of computer vision and com-
prise building blocks of various high-level techniques in video analysis that include 
tracking and classification of trajectories. It is an obvious and biologically motivated 
observation that the main clue for detection of moving objects is the changing texture 
in parts of the view field. All optical flow computation algorithms use derivative com-
putation to estimate the speed of texture change. However, derivative computation may 
be very unstable in finite domains of images. Therefore, in this paper we introduce a 
method that does not require any derivative computation. We propose an approach to 
motion and activity detection based on statistical properties of texture vectors. 

Let us focus on a fixed position in a video plane and observe the sequence of tex-
ture vectors representing a patch around this position over time. Each texture vector 
describes the texture of the patch in a single video frame. We assume a stationary 
camera. If we observe the patch that corresponds to part of the background image, the 
texture vectors will not be constant due to various factors (e.g., illumination changes, 
errors of the video capture device), but combined effect is merely a small spread of 
texture vectors over time. Also a repetitive background motion like tree branches 
waving in the wind yields a relatively small spread of texture vectors. Since similar 
texture repeats frequently, the texture vectors in this case are highly correlated. 

On the other hand, if a moving object is passing through the observed location, it is 
very likely that object will have a different texture from the background patch. There-
fore, the texture vectors are very likely to have a large spread. Even if different parts 
of the moving object have the same texture that is the same as the background texture, 
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the texture vectors will have large spread at the observed location, since different 
texture parts will appear in the patch. This holds under the assumption that the texture 
is not completely uniform, since then different texture parts have different texture 
vectors. To summarize, the proposed approach can identify moving objects even if 
their texture is identical with the background texture, due to the fact that our classifi-
cation is based on measuring the amount of texture change and texture structure is 
extremely unlikely to be perfectly uniform. 

Observe that we measure the spread of texture vectors in the texture space. Be-
cause of this, we are not able to compute the optical flow directly, i.e., to estimate the 
directions and speed of moving objects. However, we are able to perform robust de-
tection of moving objects. In comparison to the existing motion detection algorithms 
[6,7,14], we do not compute any model of the background. We measure the amount of 
texture change and classify it into two categories: moving and stationary objects. The 
aforementioned situation in which the background texture and the texture of moving 
object are similar illustrates a typical situation in which the proposed approach out-
performs any background modeling method. In such cases, in the background model-
ing approaches the texture of a moving object can be easily misclassified as back-
ground texture. A detailed explanation follows in Section 3. 

Instead of color, gray level, or infrared values at pixel locations, we consider the 
values of all pixels in spatiotemporal regions represented as 3D blocks. These 3D 
blocks are represented through compact spatiotemporal texture vectors to reduce the 
influence of noise and decrease computational demands. In [11] we have shown that 
the use of such texture vectors in the framework of Stauffer and Grimson [14] can 
improve the detection of moving objects while potentially cutting back the processing 
time due to the reduction of the number of input vectors per frame. Thus, we go away 
from the standard input of pixel values for motion detection that are known to be 
noisy and the main cause of instability of video analysis algorithms. We stress that the 
proposed motion detection technique is independent of any particular texture repre-
sentation used. 

To represent texture, we consider the values of all pixels within spatiotemporal re-
gions represented as 3D blocks. A 3D block (e.g., 8x8x3 block) consists of a few 
successive frames (e.g., 3) at the same quadratic patch (8x8) of a scene. To compactly 
represent these values and to reduce the influence of noise, we apply a dimensionality 
reduction technique by using principal components projection (PCA). As the result, 
texture is represented by a vector containing only the most significant projected com-
ponents of texture, while less significant components and noise are filtered out 
through the process of feature extraction. The most significant projected components 
represent a small subset of all the projections. The obtained texture vectors provide a 
compact low-dimensional joint representation of texture and motion patterns in videos 
and are used as primary inputs to a motion detection technique. As we mentioned 
above, texture at a given location in video plane is very likely to considerably vary 
while a moving object is passing through this location. To measure this variance, we 
estimate covariance matrix of the texture vectors from the same location within a 
window of a small number of successive frames, and determine the texture spread as 
the largest eigenvalue of the covariance matrix. This way, we indirectly determine the 
magnitude of texture variability in the direction of its maximal change. Finally, the 
decision whether a moving object or a stationary background is identified at a given 
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spatiotemporal location is made by dynamic distribution learning of the obtained 
largest eigenvalue. 

