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ABSTRACT
We introduce a new EM framework in which it is possible
not only to optimize the model parameters but also the num-
ber of model components. A key feature of our approach is
that we use nonparametric density estimation to improve
parametric density estimation in the EM framework. While
the classical EM algorithm estimates model parameters em-
pirically using the data points themselves, we estimate them
using nonparametric density estimates.

There exist many possible applications that require opti-
mal adjustment of model components. We present experi-
mental results in two domains. One is polygonal approxi-
mation of laser range data, which is an active research topic
in robot navigation. The other is grouping of edge pixels
to contour boundaries, which still belongs to unsolved prob-
lems in computer vision.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: General

General Terms
Algorithms, Performance, Experimentation

Keywords
EM, Expectation Maximization, Kullback-Leibler divergence

1. INTRODUCTION
Our goal is to approximate the ground-truth density q(x)

with a member pΘ(x) of a parametric family {pΘ(x) : Θ ∈
S} of densities. We use Kullback-Leibler divergence (KLD)
to measure dissimilarity between the ground-truth and para-
metric family of densities. By definition, the KLD between
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the ground truth q(x) and the density, pΘ(x) is:

D(q(x)||pΘ(x)) =

Z
log

q(x)

pΘ(x)
q(x)dx

=

Z
log q(x)q(x)dx−

Z
log pΘ(x)q(x)dx (1)

The data itself, being noisy, do not directly correspond to
the ground truth density. We demonstrate below that the
ground-truth density q(x) can be estimated from the data.
The use of Kullback-Leibler divergence (KLD) enables us to
fit an optimal model to the ground truth rather than the
noisy data.

Observe that KLD is able to approximate the optimal
number of model components of pΘ. This is due to the fact
that KLD D(q||pΘ), viewed as a functional on the space˘
pΘ

¯
of Gaussian mixtures, is convex and hence has a unique

minimum. However, this minimum does not have to be a fi-
nite mixture of Gaussians, since the space of finite Gaussian
mixtures is not closed. On the other hand, the set of finite
Gaussian mixtures is dense in the space of continuous func-
tions. Therefore, we can approximate the minimum with
any required precision when we minimize KLD in the space
of finite Gaussian mixtures. In particular, this means that
we can estimate the number of mixture components, but
it is impossible to determine the optimal number of com-
ponents, since this number may be large or infinite (e.g.,
some ground truth model components could be very small).
Therefore, using KLD we are able to correctly estimate the
number of ’large’ (or significant) model components.

It is known that the Expectation Maximization (EM) al-
gorithm can be derived from KLD (Section 2). However, in
the EM framework the number of model components must
be known and fixed. This is due to the fact that the log like-
lihood function that is optimized in the EM framework in-
creases when the number of model components is increased.
Thus, when optimizing the log likelihood, we cannot esti-
mate the number of model components.

An important question which arises is: why is the ability
to estimate the optimal number of model components lost
in the derivation of EM from KLD? In this paper we pro-
vide an answer to this question and derive a new EM target
function from KLD that allows us to optimize not only the
model parameters but also to estimate the number of the
model components. Moreover, in the proposed framework,
EM converges to an optimal solution even if the initial values
of model parameters are not close to the global optimum.

There exist many possible applications that require op-
timal adjustment of model components. We illustrate our



approach on polygonal approximation of laser range data
and object contours in digital images. Polygonal maps ob-
tained by polygonal approximation of laser range data are
very attractive means to represent range scan data due to
their very compact size and simplicity. Hence they lead to
huge data compression and make it easier to access higher
level features. Therefore, several approaches have been pro-
posed to obtain such maps, the most recent ones being [17,
11, 8]. An excellent overview can be found in [17]. Although
approximation with higher order curves is possible, approxi-
mation with lines is more stable in the presence of noise (e.g.,
see Ch. 5 in [14]), which is the case for laser range scans.
Therefore, we focus on polygonal approximation in this pa-
per. However, the proposed EM framework has a broader
scope of possible applications. Polygonal approximation of
edge pixels in digital images can be interpreted as grouping
of edge pixels to parts of object contours, which belongs to
unsolved problems of computer vision. The approaches to
grouping of object contours date back to the the first results
of Gestalt psychology in the beginning of 20th century [18],
and they remain an active research topic in computer vision.
An overview of techniques for polygonal approximations of
curves, which require that the order of data points is known,
can be found in [10].

The main difficulty of fitting polylines in the above appli-
cations is that the segmentation (or correspondence) of data
points to line segments as well as the order of data points are
unknown. The Expectation Maximization (EM) algorithm
[2] provides a particullary useful framework to solve this cor-
respondence problem. Actually EM applied to line fitting
is known as the Healy-Westmacott procedure in statistics,
and predates EM by many years [6]. However, polygonal ap-
proximation of point data requires that not only the model
parameters but also the number of model components (line
segments) are estimated, but as observed above in the EM
framework the number of model components must be known
and fixed. Moreover, EM produces an optimal solution only
if the number of model components is well estimated and
the initial values of model parameters are close to the global
optimum.

