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Abstract 

 
We propose motion detection and object tracking 

method that is particularly suitable for infrared videos. 
Detection of moving objects in infrared videos is based 
on changing texture in parts of the view field. We 
estimate the speed of texture change by measuring the 
spread of texture vectors in the texture space. This 
method allows us to robustly detect very fast and very 
slow moving object. Our theoretical and experimental 
results show that the proposed method significantly 
outperforms the Stauffer-Grimson approach based on 
Gaussian mixture model. We observe that the 
proposed method does not require any post-
processing, which is a necessary step for the Stauffer-
Grimson approach. Moreover, the object tracking is 
improved when based on the spatiotemporal texture 
blocks. 
 
1. Introduction 
 

Motion detection algorithms are the building blocks 
of various high-level techniques in video analysis that 
include tracking and classification of trajectories. The 
most popular motion detection method (Stauffer-
Grimson [14]) models the background pixels as 
multimodal Gaussian distributions of RGB (or other) 
color values. The Stauffer-Grimson (S&G) algorithm 
performs adequately on color images, but it does not 
perform well on infrared (IR) videos. Since IR videos 
usually provide only one value per pixel a direct 
adaptation of S&G is forced from multidimensional to 
one-dimensional Gaussian distribution. However, a 
single IR value (similar to single grayscale value) does 
not provide adequate means for pixel classification. An 
obvious way to improve S&G performance is to 
provide as the input multi-dimensional texture vectors 
that characterize pixel neighborhoods. As we will 
show in this paper S&G algorithm still does not yield a 
satisfactory performance when applied to IR texture 
vectors. We propose a new motion detection method 

that is more suitable to IR videos. It is based on 
measuring the speed of change of texture vectors. The 
proposed method can identify moving objects even if 
their texture is identical to the background texture, due 
to the fact that our classification is based on measuring 
the amount of texture change and texture structure is 
extremely unlikely to be perfectly uniform. 

In comparison to the existing motion detection 
algorithms (e.g., [6,7,14]), we do not compute any 
model of the background. We measure the amount of 
texture change and classify it into two categories: 
moving and stationary objects. The aforementioned 
situation in which the background texture and the 
texture of moving object are similar illustrates a typical 
situation in which the proposed approach outperforms 
any background modeling method. In such cases, in 
the background modeling approaches the texture of a 
moving object can be easily misclassified as 
background texture. The proposed technique can use a 
variety of video sequences as input. In this paper, we 
demonstrate the usefulness of the proposed method on 
several monochromatic IR videos obtained from the 
Ohio State University Thermal Pedestrian Database 
[19]. 
 
2. Motion feature representation 
 
2.1. Spatiotemporal texture vectors 
 

We represent videos as three-dimensional (3D) 
arrays of monochromatic (infrared or gray level) pixel 
values gi,j,t at a time instant t and a pixel location i,j. A 
video is characterized by temporal dimension Z 
corresponding to the number of frames, and by two 
spatial dimensions, characterizing number of pixels in 
horizontal and vertical direction of each frame. Each 
image is divided in a video sequence into disjoint 
NBLOCK × NBLOCK squares (e.g., 4x4 squares) that cover 
the whole image. Spatiotemporal (sp) 3D blocks are 
obtained by combining squares in consecutive frames 
at the same video plane location. In our experiments 
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reported here, we use 4x4x3 blocks that are disjoint in 
space but overlap in time, i.e., two blocks at the same 
spatial location at times t and t+1 have two squares in 
common. The fact that the 3D blocks overlap in time 
allows us to perform successful motion detection in 
videos with very low frame rate, e.g., in our 
experimental results, videos with 2 fps (frames per 
second) are included. The obtained 3D blocks are 
represented as 48-dimensional (4*4*3) vectors of 
monochromatic infrared pixel values. 

In general the blocks are represented by N-
dimensional vectors bI,J,t, specified by spatial indexes 
(I,J) and time instant t. Vectors bI,J,t contain all IR 
values gi,j,t of pixels in the corresponding 3D block. To 
reduce dimensionality of bI,J,t while preserving 
information to the maximal possible extent, we 
compute a projection of the normalized block vector to 
a vector of a significantly lower length K<<N using a 
PCA [8] projection matrix PK

I,J computed for all bI,J,t at 
video plane location (I,J). The resulting sp texture 
vectors  b*

I,J,t = PK
I,J * bI,J,t provide a joint 

representation of texture and motion patterns in videos 
and are used as input of algorithms for detection of 
motion and objects tracking. We use K=10 in our 
experiments. The obtained 10-dimensional vectors 
form a compact spatiotemporal texture representation 
for each block. It is important to notice that a different 
projection matrix PK

I,J is used for each video plain 
location. This assures that the obtained texture vectors 
are able to optimally distinguish different textures that 
appear in a given block. The initial projection matrix is 
trained on the first t0 frames under the assumption that 
only background is present in all block locations. The 
projection matrices are then updated during the time 
periods in which no motion is detected in a given block 
location. 
 