The proposed technique can use a variety of video sequences as input, ranging 
from monochromatic gray scale or infra-red (IR) videos to multispectral videos in 
visible or IR spectral domain. In this paper, we demonstrate the usefulness of the 
proposed method on several benchmark videos from PETS workshop. The robust 
performance of the proposed motion detection method, allows us to base our in-
creased activity detection on it. We define motion amount as a sum of motion acti-
vates of all blocks in a given frame (Section 4). By applying a simple statistical learn-
ing of the motion amount we are able to detect increased activities. We learn the dis-
tribution of the total motion amount in all previous frames, under the assumption that 
mostly normal activities are present. An increased activity is detected as outlier of the 
learned distribution. 

Our approach to increased activity detection does not include any specific domain 
knowledge about the monitored objects. Such knowledge can be incorporated in our 
framework, e.g., we can focus on monitoring only human or vehicle activities. By 
adding a classifier that is able to label moving object categories, we can restrict our 
attention to particular object categories, e.g., see [18]. 

A good overview of the existing approaches to motion detection can be found in 
the collection of papers edited by Remagnino et al. [13] and in the special section on 
video surveillance in IEEE PAMI edited by Collins et al. [2]. A common feature of 
the existing approaches for moving objects detection is the fact that they are pixel 
based. Some of the approaches rely on comparison of color or intensities of pixels in 
the incoming video frame to a reference image. Jain et al. [7] use simple intensity 
comparison to reference images so that the values above a given threshold identify the 
pixels of moving objects. A large class of approaches is based on appropriate statistics 
of color or gray values over time at each pixel location. (e.g., the segmentation by 
background subtraction in W4 [6], eigenbackground subtraction [10], etc). Wren et al. 
[16] were the first who used a statistical model of the background instead of a refer-
ence image. 

One of the most successful approaches for motion detection was introduced by 
Stauffer and Grimson [14]. It is based on adaptive Gaussian mixture model of the 
color values distribution over time at each pixel location. Each Gaussian function in 
the mixture is defined by its prior probability, mean and a covariance matrix.  

The usefulness of dimensionality reduction techniques to compactly represent 3D 
blocks has already been recognized in video compression. There, 3D discrete cosine 
and 3D wavelet transforms are employed to reduce the color or gray level values of a 
large number of pixels in a given block to a few quantized vector components, e.g., 
[15]. However, these techniques are not particularly suitable for detecting moving 
objects, since the obtained components do not necessarily provide good means to 
differentiate the texture of the blocks. Namely, these transformations are context free 
and intrinsic in that their output depends only on a given input 3D block. In contrast, 
we propose to use a technique that allows us to obtain an optimal differentiation for a 
given set of 3D blocks. To reach this goal, we need an extrinsic and context sensitive 
transformation such that a representation of the given block depends on its context—
the set of other 3D blocks in a given video. The Principal Component Analysis (PCA) 
[8] satisfies these requirements. Namely, for a given set of 3D blocks PCA assigns to 
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each block a vector of the components that maximize the differences among the 
blocks. Consequently, PCA components are very suitable to detect changes in 3D 
blocks.  

2   Proposed Methodology 

2.1   Video Representation with Spatiotemporal (sp) Texture Vectors 

We represent videos as three-dimensional (3D) arrays of gray level or monochromatic 
infrared pixel values gi,j,t at a time instant t and a pixel location i,j. We divide each 
image in a video sequence into disjoint NBLOCK×NBLOCK squares (e.g., 8x8 squares) 
that cover the whole image. Spatiotemporal (3D) blocks are obtained by combining 
squares in consecutive frames at the same video plane location. In our experiments, 
we used 8x8x3 blocks that are disjoint in space but overlap in time, i.e., two blocks at 
the same spatial location at times t and t+1 have two squares in common. The fact 
that the 3D blocks overlap in time allows us to perform successful motion detection in 
videos with very low frame rate, e.g., in our experimental results, videos with 2 fps 
(frames per second) are included.  

The blocks are represented by N-dimensional vectors bI,J,t, (e.g., N=8x8x3) speci-
fied by spatial indexes (I,J) and time instant t. Vectors bI,J,t contain all values gi,j,t of 
pixels in the corresponding 3D block. To reduce dimensionality of bI,J,t while preserv-
ing information to the maximal possible extent, we compute a projection of the nor-
malized block vector to a vector of a significantly lower length K<<N using a PCA 
projection matrix PK

I,J computed for all bI,J,t at video plane location (I,J). The resulting 

sp texture vectors *
,, tJIb = PK

I,J · bI,J,t provide a joint representation of texture and 

motion patterns in videos and are used as input of algorithms for detection of moving 
objects. We used K=10 in our experiments. To compute PK

I,J we employ the principal 
values decomposition following [4,5]. A matrix of all normalized block vectors bI,J,t at 
video plane location (I,J) is used to compute the N×N dimensional covariance matrix 
SI,J. The PCA projection matrix PI,J for spatial location (I,J) is computed from the SI,J 
covariance matrix. The projection matrix PI,J of size N×N represents N principal com-
ponents. By taking only the principal components that corresponds to the K largest 
eigenvalues, we obtain PK

I,J. 