We give a simple example that illustrates the fact that EM
yields a locally optimal solution if the initial values of model
parameters are not close to globally optimal values. In Fig.
1 we see data points that follow the horizontal and vertical
lines in a cross like pattern. Fig. 1(a) shows two diagonal
lines that form the initial configuration of the standard EM
algorithm. The number of model components (two lines)
is correctly initialized, but their initial position is not close
to the global optimum. Fig. 1(b) shows the final, locally
optimal, result obtained by the classical EM algorithm. Fi-
nally, Fig. 1(c) shows the globally optimal approximation
obtained by the proposed method on the same input.

Due to the problem of getting stuck in local optima, a
correct estimation of the number of components and the pa-
rameter values of a statistical model is crucial in all EM
applications, and therefore, belongs to one of the most chal-
lenging problems in statistical reasoning. Before we describe
the proposed approach, we review existing solutions.

The existing solutions can be divided into two categories.
The first category is based on using penalty functions like
the Bayesian Information Criterion (BIC), or alternatively,
the Minimum Description Length (MDL), and Akaike Infor-
mation Criterion (AIC), to determine the optimal number of

model components. The approaches in this category require
that EM is run until it converges, whatever the initial num-
ber of components assumed, with the goal of selecting the
components exemplified by the ground truth. As we show
below, approaches of this sort cannot be guaranteed to cor-
rectly estimate the optimal number of model components
because EM may get stuck in local optima.

In [1] the use of BIC and AIC to estimate the number
of model components is discussed. We focus here on BIC
but our arguments also apply to AIC and MDL. For a fixed
number of data points, which is the case in our application
at each given time t, the use of BIC represents a trade-off
between emphasizing the importance of model complexity
and the likelihood of the data. Typically a model that has
the greatest BIC values is selected by repeatedly comparing
these values for all possible numbers of model components.
The problem with this approach is that its success depends
on the convergence of the EM algorithm to the global op-
timum whatever the initial number of model components
assumed. If, for some given initial starting configuration,
EM gets stuck in a local optimum, the BIC estimate will in-
correctly estimate the ground truth number of model com-
ponents. For example, the correct number of model com-
ponents could not be determined (using BIC methodology)
for the situation in Fig. 1(a,b). Since EM got stuck in a
local optimum in (b), the likelihood of the model with two
components is very low, and consequently the ground-truth
model with two components is not selected. To the best
of our knowledge this problem is not addressed by any ex-
isting approach designed to estimate the number of model
components.

Moreover, in practice there is a hidden parameter that is
manually adjusted to obtain the desired number of model
components in BIC. This parameter is the standard devi-
ation of the measurement process. In BIC this standard
deviation acts as a tradeoff weighting factor between the
likelihood of the data points and the model complexity. As
determined experimentally on ground-truth data in [1], BIC
tends to over weight the penalty on model complexity, which
leads to a too small number of model components.

The second category of approaches to estimate the opti-
mal number of components is based on steps involving split-
ting and merging of EM model components after each algo-
rithm iteration. Our approach belongs to this category. It
is important to mention that the approaches in the second
category yield a quicker convergence since they adapt the
number of model components and model parameters to the
given environment after every algorithm iteration while BIC
requires convergence for each given initial number of model
components.

We will first show that the existing split and merge ap-
proaches cannot be guaranteed to correctly estimate the op-
timal number of model components due to the fact that
they cannot recognize locally optimal solutions that are not
globally optimal.

In 1995 Green [3] proposed a solution based on iterative
merging and splitting components of a mixture model with
the goal of obtaining a better mixture model in the case of
univariate normal mixtures. Green’s solution is based on
a fully Bayesian mixture analysis that makes use of jump
Markov chain Monte Carlo (MCMC) methods. The jumps
are realized by split and merge moves that are reversible.
Since Green’s merge move is evaluated using the data points,
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Figure 1: (a) shows the data points and the initial position of model lines. (b) shows the optimal approxima-
tion of the data points obtained by EM. (c) shows the optimal approximation result obtained by the proposed
method.

it requires an additional penalty for the number of model
components. The number of model components depends
largely on this penalty, which is not directly related to the
model quality assessment, as is the case in our approach.
Green’s approach is used to fit polygons to contours in dig-
ital images in [9]; in this setting split moves correspond to
inserting a new vertex into the polygon and merge moves
correspond to removing a vertex. Greens algorithm requires
a huge number of iterations (Green reported the need for
20,000 iterations). This is due to a random selection of ver-
tices, which is counterintuitive from the point of view of
human visual perception. Humans are able to identify good
and bad fitting parts of a given polygon by visual inspec-
tion. In consequence of this, it makes more sense to base
algorithm moves on local visual inspection rather than on
random selection.

In 2000 Ueda et al. [16] proposed a split and merge ex-
tension of the EM framework for mixture models. Their
split and merge rules do not require any penalty as is the
case for Greens approach. However, as we will now show,
their approach is not able to recognize some locally opti-
mal solutions that are not globally optimal. Their merge
criterion is based on posterior probabilities associated with
the model components. Two model components ωi and ωj

are merged if they have almost equal posterior probabilities
over the data points; this means that the probability of be-
ing generated by either component is approximately equal
for all data points (formula (15) in [16]). Defining model
components as line segments, this means that data points
are approximately the same distance to either one of compo-
nents that are under consideration to be merged. Observe
that the two model components (diagonal line segments) in
Fig. 1(a) are merged by their rule. This, however, incor-
rectly results in a single line segment that cannot provide
good support for the cross-shaped data points.

