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Preserving Topology by a Digitization Process

Longin Jan Latecki1 Christopher Conrad2 Ari Gross3

Abstract

The main task of digital image processing is to recognize properties of real objects
based on their digital images. These images are obtained by some sampling device,
like a CCD camera, and represented as finite sets of points that are assigned some
value in a gray-level or color scale. Based on technical properties of sampling devices,
these points are usually assumed to form a square grid and are modeled as finite
subsets of ZZ

2. Therefore, a fundamental question in digital image processing is which
features in the digital image correspond, under certain conditions, to properties of
the underlying objects. In practical applications this question is mostly answered by
visually judging the obtained digital images. In this paper we present a comprehensive
answer to this question with respect to topological properties. In particular, we derive
conditions relating properties of real objects to the grid size of the sampling device
which guarantee that a real object and its digital image are topologically equivalent.
These conditions also imply that two digital images of a given object are topologically
equivalent. This means, for example, that shifting or rotating an object or the camera
cannot lead to topologically different images, i.e., topological properties of obtained
digital images are invariant under shifting and rotation.

1 Introduction

We begin with an overview of the role topology plays in digital image processing. Currently,
there are three areas of research connected to Artificial Intelligence and Cognitive Science
which show a growing interest in topology:

(1) vision and image processing,

(2) representation and processing of spatial knowledge,
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(3) application of topological concepts in cognitive science.

The main question addressed in these areas is: which properties of real objects correspond
to properties of their representations. Topological properties play an important role, since
they are the most primitive object features and our visual system seems to be well-adapted
to cope with topological properties. Psychological evidence has been brought up to show
that topological features are primary for human visual perception (see Chen [4], [5], and [6]).

Topological knowledge can lead to the development of practically relevant procedures:

- For example, the digital version of the Jordan curve theorem is relevant in the repre-
sentation and processing of spatial knowledge. Let us assume that a terrain map is given as
a square grid in which the objects are identified, and a robot must bring a box to a location
that is surrounded by a fence that the robot cannot cross over. The robot ought to know
that his task cannot be achieved. To infer this, it is sufficient for the robot to identify that
its starting and goal locations do not belong to the same connected component. This can be
done by a connected component labeling algorithm, assuming that the discrete representa-
tion of the fence separates the robot’s digital imagery into two components. To infer this, it
is necessary that the Jordan curve theorem holds in the robot’s digital imagery if the pixels
representing the fence form a simple closed curve. Note that the robot need not have explicit
knowledge about the Jordan curve theorem.

- In many imaging applications topological knowledge can be used to justify correctness
of algorithms. For example, Kong and Udupa [17] proved correctness of a surface tracking
algorithm, which is used to display a surface of a 3D object on a 2D screen in medicine and
engineering. The correct behavior of this algorithm had only been conjectured, but observed
nonetheless, in all uses.

- In character recognition, letters in a document can be initially classified according to
their topological homotopy types.

- The layout of documents is frequently based on topological predicates, e.g., a specific
item must appear within a preassigned box.

- Optical checking of computer chips involves determining if the chip layout has the
desired homotopy type.

In image processing and in spatial knowledge representation, continuous objects are rep-
resented as finite sets (also called discrete sets), since only finite structures can be handled
on computers. Continuous objects and their spatial relations can be characterized using
geometric features. Therefore, any useful discrete representation should model the geometry
faithfully in order to avoid wrong conclusions. A basic part of geometry is topology.

It is clear that no discrete model can exhibit all the features of the continuous original.
Therefore, one has to accept compromises. The compromise chosen depends on the specific
application and on the questions which are typical for that application. Digital geometry
can be seen as an attempt to evaluate the price one has to pay for discretization. Digital
topology is the theoretical basis for understanding topological features of objects in digital
images, which must be related to features of the underlying continuous objects. We list some
questions which are typically dealt with using digital topology:

- Definition of connectedness and connected components of digital objects.
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- Classification of points in a digital set as interior and boundary points, definition of
boundaries.