2.2   Detection of Moving Objects by Measuring Texture Spread 

The spread of texture vectors over time indicates whether the corresponding object 
texture is stationary or moving. Recall that each sp vector represents texture of the 
corresponding block. Hence, by observing the characteristics of sp vectors change 
over time, we are able to detect whether a particular block belongs to a moving object 
or to a background. Consider a single block position in a video plane. We can observe 
the trajectory of its sp vectors, i.e., the loci of sp vectors in successive time frames. If 
during an observed time interval there is no moving object in the block, the sp vectors 
will be close to each other. Hence the variance of sp vectors during the time interval 
will be small. In contrast, if there is a moving object passing through this block, the sp 
texture vectors will change fast, i.e., the sp vectors will be spread in the space of their 
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coordinates. Therefore, the variance of sp vectors within an observation time window 
will be fairly large. In Fig. 2(a), we show the trajectory of sp vectors corresponding to 
block location (24,28) in Campus 1 video. To make this visualization possible, we use 
only first three PCA components for each sp vector. It can be observed that frames 
when only stationary objects are visible in the observed block location correspond to 
regions where sp vectors are clustered into fairly spherical shapes (black dots) with 
small spread. In contrary, when moving objects are passing through this block loca-
tion, the trajectory of sp vectors (blue-gray dots) is typically elongated and the vari-
ance is relatively large. 

A simple way to determine the speed of sp vector change would be to compute the 
norms of their first derivatives. However, computing finite differences of consecutive 
sp vectors may be unreliable. In order to determine whether the consecutive vectors 
belong to elongated trajectories, we need to observe whether they are making a con-
sistent progress in one particular direction within a certain time interval. We propose 
to assess the sp vector spread in the direction of maximal variance. To measure the 
variance of sp vectors, we compute the covariance matrix of sp vectors corresponding 
to the same block location for a pre-specified number of consecutive frames. We use 
the maximal eigenvalue as the measure of trajectory elongation. 

More formally, for each location (x,y), and temporal instant t, we consider vectors 

WtyxtyxWtyxWtyx bbbb ++−− ,,
*

,,
*

1,,
*

,,
* ,...,,,, …  . (1) 

corresponding to a symmetric window of size 2W+1 around the instant t. For these 
vectors, we compute the covariance matrix Cx,y,t. We assign the largest eigenvalue of 
Cx,y,t, denoted as Λx,y,t, to a given spatiotemporal video position to define a local vari-
ance measure, which we will also refer to as motion measure 

tyxtyxmm ,,),,( Λ=  (2) 

The larger the motion measure mm(x,y,t), the more likely is the presence of a mov-
ing object at position (x,y,t). An example graph of mm is shown in Fig. 1.  

The large values (spikes) correspond to time intervals when moving objects where 
observed at this particular video location. As this graph suggest, we can label video 
position (x,y,t) based on the history of mm(x,y,t) values over time (frames 1, …, t-1) 
as moving by applying an outlier detection method to mm values, i.e., a position is 
labeled as moving if motion measure value at a given time is classified as outlier.  
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Fig. 1. The graph of local variance mm over time for the block (24,28) of the Campus 1 video 
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2.3   Dynamic Distribution Learning and Outlier Detection 

In the proposed approach for activity detection we apply outlier detection algorithms 
two times: for labeling of moving blocks and to detect increased activities. Now we 
describe outlier detection in more detail. Consider labeling each video position as 
moving or stationary based on whether the motion measure mm is larger or smaller 
than a suitably defined threshold. We use a dynamic distribution learning to determine 
the threshold value at position (x,y,t) based on the history of mm(x,y,t) values over 
time (at frames 1, …, t-1). Since mm(x,y,t) is a function of one variable t for a fixed 
position (x,y) (see Fig. 1), the task reduces to dynamic estimation of the mean and 
standard deviation of mm. Given a function f of one variable, we compute initial val-
ues of mean mean(t0) and variance σ2(t0)  of all values f(t) in some initial interval 
t=1..t0. An outlier is detected at time t>t0 if the standardized feature value is suffi-
ciently large, i.e., when 

1)1(

)1()(
C

tstd

tmeantf >
−

−−
 , where C1 is a constant 

(3) 