2.2. Detection of moving features by measuring 
texture spread 
 

The spread of texture vectors over time indicates 
whether the corresponding object texture is stationary 
or moving. Recall that each sp vector represents 
texture of the corresponding block. Hence, by 
observing the characteristics of sp vectors change over 
time, we are able to detect whether a particular block 
belongs to a moving object or to a background. 
Consider a single block position in a video plane. We 
can observe the trajectory of its sp vectors, i.e., the loci 
of sp vectors in successive time frames, which we call 
motion orbits. For example, see Fig. 1, where each 
point represents the first three PCA components of the 
texture vectors. 
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Fig 1. Motion orbits for block location 43x14 of Infra1 
video 
 

If during an observed time interval there is no 
moving object in the block, i.e., a stationary 
background is only present in the block, the sp vectors 
will be close to each other. The background texture is 
represented by the large cluster of points as seen in 
Fig. 1. In contrast, if there is a moving object passing 
through this block, the sp texture vectors will change 
fast, i.e., the sp vectors will be spread in the space of 
their coordinates. 

To summarize, it can be observed that frames with 
only stationary objects are visible in the observed 
block location correspond to regions where sp vectors 
are clustered into fairly spherical shapes with small 
spread. In contrary, when moving objects are passing 
through this block location, the trajectory of sp vectors 
is typically elongated and the variance is relatively 
large. 

A simple way to determine the speed of sp vector 
change would be to compute the norms of their first 
derivatives. However, computing finite differences of 
consecutive sp vectors may be unreliable. In order to 
determine whether the consecutive vectors belong to 
elongated trajectories, we need to observe whether 
they are making a consistent progress in one particular 
direction within a certain time interval. 

We propose to assess the sp vector spread in the 
direction of maximal variance. To measure the 
variance of sp vectors, we compute the covariance 
matrix of sp vectors corresponding to the same block 
location for a pre-specified number of consecutive 
frames. We use the maximal eigenvalue as the measure 
of trajectory elongation. More formally, for each 
location (x,y), and temporal instant t, we consider 
vectors of the form 

WtyxtyxWtyxWtyx bbbb ++−− ,,
*

,,
*

1,,
*

,,
* ,...,,,, K  

corresponding to a symmetric window of size 2W+1 
around the instant t. For these vectors, we compute the 
covariance matrix Cx,y,t. We assign the largest 
eigenvalue of Cx,y,t, denoted as Λx,y,t, to a given sp 
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video position to define a local variance measure, 
which we will also refer to as motion measure 

tyxtyxmm ,,),,( Λ=  

The larger the motion measure mm(x,y,t), the more 
likely is the presence of a moving object at position 
(x,y,t). An example graph of mm is shown in Fig. 2(a), 
which measures the spread of the motion orbits 
depicted in Fig. 1. The large values (spikes) 
correspond to time intervals when moving objects 
where observed at this video location. The large values 
exactly correspond to two elongated motion orbits in 
Fig. 1, while the small values correspond to the texture 
vectors within the background cluster. 
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Fig. 2. (a) Motion measure value for block 44x16 
showing motion around frames 275 and 475; (b) IR 
values of pixel 175x61 inside block 44x16 not showing 
any significant change. 

 
For comparison, we show IR values of a pixel 

within block location 43x16 in Fig. 2(b). Due to a 
significant amount of noise, detection of moving 
objects seems to be a very challenging if not 
impossible task when base on pixel IR values. We can 
see a distinct advantage to sp block processing here, 
where motion is detected in block 44x16, yet the pixels 
inside that block show no relevant texture changes. 

As the graph in Fig. 2(a) suggests, we can label 
video position (x,y,t) based on the history of mm(x,y,t) 
values over time (frames 1, …, t-1) as moving, by 
applying an outlier detection method to mm values, 
i.e., a position is labeled as moving if motion measure 
value at a given time is classified as outlier. To 
perform the outlier detection, we first learn the 
nominal distribution of mm(x,y,t) values over some 
initial time period (t=1, …, t1). This requires that the 
amount of unusual activity is relatively small in the 
initial time period, i.e., the part of the scene we mostly 
view at this location in the initial time period is 
stationary (background) .Then we use running average 
to update the mean and standard deviation of this 
distribution. The update is not performed if the 
position is classified as moving. A particular mm(x,y,t) 
is classified as outlier if it is further away from the 
mean than a certain number of standard deviations. 

Our improvements to the distribution learning 
algorithm are described in Section 2.3. 
 