A single model component is split if the local data density
is significantly different from the global density; both den-
sities are estimated using the actual component parameters
of this component (formula (16) in [16]). This split criterion
fails in our application, where the model components are line
segments. The single line segment in Fig. 2 is not split by
this criterion, since both densities are identical (i.e., match
perfectly). However, clearly two line segments are needed
to obtain an optimal fit to the data points. This critique

also applies to the approach in [19] that uses the same split
criterion.

The above problems also explain why the algorithm by
Ueda et al. [16] needs a relatively large number of itera-
tions to converge. [16] reports that about 350 iterations are
needed to fit lines to data points. The proposed algorithm
usually converges in less than 20 iterations.
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Figure 2: Clearly two line segments are needed to
obtain an optimal fit do the depicted data points.

We observe that all the split and merge steps presented
in the literature optimize different target function than the
function optimized by the classical M step of the EM algo-
rithm. Here we propose split and merge steps that optimize
the same target function (Sections 3 and 4).

2. OPTIMIZING KLD
It can be easily derived that the parameters bΘ minimizing

(1) are given by

bΘ = argmaxΘ

˘ Z
[log pΘ(x)]q(x)dx

¯
(2)

We obtain the classical maximum likelihood estimator by
applying the MC (Monte Carlo) integral estimator to (2) un-
der the assumption that the observations x1, ..., xn are i.i.d.
(independently and identically distributed) sample points
selected from the ground truth distribution q(x).

bΘ = argmaxΘ

X

i

log pΘ(xi) (3)



However, as we derive below (equation (9)), if some propor-
tion of the observations x1, ..., xn is noisy, a more accurate
estimator of Θ in (2) is given by:

bΘ = argmaxθ

X

i

log pθ(xi)sdd(xi), (4)

where sdd is called the smoothed data density and is
defined in Section 5 by the means of nonparametric density
estimation.

Equation (4) is the basis of the proposed approach. To
demonstrate the significance of (4), we consider the problem
of estimating the optimal number of model components by
minimizing the KLD D(q(x)||pΘ(x)) in Θ. It is well known
that (3) cannot be used to estimate the correct number of
model components, since (3) increases when the number of
model components increases. In contrast, we are able to
determine the correct number of model components when
using (4) to estimate the KLD, D(q(x)||pΘ(x)). Thus, the
modified EM algorithm that maximizes (4) is not only able
to estimate model parameters but also the right number of
model components.

One of the key steps in the derivation of (4) is the Monte
Carlo (MC) estimate of the integral given by the right hand
side of equation (1). Let x1, . . . , xn be i.i.d. sample points
drown from the probability density function (pdf) q(x). Then
we can approximate the integral of a continuous function f
by its MC estimate:

Z
f(x)q(x)dx ≈ 1

n

X

i

f(xi) (5)

In the usual approach to inference, it is a commonly ac-
cepted assumption that sample data points x1, . . . , xn are
distributed according to the (estimated) density q(x). This
assumption is the key to insuring that maximum likelihood
estimators are appropriate for purposes of estimating pa-
rameters of interest. However, in all real applications, the
sample data points are corrupted by a certain amount of
noise. Usually the proportion of noisy points does not de-
crease when the number of sample points is increased. We
quantify this corruption by assuming that the data follow a
distribution consisting of a mixture of an unknown ground-
truth distribution q(x) and an unknown noise distribution
η(x). Let u(x) = αq(x) + (1 − α)η(x) denote this mixture
distribution. The quantity, α is the probability that an ob-
servation comes from the ground-truth distribution q(x) and
(1−α) is the probability that it comes from the noise distri-
bution. Since the observed sample data points do not follow
the ground truth distribution q(x) but the mixture of noise
and true distribution u(x), we obtain a more accurate MC
estimate of the integral in (5)

R
f(x)q(x)dx =

R
f(x)q(x)dxR

q(x)dx
=

R
f(x) q(x)

u(x)
u(x)dx

R
q(x)
u(x)

u(x)dx
≈

P
i
f(xi)

q(xi)
u(xi)P

i

q(xi)
u(xi)

(6)

In Section A we show that equation (6) leads to a substan-
tially smaller mean squared error in the estimation of the
integral than equation (5). The ratio

αq(x)

u(x)
=

αq(x)

αq(x) + (1 − α)η(x)
(7)

is equivalent to the conditional probability, P (ground truth|x),
that an observed data point x is selected from the ground
truth density q(x). We note that large values of P (ground truth|x)

indicate that the data point x is of significant interest for
inference purposes; small values indicate the reverse.