Once an outlier is detected at time t1, all values f(t) are labeled as outliers for t1<t 
until we switch to a nominal state. We switch to the nominal state at time t, t1<t, if the 
standardized feature value drops below a threshold C2 < C1, i.e., 

2)1(

)1()(
C

tstd

tmeantf <
−

−−
 

(4) 

We update the estimates of mean and standard deviation only when the outliers are 
not detected (nominal state), i.e., at the beginning of the execution of the algorithm 
and when (4) holds, mean and std are updated using running average (an algorithm for 
incremental estimation of parameters of distributions, that is commonly applied in the 
case of Gaussian distribution): 

)()1()1()( tfutmeanutmean ⋅−+−⋅=  and )()( 2 ttstd σ=  (5) 

222 ))1()(()1()1()( −−⋅−+−⋅= tmeantfutut σσ  (6) 

For example, we use C1=9, C2=3, and u=0.99 in the case of the detection of mov-
ing blocks for f=mm. The only assumption that we make about the distribution of 
values of function f is that it has a significant right tail. This assumption clearly ap-
plies to the Gaussian distribution, but is significantly more general. 

3   Motion Orbits in Texture Space 

The most common method to evaluate the performance of motion detection is simply 
to view the videos with moving objects marked by the applied algorithm as we dis-
cuss in Section 2. However, in our framework a more objective method of perform-
ance evaluation is also possible. In this section we introduce and use such a method to 
compare the proposed spread measure of texture vectors to the Gaussian mixture 
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model introduced in [14]. To make the comparison more realistic, we apply the Gaus-
sian mixture model to texture vectors. Hence, both compared techniques are based on 
the same spatiotemporal blocks that represent texture and motion patterns. We also 
show that the Gaussian mixture model on texture vectors significantly outperforms 
the original representation used in [14] (RGB color values on a pixel level). 

We define a motion orbit as path that the texture representation at the fixed video 
plane location traverses over time. Recall that we use texture vectors composed of the 
first 3 PCA components of each spatiotemporal block vector. Hence, the motion orbit 
at video plane location (x,y) is a sequence of points in the 3D Euclidean space 

Tyxyxyx ,,2,,1,, ,,, vvv … , where *
,,,, tJItJI bv =  and T is the total number of frames. 

For instance, in Fig. 2(a), we see the orbit for the block (24,28) of the Campus 1 
PETS video [19]. Frames identified as moving using our local variation method are 
marked with blue-gray dots while stationary frames are marked with black dots. The 
distribution of black dots is multimodal globally. We observe two main modes that 
represent the background blocks. They are identified as two 3D blobs that correspond 
to two different background textures that appeared in the course of this video at block 
position (24,28): a part of parking lot and a parked car. Around these blobs we see 1D 
orbits marked with blue-gray dots corresponding to moving objects. We can view the 
proposed local variance method as orbit classification algorithm. The reason is that 
elongated 1D orbits that identify motion have higher spread than the stationary back-
ground objects. 

We stress that the dot labeling as shown was computed by the proposed method for 
detection moving objects. Observe that the blue-gray dots perfectly correspond to the 
1D motion orbits that identify moving blocks. Thus, our algorithm correctly detected 
moving objects. In contrast, for the same Campus 1 video the incremental EM method 
[14] failed to identify the motion orbit containing frames 633—663.In comparison to 
any pixel-based approaches (e.g., as originally proposed in [14]), motion detection 
based on 3D blocks performs better since it reduces noise in background and can 
extract information about temporal change of texture (since it is based on spatiotem- 
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Fig. 2. (a) Orbits of block (24,28) vectors with blue-gray dots corresponding to the frames in 
Campus 1 where the block was identified as moving by the proposed method; (b) Orbits of 
block (24,28) vectors marked with dots: black as background, blue and green as moving—using 
‘reset’ and ‘hold’ mechanisms, correspondingly, identified by the EM algorithm 
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Fig. 3. Standardized PCA components of RGB pixel values for Campus 1 at pixel location 
(185,217) that is inside block (24,28); allowS a direct comparison to Fig. 2(a) 

poral texture representation of 3D blocks instead of pixels). We demonstrate how 
noisy RGB color values of a single pixel can be in Fig. 3, where we plot an orbit over 
time of RGB color values that occur at the pixel (185,217) which is one of the pixels 
in the block (24,28) of Campus 1 video. For better visualization, in Fig. 3 we show 
the linearly transformed space of PCA projections of the original RGB color values 
(the trajectory in the space of original RGB colors is similar). To allow us a proper 
comparison to the results in Fig. 2(a) (computed by our local variance technique), we 
carried over the dot labels from Fig. 2(a). 