2.3. Dynamic distribution learning and outlier 
detection 
 

Consider labeling each video position as moving or 
stationary (background) based on whether the motion 
measure mm is larger or smaller than a suitably defined 
threshold. We use a dynamic distribution learning to 
determine the threshold value at position (x,y,t) based 
on the history of mm(x,y,t) values over time (at frames 
1, …, t-1). Since mm(x,y,t) is a function of one variable 
t for a fixed position (x,y) (see Fig. 2(a)), the task 
reduces to dynamic estimation of the mean and 
standard deviation of mm. The only assumption that 
we make about the distribution of values of function f 
is that it has a prominent right tail (general Gaussian 
distribution). 

Given a function f of one variable, we compute 
initial values of mean(t0) and variance σ2(t0) of all 
values f(t) in some initial interval t=1, …, t0. For t>t0, 
we update the estimates using the technique described 
in the next paragraph. An outlier is detected at time 
t>t0 if the standardized feature value is sufficiently 
large, i.e., when 

,
)1(

)1()(
1C

tstd
tmeantf

>
−

−−   (2.1) 

where C1 is a constant and )()( 2 ttstd σ=  
Once an outlier is detected at time t1, value f(t1) is 

labeled as an outlier. We update the nominal state at 
time t, if the standardized feature value drops below a 
threshold C2 < C1, i.e., 

,
)1(

)1()(
2C

tstd
tmeantf

<
−

−−   (2.2) 

We update the estimates of mean and standard 
deviation only when the outliers are not detected 
(nominal state), i.e., at the beginning of the execution 
of the algorithm and when (2.2) holds. Then, mean(t) 
and std(t) are updated using running average : 

)()1()1()( tfutmeanutmean ⋅−+−⋅=  
222 ))1()(()1()1()( −−⋅−+−⋅= tmeantfutut σσ  

In our experiments, we use C1=9, C2=3, and u=0.99 
in the case of the detection of moving blocks for f=mm.  
 
3. Objective performance evaluation 
 

In this section we introduce an objective method of 
performance evaluation and use such a method to 
compare the proposed use of spread measure of texture 
vectors to the Gaussian mixture model based technique 
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introduced in [14]. To make the comparison more 
realistic, we apply the Gaussian mixture model to 
texture vectors. Hence, both compared techniques are 
based on the same spatiotemporal blocks that represent 
texture and motion patterns. First we also show in 
Section 3.1 that the Gaussian mixture model on texture 
vectors significantly outperforms the original 
representation used in [14] (RGB color values on a 
pixel level). To do this we need to consider RGB color 
videos in Section 3.1. 
 
3.1. Motion orbits in texture space 
 

Recall that we use texture vectors composed of the 
first N PCA components of each spatiotemporal block 
vector. If N=3, the motion orbit at video plane location 
(x,y) is a sequence of points in the 3D Euclidean space 

Tyxyxyx ,,2,,1,, ,,, vvv K  where  *
,,,, tJItJI bv =  and T is 

the total number of frames. For instance, in Fig. 3(a), 
we see the orbit for the block (24,28) of a RGB color 
video. We observe two main modes that represent the 
background blocks. They are identified as two 3D 
blobs that correspond to two different background 
textures that appeared in the course of this video at 
block position (24,28): a part of parking lot and a 
parked car. Around these blobs we see 1D orbits 
marked with blue-gray dots corresponding to moving 
objects. We can view the proposed local variance 
method as orbit classification algorithm. The reason is 
that elongated 1D orbits that identify motion have 
higher spread than the stationary background objects. 
We demonstrate how noisy RGB color values of a 
single pixel can be in Fig. 3 (b), where we plot an orbit 
over time of RGB color values that occur at the pixel 
(185,217) which is one of the pixels in the block 
(24,28) of Campus 1 video.  
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Fig. 3. Orbits of block vectors with blue-gray dots 
corresponding to the frames where the block was 
identified as moving by the proposed method (a) 
Campus 1 video: block I=24, J=28; (b) Standardized 
PCA components of RGB pixel values at pixel location 
(185,217) that is inside of block (24,28). 
 

For better visualization, we show the linearly 
transformed space of PCA projections of the original 
RGB color values. We can also see two distribution 
components corresponding to the background. To 
allow us a proper comparison to the results in Fig. 3(a) 
(computed by our local variance technique), we carried 
over the moving (blue-gray) dot labels from Fig. 3(a). 
Notice that the moving dots incorrectly became parts 
of two background components. Since the background 
variance in the sp block-based approach is much 
smaller, the usage of sp texture vectors results in 
effective noise reduction in comparison to using “raw” 
pixels. Hence, any technique to detect moving objects 
as outliers will perform much better on sp blocks than 
on raw pixel values. 
 