In Section 5 we show that it is possible to estimate a ratio
proportional to (7) with the smoothed data density sdd(x).
Consequently,

Z
f(x)q(x)dx ≈

P
i
f(xi)sdd(xi)P

i
sdd(xi)

(8)

By identifying sdd(xi) with its normalized value sdd(xi)
P

j sdd(xj)

for i = 1, ..., n, we can rewrite equation (8) in the form
Z

f(x)q(x)dx ≈
X

i

f(xi)sdd(xi) (9)

Finally equation (4) clearly follows from (9) and (2).

3. E AND M STEPS
We introduce latent variables z1, ..., zn which serve to prop-

erly label the respective data points x1, ..., xn. It is as-
sumed that the pairs (xi, zi) for i = 1, . . . , n are i.i.d. with
common (unknown) joint (ground truth) density, q(x, z) =
q(x)q(z|x); q(x) is the marginal x-density and q(z|x) is the
conditional density of the label z given x. In this new frame-
work, the KLD between the joint density q(x, z) and a para-
metric counterpart density pΘ(x, z) is

D(q(x, z)‖pΘ(x, z)) = D(q(x)q(z|x)‖pΘ(x)pΘ(z|x))

=

Z

x

Z

z


log

»
q(x)

pΘ(x)

–
+ log

»
q(z|x)

pΘ(z|x)

–ff
q(x)q(z|x)dzdx

=

Z

x

log

»
q(x)

pΘ(x)

–
q(x)dx +

Z

x

q(x)

Z

z

log

»
q(z|x)

pΘ(z|x)

–
q(z|x)dz (10)

We are now ready to introduce the expectation (E) and
maximization (M) steps. Both steps aim at minimizing the
same target function (10) in our framework. The expecta-
tion step yields the standard EM formula; considerations
discussed above lead to a different solution for the maxi-
mization step.
Expectation Step: For a fixed set of parameters Θ, we
want to find a conditional density q(z|x) that minimizes
D(q(x, z)||pΘ(x, z)). Since KLD is always nonnegative, and
the second summand in (10) is minimized for q(z|x) = pΘ(z|x)
(in which case it is equal to zero), we obtain from (10) that

q(z|x) = pΘ(z|x) minimizes D(q(x, z)||pΘ(x, z)).

In particular, for given sample points x1, . . . , xn, we obtain

q(zi = l|xi) = pΘ(zi = l|xi) = p(zi = l|xi, Θ) (11)

=
p(xi|zi = l, Θ)p(zi = l|Θ)

p(xi|Θ)
=

p(xi|zi = l, Θ)πlPk

j=1 p(xi|zi = j, Θ)πj

,(12)

where πl = p(zi = l|Θ) and πj = p(zi = j|Θ) are the prior
probabilities of component labels l and j correspondingly.
Maximization Step: For the fixed marginal distribution
q(z|x) = pΘ(z|x), we want to find a set of parameters Θ that
maximizes (10). Substituting q(z|x) = pΘ(z|x) in (10), we
obtain

D(q(x, z)||pΘ(x, z)) =

Z
log(

q(x)

pΘ(x)
)q(x)dx = D(q(x)||pΘ(x))

(13)
Thus, minimizing D(q(x, z)||pΘ(x, z)) in Θ is equivalent to
minimizing D(q(x)||pΘ(x)) in Θ. Using the estimate derived



in equation (4), minimizing (13) in Θ is equivalent (in the
MC setting discussed above) to maximizing the weighted
marginal density

WM(Θ) =
X

sdd(xi) log pΘ(xi) =
X

sdd(xi) log p(xi|Θ)

=
nX

i=1

sdd(xi) log[
kX

l=1

p(xi|zi = l, Θ)p(zi = l|Θ)]

=
nX

i=1

sdd(xi) log[
kX

l=1

p(xi|zi = l, Θ)πl] (14)

where πl = p(zi = l|Θ) are the prior probabilities of compo-
nent labels l = 1, . . . , k.

Now we explicitly use the incremental update steps of the
EM framework. Using the prior probabilities of component

labels π
(t)
l = p(zi = l|Θ(t)) obtained at stage t for l = 1, ..., k,

we obtain from (14) that an update of WM(Θ) is estimated
by maximizing

WM(Θ;Θ(t)) =
nX

i=1

sdd(xi) log[
kX

l=1

p(xi|zi = l, Θ)π
(t)
l ]

(15)

in Θ with Θ(t) denoting the value of Θ computed at stage t
of the algorithm. The crucial difference between this and the
standard EM update is that our target function is weighted
with terms sdd(xi). We note that the known convergence
proofs for the EM algorithm apply in our framework, since
adding the weights sdd(xi) in (15) does not influence the
convergence.

4. SPLIT AND MERGE
The proposed split and merge steps adjust the number

of model components by performing component split and
merge steps only if they increase the value of our target
function (15). Since the proposed split and merge steps are
computed in the sparse EM framework, the convergence of
our algorithm follows from [7].