- Definition of Jordan curves (and higher dimensional surfaces) and statement of the
digital version of the Jordan curve theorem (and its higher dimensional analogs). Digital
versions of the Jordan theorem and its higher dimensional generalizations are proved in
Rosenfeld [25], Morgenthaler and Rosenfeld [22], Kong and Roscoe [14, 15], Stout [29],
Khalimsky et. al [13], and Herman [12], for example.

- Continuous functions are an important tool of topology. Such functions have no direct
counterparts in discrete structures. However, it seems to be useful for many applications to
have such a concept as ‘discrete continuity’. Two different versions of discrete continuity are
defined in Rosenfeld [26] and in Latecki and Prokop [19]. By means of a suitable definition
of continuity, one is able to compare topological structures with each other. A powerful con-
cept in topology is homeomorphism. Homeomorphic topological structures are topologically
equivalent. So, if a topological problem is investigated, a topological structure is sought in
which the problem can be stated and solved as easily as possible.

- Digital invariants theory. One important topological invariant is the Euler number.
This is, in a certain sense, the only digital invariant which can be decided locally, i.e., in
parallel (Minsky and Papert [20]).

- Homotopy theory deals with properties which are invariant under continuous deforma-
tions. Translating homotopy from general topology to discrete structures raises a number
of questions which have not yet been resolved in a satisfactionary way. However, there are
interesting approaches to homotopy in discrete structures, e.g., Boxer [2] defines homotopy
directly for a square grid and its higher dimensional versions based on a discrete version of
continuity given in Rosenfeld [26].

In digital image processing, properties retrieved from the digital images are assumed to
represent properties of the underlying real objects. Practical applications show that this is
not always the case. Therefore, the main question which occurs is: under what conditions
do certain digital properties represent actual properties of the real object? In this paper,
the authors introduce conditions that guarantee that a real object and its digital image are
topologically equivalent.

In order to study the topological equivalence of a real continuous object and its digiti-
zation, which is a finite set of points, some preliminaries are in order. It is intuitively clear
that the real object in Figure 1.a and the digital object in Figure 1.b have the “same topo-
logical structure”. Based on the technical properties of sampling devices like a CCD camera,
digital points representing sensor output are generally assumed to form a square grid and
are modeled as points with integer coordinates located in the plane IR2. By a digitization
process, these points are assigned some gray-level or color values. By a segmentation process,
the digital points are grouped to form digital objects. For example, the digital points are
grouped by thresholding gray-level values with some threshold value, i.e., the pixels whose
gray-level values are greater than some given threshold value are classified as belonging to a
digital object (i.e., assigned the color black). As an output of a digitization and segmentation
process, we obtain a binary digital picture, with black points representing the digital object
and white points representing the background.
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We will identify each black point with a square centered at this point (in such a way
that the squares form a uniform cover of the plane). A digital object is then represented
as a union of squares which form a subset of the plane. For example, the digital set in
Figure 1.b, a finite subset of ZZ

2, is identified with the union of black squares in Figure 1.c, a
subset of IR2. Real objects or their projections are modeled in computer vision as subsets of
the plane. Therefore, it makes sense to speak about topological equivalence between a real
object (Figure 1.a) and its digital image (Figure 1.c). Thus, the digitization (and segmen-
tation) process is modeled as a mapping from continuous 2D sets representing real objects
to discrete sets represented as finite subsets of ZZ

2, which are identified with finite unions of
squares in IR2. Consequently, we can relate topological properties of a continuous 2D object
(e.g., a projection of a 3D object) to its digital images interpreted as the union of squares
centered at black points.

a finite set of points                                   the union of black squares
a) A real object                                  b) Its digitization represented as                 c) Its digitization represented as

Figure 1: An object and its digital image.

Serra [28] considered many kinds of digitizations. He showed that, for a certain class
of planar sets, digitizations preserve homotopy. However, he proved this only for subset
digitizations in hexagonal grids, where a subset digitization of a set A in IR2 is the set
of points in ZZ

2 which are contained in A. To show non-trivial problems connected with
digitizations, Serra gave the following title to one of the sections: “To digitize is not as easy
as it looks” ([28], p. 211).