By comparison of Fig. 3 to Fig. 2(a), one can conclude that in both representations 
there are two distribution components corresponding to the background. However, 
using the block-based approach, the background variance is much smaller, since using 
block vectors that contain texture information results in effective noise reduction in 
comparison to using “raw” pixels. Hence, any technique to detect moving objects as 
outliers will perform much better using spatiotemporal blocks than when using the 
raw pixels. As it can be seen in Fig. 3, the method from [14] have difficulties in prop-
erly detecting frames 611, 695, 1477 belonging to the second and fourth moving ob-
jects that appear at the observed pixel. The blue-gray dots incorrectly become parts of 
two background components, which imply that a pixel-based method [14] would 
classify the corresponding blue-gray dots as belonging to a background distribution. 
The proposed local variation based technique can also be applied on pixel level. 
However, due to problems with large uniform texture regions as well as noise inher-
ent to pixel values (shown above), our preferred technique is to apply local variance 
method on sp block texture vectors. 

4   Detection of Increased Activities 

Due to the fact that we robustly compute the motion measure mm, we can also relia-
bly estimate the motion amount in each video frame. Motion amount can be defined 
as the sum of motion measures of all blocks: 

∑=
yx

tyxmmtma
,

),,()(  (7) 
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The proposed method of detecting increased activities is again based on outlier de-
tection (see Section 2.3) but this time of the motion amount over time. Thus, we first 
learn the distribution of motion amount over time when the recorded video activity 
was considered usual/nominal. Then time intervals with increased activity are de-
tected as outliers of the learned distribution. The proposed approach works under the 
assumption that there exists an upper bound on the size of moving objects whose 
motion we want to detect (measured in the number of moving blocks), and that the 
genuine moving objects do not appear rapidly in the frame. These assumptions hold 
for most surveillance videos. Let us consider an example video, called Temple 1, that 
satisfies the assumptions. Indeed, this video is recorded by a roof mounted, stationary 
camera, so that a certain minimal distance to moving objects is guaranteed. Typical 
moving objects there, humans and vehicles, cannot get arbitrarily large. Hence, the 
fraction of the scene occupied by a moving object is limited. Observe that the actual 
value of the upper bound on the size of moving objects needs not to be known, since 
our algorithm learns it automatically. Similarly, the number of humans and vehicles 
cannot rapidly increase, since the regions of entry into the camera view field are lim-
ited in size.  

In Fig. 4(a), we see the graphs of function ma for Temple 1 video and correctly de-
tect alarm situations as shown in Fig. 4(b). For example, a significant increase in the 
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Fig. 4. Activity Detection. (a) Motion amount of Temple 1 video; (b) Increased activity blocks 
marked with red boundaries 
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Fig. 5. Temple 1 video (a) showing no activity and (b) showing increased activity due to street 
fight (ACTIVITY label is shown next to the frame number) 
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number of motion blocks around frame 300 indicates an alarm situation. This is a 
correct prediction, since a street fight is recorded on the video around frame 300, see 
Fig. 5 and the Temple 1 video [12]. 

5   Performance Evaluation on Test Videos 

A set of several test videos showing our motion detection results and our results on 
detecting increased activity can be viewed on [12]. Our test set of videos includes 
several videos from the Performance Evaluation of Tracking and Surveillance (PETS) 
repository. In particular, the results include the above discussed Campus 1 video from 
PETS2001, videos obtained from the Police Dept. of Temple Univ., Philadelphia, and 
infrared videos, for which the same settings of parameters as for visual light videos 
were used. 

6   Conclusions 

In this paper we propose a local variation based method for motion detection. Our 
preliminary results on surveillance and on PETS repository videos show that the pro-
posed method applied to spatiotemporal blocks results in better detection of moving 
objects in comparison to standard pixel-based techniques and to the incremental EM 
algorithm technique. 

We show that the proposed local variation algorithm can significantly reduce the 
processing time in comparison to the Gaussian mixture model, due to smaller com-
plexity of the local variation computation, thus making the real time processing of 
high-resolution videos as well as efficient analysis of large-scale video data viable. 
Moreover, the local-variation based algorithm remains stable with higher dimensions 
of input data, which is not necessarily the case for an Gaussian model estimation 
algorithm. This makes the proposed technique potentially appealing for moving detec-
tion in higher dimensional domains, such as multispectral remote sensing imagery. 

Our approach to increased activity detection does not include any specific domain 
knowledge about the monitored objects. Such knowledge can be incorporated in our 
framework, e.g., we can focus on monitoring only human or vehicle activities if we 
can restrict our attention to particular object categories.  
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