Our framework is very general in that it allows many pos-
sible selections of the candidate components for the split and
merge steps. We present specific selection methods of the
candidate components in Section 8. They are based on a
Maximum A Posteriori principle. In the following formulas,
we assume that the candidate components are given.
Split: Assume that we are given two candidate model com-
ponents l1, l2; we consider replacing the model component l
with components l1, l2. Since our goal is maximizing QM(Θ; Θ(t))
in formula (15), we simply need to check whether replacing
l with l1, l2 increases WM , where j ∈ {1, . . . , k}:

WM(Θ; Θ(t)) =
nX

i=1

sdd(xi) log[
X

j

p(xi|zi = j, Θ)π
(t)
j ]

<
nX

i=1

sdd(xi) log[
X

j 6=l

p(xi|zi = l, Θ)π
(t)
l

+ p(xi|zi = l1, Θ)π
(t)
l1

+ p(xi|zi = l2, Θ)π
(t)
l2

] (16)

We only need to perform ’local’ computation to perform
this test, i.e., we only need to compute the corresponding
probabilities for the candidate components l1, l2, subject to

the condition that π
(t)
l = π

(t)
l1

+ π
(t)
l2

. The parameters are
estimated following the sparse EM step in Neal and Hinton

[7], (see equation (15)). In accordance with the results of [7]
this local computation guarantees that the target function
increases after each iteration (if (16) holds). Convergence is
also guaranteed in this way.
Merge: Given a candidate component l, we merge two ex-
isting model components l1, l2 to l if for j ∈ {1, . . . , k}

WM(Θ;Θ(t)) =

nX

i=1

sdd(xi) log[
X

j

p(xi|zi = j, Θ)π
(t)
j ]

>

nX

i=1

sdd(xi) log[
X

j 6=l

p(xi|zi = l, Θ)π
(t)
l

+ p(xi|zi = l1, Θ)π
(t)
l1

+ p(xi|zi = l2, Θ)π
(t)
l2

] (17)

Again we only need to perform ’local’ computations to per-
form this test. For merge, we only need to compute the
corresponding probabilities for the candidate component l,

subject to the same constraint π
(t)
l = π

(t)
l1

+ π
(t)
l2

. If (17)
holds and we replace l1, l2 with l, the convergence of our
algorithm follows from the results of [7].

We note that the proposed split and merge steps do not
work in the classical EM framework. To see this, consider
sdd(xi) = 1 for all the data points (i = 1, . . . , n). The merge
inequality (17) is not satisfied even if the ground truth model
is assumed to be a single component, since multiple com-
ponents can better fit the data, and consequently have a
larger log likelihood value. Analogously, if the split inequal-
ity (16) holds for a reasonable selection of candidate compo-
nent models, the classical EM framework incorrectly splits
ground truth components. Thus, a mixture model of larger
number of components is always prefered in the classical EM
framework. In the proposed framework, sdd represents an
estimated density of the data points (estimated in a non-
parametric way as described in Section 5). Consequently, in
the proposed split and merge steps, the divergence of para-
metric components l, l1, l2 from the ground truth is evalu-
ated with respect to this nonparametric density.

5. ESTIMATING THE DATA DENSITY
In this section, we construct the function sdd(x) that es-

timates the ratio (7). Following the assumption made in
calculating bootstrap samples, we can estimate the density,
u(x) on the observed i.i.d. sample points x1, . . . , xn drawn
from u(x) by bu(x1) = · · · = bu(xn) = 1

n
.

We use a kernel estimate, which is the most widely-used
nonparametric density estimation method, to estimate the
ground truth density q(x). Thus, under the assumption that
x1, . . . , xn are i.i.d. sample points, we estimate the ratio (7)
with a smoothed data density obtained by

sdd(xj) ∝ q(xj)

u(xj)
≈ nq(xj) = n

nX

i=1

K(
d(xj , xi)

h
)

=
n

nh

nX

i=1

G(d(xj , xi), 0, h), (18)

where proportionality refers to the fact that
P

sdd(xi) = 1,
d(x, y) is the Euclidean distance, and G(d(x, y), 0, h) is a
Gaussian with mean zero and the standard deviation (std)
h. An intuitive motivation for (18) is as follows:

If a given data point xj was sampled from the true dis-

tribution q(x), then the ratio
q(xj)

u(xj)
would be large. Since



the ratio is proportional (see equation (7)) to the proba-
bility, P (groundtruth|xj), this too would be large. As a
consequence of this latter fact, xj would be likely to lie in a
dense region of the observed sample points and consequently
sdd(xj) would be large.

If a given data point xj were sampled from the noise dis-

tribution η(x), then the ratio,
q(xj)

u(xj)
would be small. For

analogous reasons, this implies that xj would be likely to
lie in a sparse region of the sample space, and consequently
sdd(xj) would be small.

To estimate the bandwidth parameter h, we can draw
from a large literature on nonparametric density estimation
[12, 13]. As we show in the presented experimental results,
an accurate bandwidth estimation in not crucial in our ap-
proach. It is also possible to use variable bandwidth [15].

6. SPECIFIC DETAILS OF THE M STEP
In equation (15) of Section 2 it was shown that mini-

mizing the Kullback Leibler Divergence in the parameters
Θ amounts to maximizing the weighted marginal density
WM(Θ). We use this fact throughout the discussion below.