Pavlidis [24] was primarily interested in digitizations based on the square sampling grid,
since ([24], p.36): “The most common grid used in picture processing is the square grid con-
sisting of square cells arranged as a chessboard.” His starting point was Shannon’s Sampling
Theorem, which is well-known in one-dimensional signal processing. This theorem allows
one to determine the size of the sampling interval such that a one-dimensional signal can be
exactly reconstructed from its samples. Pavlidis was interested in determining the size of
the squares of the sampling grid that guarantees a reconstruction of the “shapes” of image
regions ([24], Chapter 7, p. 129):

“The size of the cells of the sampling grid must be small enough so that the shapes of
regions of a given color remain unaltered in reconstructing the image.”

As the shape preservation criterion, he used topological homeomorphism. Since Pavlidis
identifies each point of a digital image with a square centered at this point, a given continuous
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set as well as its digital image are both subsets of the plane. First we state his definition of
compatibility ([24], Def. 7.4):

A closed planar set A and a square sampling grid whose (square) cells have diameter h
are compatible if:

(a) There exists a number d > h such that for each boundary point x of each connected
component R of A, there is a closed ball C with diameter d that is tangent to the boundary
of R at x and lies entirely within R.

(b) The same is also true for the closure of the complement of A.

For example, both sets shown in Figure 2 are compatible with the square sampling grid.
Using this definition, Pavlidis stated the following theorem ([24], Theorem 7.1):

For a planar set A, the condition of compatibility implies that A and its digitization are
topologically equivalent (i.e., homeomorphic).

It is not clearly stated in [24] which digitization process is used in Theorem 7.1. This
theorem holds for subset digitization on the square grid, where the grid squares chosen to
represent a planar set A are the squares whose centers lie in A.

In this paper, we consider digitizations which are more relevant to practical applications.
Our definition of a digitization approximates a real digitization process. Consistent with real
sensor output, a digitization is defined with respect to a grid of squares, where each square
has diameter r. Associated with each square is a sensor, i.e., the sensor is located at the
center of the square. The value of the sensor output depends on the ratio of the area of the
object in the square to the total area of the square. We assume that the gray-level values
assigned to the sensors are monotonic with respect to the area of the continuous object in
the sensor square. This is a standard model of the digitization and segmentation process for
CCD cameras if we exclude digitization errors. As an output of a digitization process, we
obtain a digital picture (a 2D matrix) with values of the pixels (picture elements) being the
values of the corresponding sensors. The pixels in the image are segmented to form digital
objects by thresholding gray-level values with some threshold value, i.e., the pixels whose
gray-level values are greater than some given threshold value are classified as belonging to a
digital object (i.e., assigned a black color). Segmenting objects under this model corresponds
to coloring an image point black if the ratio of the area of the object in a square centered
at this point to the area of the entire square is greater than some threshold value. This is
a standard model of digitization and segmentation process in computer vision, which is also
described in Pavlidis [24].

If we use this digitization (and segmentation model), then Pavlidis’ theorem is not true,
as shown in the following examples. Let A be a strip of width d, where 2h > d > h,
forming a 45o angle with the square grid, as illustrated in Figure 2(a). If square p is black iff
area(p∩A)/area(p) > 0.99 and white otherwise, then the digitization of strip A represented
by the gray squares is a digital 8-line, which is not homeomorphic to strip A. Note, however,
that A and its digitization are homotopy equivalent. This is not the case for our second
example illustrated in Figure 2(b), where a square p is black iff area(p∩A)/area(p) > 0 and
white otherwise. Here set A is not even homotopy equivalent to its digitization, represented
by gray squares, since A is simply connected, but its digitization is not (there is a white
“hole” in it).
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(a) (b)

Figure 2: The two sets shown are compatible with the square sampling grid. The set and
its digitization are not homeomorphic in (a) and not homotopy equivalent in (b).

In this paper we derive conditions relating properties of continuous objects to the diameter
of a square in the grid. If these conditions are satisfied, then the digital object obtained by
this digitization (and segmentation) process is guaranteed to be topologically equivalent to
the underlying continuous object. Loosely speaking, we show that if we double the diameter
of the tangent ball used by Pavlidis, then a continuous object and its digital image will be
topologically equivalent. Since we did not see how the proof of Pavlidis’ theorem can imply
this fact, we developed new proof methods presented in this paper.