3.2. Decreased sensitivity to noise 
 

It is well-known that noise to signal ratio in IR 
videos is higher than in visible light videos. The IR 
noise can be viewed as jitters in IR values. Fig. 4(b) 
illustrates the performance of the S&G method [14] on 
IR pixels values on video from [19]. We see a large 
number of false-positives, some of which has the size 
of moving objects. The usage of the proposed sp 
texture vectors eliminates very effectively the IR jitter 
noise as we can see in Fig. 4(a). 
 

  
 (a)        (b) 
Fig. 4. Infra2 video frame 49 with detected motion: (a) 
the proposed outlier detection based on sp blocks; (b) 
S&G Gaussian mixture model [14]. 
 
3.3. Ground truth data evaluation 
 

The video clips and corresponding ground truth 
data used in our evaluation were obtained from Ohio 
State University Thermal Pedestrian Database [19]. 
Video was captured using a Raytheon 300D thermal 
sensor core with 75 mm lens. Camera was mounted on 
an 8-story building overlooking a pedestrian 
intersection on the Ohio State University (OSU) 
campus. Ground truth data gives us number of objects 
and their centroids in each video frame. In order to 
compare the two methods to the ground truth data, we 
must detect motion, find objects from motion data, and 
compute their centroids. Process each video sequence 
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to identify motion on block level and establish 
motion/no motion binary image as described in Section 
2. The output from motion detection is fed into object 
labeling algorithm to measure the object’s region of 
interest and centroid location. Connected components 
are used to establish motion regions of interests with a 
minimum of 2 blocks per region. We evaluate motion 
block components as 8-connected objects.  

Ground truth centroids for Infra2 video are shown 
in Fig. 5. All ground truth centroid are shown in green 
to visualize all motion paths simultaneously. 

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

220

240

infra2 - Compare Centroids

ground truth centroids
sp motion centroids, Obj>=2

 
(a) 

 
(b) 

Fig. 5. Projection of all ground truth data for Infra2 
video with objects size >= 2; (a) Ground truth data and 
sp motion centroids; and (b) Ground truth data and 
Stauffer-Grimson Gaussian mixture model centroids. 

 
Observe that the motion centroids (in blue) coincide 

very well with the ground truth for the proposed 
method (Fig. 5(a)). On average, our sp motion tracking 
centroid distance from ground truth data was 4.62 
pixels with standard deviation of 2.54 pixels for Infra2 
video. The IR jitter noise on the pixel level makes the 
detected moving objects by S&G method [14] (without 
post processing) to form a dense set in the video plane 
(Fig. 5(b)).  
 
4. Object tracking 
 

Robust detection of motion regions in IR videos 
introduced in Section 2 is the basis for tracking 
moving object. We have modified and simplified the 
minimum cost computation introduced by [22]. Each 
new detected motion region i in frame t has a know 
bounding box Bi , centroid location Xi and initial zero 
velocity Vi. Known motion region L in a frame t-1 has 
centroid XL and velocity VL and a predicted centroid 
XLP in frame t. Minimum cost CLi between XL and Xi is 
computed based on the predicted location of known 
track labeled regions and new detected motion regions.  
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(c) 

Fig. 6. Infra1 video frame sequence 240-301 showing 
object ID, bounding box and tracking trail. (a) Object 5 
walking along the fence (b) Object 5 turning corner and 
hidden behind the fence; and (c) Head of Object 5 
reapers behind the fence, tracking continues. 
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If Mi = 0 then there is no known region association 
with any labeled region L. If the best CLi is less than 
the minimum cost threshold TC, then L is selected as 
the best match. Otherwise new tracking motion region 
is created with initial velocity set to 0. If Mi = 1 then 
there is exactly one tracking L region association (Fig. 
6). If however Mi > 1, then there is more than one 
tracking centroid within Bi (merge or crossover of 
motion regions). In this case Xi is updated using only 
the predicted location and the velocity remains 
constant. 

Each labeled object L has a time to stop tracking 
factor associated with it, TL. For each selected 
associated pair (L,i), the TL is set to the maximum 
allowed time to track value TLmax. All labeled objects L 
not associated with any current detected motion 
regions i has its TL decremented by 1. Once TL reaches 
0 the labeled object L is no longer used in computing 
the minimum cost association between pairs (L,i). 

The minimum cost computation as proposed by [22] 
is also based on the size of the bounding box and 
predicted size computation. In our experiments the size 
component of the minimum cost computation is 
negligible and therefore not used. 
 
5. Conclusion 
 

In this paper we show a much simpler but also a 
more adequate model for motion detection for thermal 
infrared surveillance videos. It can significantly reduce 
the processing time in comparison to the Gaussian 
mixture model, due to smaller complexity of the local 
variation computation. Moreover, the local-variation 
based algorithm remains stable with higher dimensions 
of input data, which is not necessarily the case for an 
EM type algorithm, used for Gaussian model 
estimation. The minimum cost tracking based on sp 
motion regions is the foundation for more 
sophisticated object classification algorithm. 
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