The goal of this section is to show that formulas for maxi-
mizing (15) are analogous, except for multiplication by sdd,
to log likelihood maximization in the standard EM algo-
rithm. To illustrate this we compute a partial derivative of
(15) over one of the model parameters θj from the parameter
vector Θ that is a parameter of j’th model component.

∂

∂θj

WM(Θ;Θ(t)) (19)

=
nX

i=1

sdd(xi)
1

p(xi|Θ)

∂

∂θj

kX

l=1

p(xi|zi = l, Θ)π
(t)
l (20)

=
nX

i=1

sdd(xi)
πj

p(xi|Θ)

∂

∂θj

p(xi|zi = j, Θ) (21)

=
nX

i=1

sdd(xi)
πjp(xi|zi = j, Θ)

p(xi|Θ)

∂

∂θj

log p(xi|zi = j, Θ)(22)

=
nX

i=1

sdd(xi)p(zi = j|xi, Θ)
∂

∂θj

log p(xi|zi = j, Θ)(23)

The transitions from (20) to (21) and from (21) to (22) are
based on

∂

∂x
log f(x) =

1

f(x)

∂

∂x
f(x).

The transition from (22) to (23) is based on the Bayes rule.
For example, in the 1D case when θj is the mean of

one of the Gaussian mixture components, we can substi-

tute p(xi|zi = j, Θ) = exp(
(xi−θj )2

−2σ2 ) and set (23) equal to
zero:

nX

i=1

sdd(xi)p(zi = j|xi, Θ)
(xi − θj)

σ
= 0 (24)

Then we obtain in the 1D case

θj =

Pn

i=1 sdd(xi)p(zi = j|xi, Θ)xiPn

i=1 sdd(xi)p(zi = j|xi, Θ)
(25)

7. ONE DIMENSIONAL EXAMPLE
Below, we use the notation, G(x; µ; σ) for the Gaussian

density at x with mean µ and standard deviation σ. We

generated a 1 dimensional data set x1, ..., xn (with n=500)
from the noisy density,

u(x) =

8
>><
>>:

G(x; 10; 3) wprob 30%
G(x; 20; 3) wprob 30%
G(x; 30; 3) wprob 35%
G(x; 30; 30) wprob 5%

(26)

See Fig. 3(a) for a plot of the generated data with groundtruth
groups marked with different symbols.

We employed a split and merge algorithm with 5 ini-
tial groups with group labels chosen randomly. For each
component considered for possible splitting, our algorithm
searched for a component point, whose density, as measured
by sdd, is more than 1 standard deviation below the average
component density. If no such point exists, the component
is not split. Splits are accepted if they cause the objective
function to increase its value. All pairs of components are
considered for possible merging. Splits and merges are ac-
cepted if they cause the objective function to increase from
its former value in accord with formulas 16 and 17, corre-
spondingly.

The results obtained by the proposed algorithm are illus-
trated in Fig. 4. To illustrate the relationship between the
smoothing bandwidth h of sdd and robustness properties of
the parameter estimates, we repeat our algorithm for differ-
ent values of h. Smaller values of (the bandwidth) h result
in less smoothing; larger values result in more smoothing.
The bandwidth of h = 1.2, calculated using least squares
cross-validation (see [5]), is optimal in this setting. This fol-
lows from a general theorem relating the optimal bandwidth
to the standard deviation and sample size. The point labels
obtained by our algorithm for h = 1.2 are shown in Fig.
3(b).

Observe a large stability of our algorithm with respect to
the bandwidth h illustrated by plots in Fig. 4. For each h
value, the algorithm was initialized with a randomly selected
group labels consisting of 5 groups. Our algorithm always
converged to the correct number of three signal model com-
ponents. Small bandwidths did not adequately discriminate
between noise and signal. Already moderately large band-
widths demonstrate adequate discrimination in that com-
ponent means µj and weights πj (j = 1, 2, 3) are accurately
estimated.

8. LINE SEGMENTS AS COMPONENTS
We present specific details concerning our use of line seg-

ments as EM model components in the applications pre-
sented below. We stress that this section applies also to hy-
per planes in any dimensions, but the presentation is given
in terms of line segments for purposes of simplification.

The proposed approach requires a minor extension of EM
line fitting to work with line segments, which we will call Ex-
pectation Maximization Segment Fitting (EMSF). The dif-
ference between EMSF and EM line fitting is that our model
components are line segments (rather than lines). The in-
put, for our model, is a set of line segments and a set of data
points. As with EM the proposed EMSF is composed of two
steps:

(1) E-step The EM probabilities are computed based on
the distances of points to line segments instead of the
distances of points to lines.
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Figure 3: (a) A plot of the simulated data with their ground-truth component labels. (b) A plot of data
points with labels to which the EM algorithm converges.
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Figure 4: Component means (a), weights (b), and sigma (c) as function of bandwidth h used in sdd.

(2) M-step Given the probabilities computed in the E-
step, the new positions of the lines are computed by
minimizing squared regression error weighted with these
probabilities.

As in the case of EM line fitting, the output of the M-step
is a new set of lines (not line segments). Since we need
line segments as input to the E-step, we trim lines to line
segment based on their support in the sample data. This is
done by the split process described in Section 8.2.