2 Parallel Regular Sets

In this section we define a class of subsets of the plane representing “real objects”, which we
will call parallel regular sets. Let A be a planar set. We denote by Ac the complement of
A, by bdA the topological boundary of A, by intA the topological interior of A and by clA
the topological closure of A in the usual topology of the plane determined by the Euclidean
metric. The connected components of the boundary bdA are called contours. We denote by
d(x, y) the Euclidean distance of points x, y and by B(c, r) a closed ball of radius r centered
at a point c.

The following definition of parallel regular sets is based on the classical concepts in
differential geometry of osculating balls and normal vectors, which we define below without
using derivatives and limit points.

Definition: We will say that a closed ball B(c, r) is tangent to bdA at point x ∈ bdA if
bdA ∩ bd(B(c, r)) = {x}.
We will say that a closed ball iob(x, r) of radius r is an inside osculating ball of radius r
to bdA at point x ∈ bdA if bdA ∩ bd(iob(x, r)) = {x} and iob(x, r) ⊆ intA ∪ {x} (see Figure
3).

We will say that a closed ball oob(x, r) of radius r is an outside osculating ball of radius
r to bdA at point x ∈ bdA if bdA∩bd(oob(x, r)) = {x} and oob(x, r) ⊆ Ac∪{x} (see Figure 3).
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x

oob(x, r)

iob(x, r)

Figure 3: The inside and outside osculating balls of radius r to the boundary of the set A
at point x.

Note that x is a boundary point, not the center, of both iob(x, r) and oob(x, r). For
example, for every boundary point of a given ball B(c, s) of radius s, there exist inside
osculating balls of radii r, where 0 < r < s. However, B(c, s) itself is not an inside osculating
ball for any of its boundary points. Now we define parallel regular subsets of the plane:

Definition: We assume that A is a closed subset of the plane such that its boundary bdA
is compact.

A set A will be called par(r,+)-regular if there exists an outside osculating ball oob(x, r)
of radius r at every point x ∈ bdA.

A set A will be called par(r,-)-regular if there exists an inside osculating ball iob(x, r) of
radius r at every point x ∈ bdA.

A set A will be called par(r)-regular (or r parallel regular) if it is par(r,+)-regular
and par(r,-)-regular. A set A will be called parallel regular if there exists a constant r
such that A is par(r)-regular. We will sometimes call parallel regular sets (spatial) objects.

In Figure 4 the set A is par(r)-regular while the set B is not par(r)-regular, where r is
the radius of the depicted circles. Note that a parallel regular set, as well as its boundary,
does not have to be connected.

A B

Figure 4: The set A is par(r)-regular while the set B is not par(r)-regular, where r is the
radius of the depicted circles.

Definition: Let an outside osculating ball oob(x, r) and an inside osculating ball iob(x, r)
exist at some point x ∈ bdA. Let nl(x) be the straight line passing through the centers of
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balls oob(x, r) and iob(x, r) (see Figure 5.a). From Proposition 1 (3) below, it follows that
x ∈ nl(x) and nl(x) contains the centers of all balls oob(x, s) and iob(x, s) for every 0 < s ≤ r.
Since nl(x) is uniquely determined, we call nl(x) the normal line to bdA at point x ∈ bdA.
The straight line perpendicular to nl(x) passing through x, we call the tangent line to bdA
at point x ∈ bdA and denote it t(x).

In the remaining part of this section, we state some basic properties of parallel regular
sets. We first show that outside and inside osculating balls and normal lines are uniquely
defined.

Proposition 1 Let an outside osculating ball oob(x, r) and an inside osculating ball iob(x, r)
exist at some point x ∈ bdA.

(1) If OB is an outside osculating ball at x ∈ bdA of radius s, where 0 < s ≤ r, we obtain
OB = oob(x, r) if s = r, and OB ⊆ oob(x, r) and bd(OB) ∩ bd(oob(x, r)) = {x} if
s < r.

(2) If IB is an inside osculating ball at x ∈ bdA of radius s, where 0 < s ≤ r, we obtain
IB = iob(x, r) if s = r, and IB ⊆ iob(x, r) and bd(IB) ∩ bd(iob(x, r)) = {x} if s < r.

(3) Let nl(x) be the straight line passing through the center points of balls oob(x, r) and
iob(x, r) (see Figure 5.a). Then x and the centers of oob(x, s) and iob(x, s) lie on nl(x)
for 0 < s ≤ r.

Proof: We prove (1) and (3), the proof of (2) is analogous to the proof of (1). Since
iob(x, r) ⊆ intA ∪ {x}, oob(x, r) ⊆ Ac ∪ {x}, and bdA ∩ bd(iob(x, r)) ∩ bd(oob(x, r)) = {x},
we obtain iob(x, r) ∩ oob(x, r) = {x}.

We now show that x ∈ nl(x). Let ci be the center of iob(x, r) and let co be the center of
oob(x, r). Then

d(ci, co) ≤ d(ci, x) + d(x, co) = 2r.

Suppose x 6∈ nl(x). Let yi be the closest point to x in bd(iob(x, r)) ∩ nl(x) and let yo be the
closest point to x in bd(oob(x, r)) ∩ nl(x). Then yi 6= yo, and

d(ci, co) = d(ci, yi) + d(yi, yo) + d(yo, co) > 2r.

This is a contradiction. Therefore, we must have x ∈ nl(x).

Let t(x) be the straight line perpendicular to nl(x) passing through x. Then oob(x, r) ∩
t(x) = {x} and iob(x, r) ∩ t(x) = {x}.

Let OB be an outside osculating ball at x ∈ bdA of radius s, where 0 < s ≤ r, i.e.,
bdA ∩ bdOB = {x} and OB ⊆ Ac ∪ {x}. We show that if nl′(x) is the straight line pass-
ing through the center point of ball OB and point x, then nl′(x) = nl(x). Assume that
nl′(x) 6= nl(x), then int(OB) ∩ int(iob(x, r)) 6= ∅ (see Figure 5.b). However, int(OB) ⊆ Ac

and int(iob(x, r)) ⊆ A. It follows that OB ⊆ oob(x, r) and bd(OB) ∩ bd(oob(x, r)) = {x} if
s < r.

As a simple consequence of Proposition 1 we obtain:
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nl(x)

t(x)

iob(x, r)

x

nl’(x)
oob(x, r)

nl(x)

t(x)

iob(x, r)

x

oob(x, r)

a) b)

OB

ci

co

Figure 5:

Corollary 1 (1) If an outside osculating ball oob(x, r) and an inside osculating ball iob(x, r)
exist at some point x ∈ bdA, then there exist exactly one outside osculating ball oob(x, s) and
exactly one inside osculating ball iob(x, s) at x ∈ bdA for every 0 < s ≤ r.

(2) If a set A is par(r)-regular, then A is par(s)-regular for every 0 < s ≤ r.

Definition: Let x ∈ bdA. Let an outside osculating ball oob(x, r) and an inside osculating
ball iob(x, r) of radius r exist at x for some r > 0.

The outer normal vector n(x, s) of length s to bdA at x ∈ bdA is a line segment emanating
from x of length s such that n(x, s) ⊆ nl(x) and n(x, s) ∩ int[oob(x, r)] 6= ∅ (see Figure 6).

The inner normal vector −n(x, s) of length s to bdA at x ∈ bdA is a line segment
emanating from x of length s such that −n(x, s) ⊆ nl(x) and −n(x, s) ∩ int[iob(x, r)] 6= ∅.

n(x, s)

oob(x, r)

iob(x, r)

x

Figure 6: The outer normal vector n(x, s) of length s to bdA at x ∈ bdA.
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Observe that if a set A is par(r)-regular, then normal vectors exist at every point x ∈ bdA.
On the other hand, it can be that normal vectors exist at every point x ∈ bdA, but the set
A is not par(r)-regular for some r > 0, since the radius of osculating balls which determine
the normal vectors can vary form point to point. For example, it can be that the outer
normal vector n(x, r) at some point x ∈ bdA exists, but there exists no outside normal ball
of radius r at x. In this case, since the tangent line nl(x) is well-defined, there must exist
an outside normal ball oob(x, s) and an inside normal ball iob(x, s) at x ∈ bdA for some
s < r. The relationship between the concepts of osculating balls and normal vectors is
exactly described in Theorem 1, below. First we state the following propositions, which are
simple consequences of the definition of normal vectors.