Now we describe the specific details related to line seg-
ments for steps (1) and (2). In order to derive the solution
of (23) for EM model components being line segments, we
introduce so called EM weights. In the classical EM, the

weight w
(t)
il = p(zi = l|xi, Θ

(t)) represents the probability
that point xi corresponds to segment sl for l = 1, . . . , k. We
use the notation θl for the parameters of the line segment sl

itself. In our framework

w
(t)
il ∝ sdd(t)(xi) · p(zi = l|xi, Θ

(t)), (27)

and the weights are normalized so that
Pk

l=1 w
(t)
il = 1 for

each i. After the E-step associated with the t’th iteration

is accomplished, we obtain a new matrix (w
(t)
il ). Intuitively,

each row i = 1, ..., n of this matrix corresponds to weighted
probabilities that the data point xi is associated with the
corresponding line segments; each column l = 1, ..., k can be
viewed as weights representing the influence of each point on
the computation of new line positions in the M-step. Below,
we use the notation xi = (xix, xiy) with (i = 1, ..., n) for
the coordinates of the observed data points, and (x̄, ȳ) for
the coordinate averages. The line Ll, constructed below,

is constructed to go through the point (x̄, ȳ). To obtain
the solution of (23), we perform an orthogonal regression
weighted with the matrix (wil). The solution is given as the
normal vector to line Ll, which is the vector corresponding
to the smallest eigenvalue of the matrix Ml defined as
» Pn

i=1 wil(xix − x̄)2
Pn

i=1 wil(xix − x̄)(xiy − ȳ)Pn

i=1 wil(xix − x̄)(xiy − ȳ)
Pn

i=1 wil(xiy − ȳ)2

–

(28)

Finally the parameters θ
(t+1)
l are given as parameters of the

line segment s
(t+1)
l obtained by trimming the line Ll to the

data points.
We are now ready to introduce particular realization of

split and merge for EM model components being line seg-
ments. The proposed split and merge EM segment fitting
(SMEMSF) algorithm iterates the following four steps

(1) EMSF (2) Split (3) EMSF (4) Merge

Split step is presented in detail in Section 8.2 while Merge
step is described in Section 8.1. Split evaluates the support
in the data points of lines obtained by EMSF and removes
the parts that are weakly supported. Since we have a finite
set of data points, this has the effect of trimming the lines
to line segments. Finally the merge step merges similar line
segments. Thus, split and merge steps adjust the number of
model components to better fit the data.

8.1 Merging
If inequality (17) holds, we merge two model components

represented by parameters l1, l2 into one model componet
given by parameter l. While components l1, l2 are present



at step t (they are line segments sl1 , sl2), we did not yet
specify how to compute the candidate component l. Now
we describe a particular method to generate a candidate
component l in the particular case in which the model com-
ponents are line segments. We stress that other methods
are possible and that inequality (17) applies to them too.

A support set S(sj) for a given line segment sj (model
component l) is defined as set of points whose probability of
supporting segment sj is the largest, i.e.,

S(sj) = {xi : wij = max(wi1, . . . , wik)}.
This maps each data point to a unique segment using the
Maximum A Posteriori principle. Given two line segments
sl1 , sl2 , the merged segment sl is obtained by trimming the
straight line obtained by regression on data points in S(sl1 )∪
S(sl2 ). Trimming is performed by line split described in
Section 8.2.

8.2 Line split (LS)
A classical case of EM local optimum problem is illus-

trated in Fig. 5(a), where the line segment is in a locally
optimal position. Clearly, the problem here is that we have
a model consisting of one line only, while two line segments
are needed. Fig. 5(b) illustrates a split operation described
in this section. It is based on removal of subsegments that do
not have sufficient support in the data points. As the result
we obtain two line segments. Finally, Fig. 5(c) shows the
globally optimal approximation of the data points obtained
by EM applied to the two segments.

The main idea is that higher point density along a segment
indicates the presence of a linear structure in the data points
around the segment. The amount of support that a line
segment has is measured by the density of points around it.
Each line or line segment is examined regarding whether it
has sufficient support in the data. Only parts of segments
that have this support are allowed to remain. This leads to
a splitting of existing lines or segments.

We use the nonparametric density estimation sdd to ob-
tain the density along each segment. Although we defined
sdd only at the sample data points in (18), it is actually
defined at every point sdd(x) ∝ Pn

i=1 G(d(x, xi), 0, h). Ob-
serve that sdd|sl

restricted to a segment sl is a one di-
mensional function. We obtain split point candidates (and
consequently model segment candidates) as local minima of
sdd|sl

.

9. APPLICATIONS
An example application of our approach in robot mapping

is outlined in Fig. 6. (a) shows an original data set of laser
range scan points aligned with the algorithm presented in
[4]. The original set is composed of 395 scans, each with 361
points. Thus, the original input map is composed of 142,595
points. We initialize our algorithm with only two segments,
the two diagonals, as model components. (b) shows the
output of the second iteration of our algorithm. The final
polygonal map in (d), obtained after 12 iterations, is com-
posed of 49 segments, i.e., of 98 points. Thus, the proposed
approach yields the data compression ratio of 1455:1. The
mean distance of scan points to the closest line segments
is 5cm. We selected this map, since it contains surfaces of
curved objects. The obtained polylines in (d) illustrate that
the proposed approach is well suited to approximate linear
as well as curved surfaces.