Proposition 2 Let A be a par(r)-regular set and x ∈ bdA. Then, for every c ∈ n(x, r),
x ∈ bdA is the closest point to c on bdA.

Proposition 3 Let A be a par(r)-regular set and c 6∈ A. Let x ∈ bdA be a point with the
closest distance from points in bdA to c. Then c ∈ n(x, s) for every s ≥ d(x, c).

Proof: Let 0 < t < d(c, x). Let OB be a closed ball of radius t such that OB ⊆ B(c, d(c, x))
and bd(OB)∩bd(B(c, d(c, x))) = {x} (see Figure 7). Since B(c, d(c, x))∩intA = ∅, we obtain
that OB ⊆ Ac ∪ {x} and bd(OB)∩ bdA = {x}. Therefore, OB is an outer osculating ball at
x. Thus, the straight line passing through the center of OB and point x is the normal line
nl(x). Since c ∈ nl(x), we obtain that c ∈ n(x, s) for every s ≥ d(x, c).

x

bd A
c

B(c, d(c, x))

OB

Figure 7: x ∈ bdA is a point with the closest distance to c on bdA.

We have the following equivalence:

Theorem 1 A set A is par(r)-regular iff, for every two distinct points x, y ∈ bdA, the outer
normal vectors n(x, r) and n(y, r) exist and they do not intersect, and the inner normal
vectors −n(x, r) and −n(y, r) exist and they do not intersect.

For example, in Figure 8, set X is not par(r)-regular while set Y is par(r)-regular, where r
is the length of the depicted vectors.

Proof: “⇒” Since A is par(r)-regular, we obtain for every point x ∈ bdA that the outer
normal vector n(x, r) and the inner normal vector −n(x, r) exist. We show that n(x, r) and
n(y, r) do not intersect for every two distinct points x, y ∈ bdA. The proof of the same fact
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X Y

Figure 8: X is not par(r)-regular, but Y is par(r)-regular.

for inner normal vectors is similar. We know that n(x, r) begins at point x and ends at the
center of oob(x, r) for every x ∈ bdA.

Assume that there exists two distinct points x, y ∈ bdA such that n(x, r) and n(y, r) intersect.
We show that this contradicts the fact that A is par(r)-regular.

Let c ∈ n(x, r) ∩ n(y, r). If c = x, then x ∈ n(y, r) ⊆ oob(y, r). This contradicts the fact
that oob(y, r) ⊆ Ac ∪ {y}. Therefore, c 6= x, as well as c 6= y.

Let e be the endpoint of n(x, r) and v the endpoint of n(y, r) (see Figure 9). Let p ∈ bdA
be a closest point to c on bdA. Since p 6= x or p 6= y, we can assume that p 6= x. Since
d(p, c) ≤ d(x, c), we obtain

d(p, e) ≤ d(p, c) + d(c, e) ≤ d(x, c) + d(c, e) = r.

Therefore, p ∈ oob(x, r), since e is the center of oob(x, r). This contradicts the fact that
oob(x, r) ⊆ Ac ∪ {x}.

x p
y

c

v e

Figure 9:

“⇐” We show that if A is not par(r)-regular and, for every point p ∈ bdA, the outer
normal vector n(p, r) and the inner normal vector −n(p, r) exist, then there exists two
distinct points x, y ∈ bdA such that either n(x, r) and n(y, r) intersect or −n(x, r) and
−n(y, r) intersect.