Now we apply the proposed approach to grouping edge
pixels to polygonal curves representing object contours in
digital images. Two example applications of this kind are
outlined in Fig. 7. (a) shows an original input toy image.
(b) shows the edges obtained by Canny edge detector with
a substantial amount of incorrect edge pixels, and the ini-
tial model for our algorithm. It consists of only two line
segments. (c) shows an intermediate step of our algorithm.
The final polygonal approximation obtained after 27 itera-
tions is shown in (d). (e) shows a simulated image obtained
by sampling 3 ground truth segments (150 points) with a
substantial amount of noise (2000 points). (f) shows the
initial model segments for our algorithm. We present the
results of our algorithm after 8 in (g) and 19 iterations in
(h). We stress that we have only 150 signal points in com-
parison to 2000 background noise points.

APPENDIX

A. MONTE CARLO APPROXIMATIONS
We use the notation q(x) for the ground truth density of

the data. We assume that the data (including noise) is dis-
tributed as, u(x) and let bu(x) be a standard density estimate
of u(x). We use the notation sdd(xi); i = 1, ..., n for the nor-

malized estimates of the ratio q(x)
u(x)

at the given data points.

As a result of Theorem 1 we obtain that mean squared er-
ror (MSE) for estimating the integral

R
f(x)q(x)dx using

Hsdd ∼ P
sdd(xi)f(xi) is significantly smaller than that us-

ing Hm =
P

f(xi) for any smooth function f .

Theorem 1. If x1, ..., xn are data generated from the noisy
density u(x), then the approximate MSE for estimating the
integral

R
f(x)q(x)dx using Hsdd ∼ P

sdd(xi)f(xi) is, up
to order O(1/n),

MSE(Hsdd) = O(1/n) (29)

The MSE for estimating the integral
R

f(x)q(x)dx using Hm =P
f(xi) is up to order O(1/n),

MSE(Hm) =

 Z
f(x)

˘
u(x) − q(x)

¯
dx

ff2

(30)

Proof: The variances of either Monte Carlo approximation
are of order O(1/n). Hence, the MSE’s in either case corre-
spond up to order O(1/n) to the squares of the bias’s. The
asymptotic bias for the Monte Carlo approximation Hsdd is,
via the delta method, equivalent to:

BIAS(Hsdd) ∼
»

(1/n)
nX

i=1

sdd(xi)f(xi) −
Z

q(x)f(x)dx

–
+

»
(1/n)

nX

i=1

sdd(xi) − 1

–
·

Z
q(x)f(x)dx

ff
(31)

Due to the normalization, the rightmost term of equation
(31) in square brackets is 0. Additionally, it follows from
the Central Limit Theorem that

»
(1/n)

nX

i=1

sdd(xi)f(xi)−
Z

q(x)f(x)dx

–
≤ O(1/

√
n) (32)

It follows from equations (31) and (32) that

BIAS(Hsdd)
2 ∼ O(1/n) (33)
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Figure 5: It is obvious to us that the approximation in (c) of the underlying data points is significantly better
then the approximation in (a). (a) shows the best possible approximation of the data points obtained by EM.
(b) The subsegments marked with crosses are removed, since their sdd values are too small, which results in
splitting the segment to two parts. (c) shows the final approximation result obtained by EM after the split.

Hence, by equation (33) and the remarks at the beginning
of the proof,

MSE(Hsdd) = O(1/n) (34)

The asymptotic bias for the monte carlo approximation Hm

is, equivalent to:

BIAS(Hm) =


(1/n)

X
f(xi) −

Z
f(x)q(x)dx

ff
(35)

By the law of large numbers, up to order O(1/
√

n)

(1/n)
X

f(xi) ∼
Z

f(x)u(x)dx (36)

Hence, by equations, (35) and (36), it follows that, up to
order O(1/

√
n),

BIAS(Hm) ∼
Z

f(x)
˘
u(x) − q(x)

¯
dx (37)

As a consequence, it follows from equation (37) that up to
order O(1/n),

MSE(Hm) ∼
 Z

f(x)
˘
u(x) − q(x)

¯
dx

ff2

(38)

The result follows.
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Figure 6: (a) An original outdoor map is composed of 142,595 scan points obtained during the Rescue Robot
Camp in Rome, 2004. We begin the approximation process with only two line segments that are the two
diagonals. (b) shows the output of the second iteration of our algorithm. (d) The final polygonal map
obtained after 12 iterations is composed of only 49 segments. The obtained compression rate is 1455:1, and
the approximation accuracy is 5cm.
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Figure 7: (a) An original input image. (b) The edges obtained by Canny edge detector, and two initial line
segments. (c) We see the polygonal approximation of the edge pixels obtained after (d) The final polygonal
approximation obtained after 27 iterations is shown in (e)-(g) Illustrate our approach on simulated data
generated by 3 ground truth segments with only 150 signal and 2000 noise points.