Since A is not par(r)-regular, we may assume that there does not exist the outside normal
ball of radius r at some point x ∈ bdA. Since there exists the outer normal vector n(x, r) at
x, the normal line nl(x) is well-defined, and therefore there must exist the outside osculating
ball oob(x, s) and the inside osculating ball iob(x, s) at x ∈ bdA for some s < r. Let e be
the endpoint of vector n(x, r) and let OB be a closed ball of radius r centered at e (see

11



Figure 10). Since OB is not the outer osculating ball at x, (OB \ {x}) ∩ A 6= ∅. Since
oob(x, s) ⊆ OB, we obtain (OB \ {x}) ∩ bdA 6= ∅.

OB

x

oob(x, s)

n(x, r)

e

bd A

Figure 10:

If e ∈ A, then there exists a point y 6= x such that y ∈ bdA ∩ n(x, r), since ((oob(x, s) ∩
n(x, r)) \ {x}) ⊆ Ac. Then n(x, r) and n(y, r) intersect.

Therefore, we can assume that e 6∈ A. If int(OB) ∩ A = ∅, then there exists y ∈ (bd(OB) \
{x}) ∩ bdA. In this case, y is a closest point to e on bdA and d(e, y) = r.

If int(OB)∩A 6= ∅, then let y ∈ bdA∩OB be a closest point to e on bdA. Clearly, d(y, e) < r,
and consequently y 6= x.

Thus, in both cases y ∈ bdA is a closest point to e, d(y, e) ≤ r, and y 6= x. By Proposition
3, e ∈ n(y, r). Hence e ∈ n(x, r) ∩ n(y, r).

Definition: B(x, r) denotes the closed ball of radius r centered at a point x. The parallel
set of set A ⊆ IR2 with distance r is given by

Par(A, r) = A ∪
⋃

{B(x, r) : x ∈ bdA}.

This set is also called a dilation of A with radius r. We define

Par(A,−r) = cl(A \
⋃

{B(x, r) : x ∈ bdA}).

For illustration, see Figure 11. The boundaries of Par(A, r) and Par(A,−r) sets are often
called offset curves.

It can be shown that A = Par(Par(A, r),−r) = Par(Par(A,−r), r) for a par(r)-regular
set A. Thus, a par(r)-regular set A is invariant with respect to morphological operations of
opening and closing with a closed ball of radius r as a structuring element (see Serra [28] for
definitions). The following proposition motivates the name of parallel regular sets.

Proposition 4 Let A be a par(r)-regular set. Then (see Figure 11)

Par(A, r) = A ∪
⋃

{n(a, r) : a ∈ bdA} and Par(A,−r) = cl(A \
⋃

{−n(a, r) : a ∈ bdA}).
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Par(A, r)

Par(A, -r)

A

Figure 11: The set A and its parallel sets Par(A, r) and Par(A,−r).

Proof: We show only the first equation; the proof of the second is analogous. It is easy to
see that A ∪ ⋃{n(a, r) : a ∈ bdA} ⊆ Par(A, r); simply observe that n(s, r) is contained in
the dilation ball B(s, r) for every s ∈ bdA.

It is clear that A ⊆ Par(A, r). So, let x ∈ Par(A, r) and x 6∈ A. Let s ∈ bdA be a point
having the shortest distance d from x to bdA. Such a point exists, since bdA is compact. Of
course, d ≤ r. By Proposition 3, x ∈ n(s, r). Thus, x ∈ ⋃{n(a, r) : a ∈ bdA}.

Proposition 5 Let A be a par(r)-regular set. If x and y belong to two different components
of bdA, then d(x, y) > 2r.

Proof: Let C1, ..., Cn be all connected components of bdA (there is only a finite number
of them, since bdA is compact), where n ≥ 2. For every i 6= j, i, j ∈ {1, ..., n}, let dij :
Ci × Cj → IR be the Euclidean distance d restricted to Ci × Cj. Since dij is a continuous
function on a compact set, there exists (ci, cj) ∈ Ci × Cj such that dij(ci, cj) > 0 is the
minimal value of dij. Let a pair (ck, cm), k 6= m, be such that dkm(ck, cm) ≤ dij(ci, cj) for all
i, j ∈ {1, ..., n} with i 6= j. We obtain that d(x, y) ≥ d(ck, cm) = dkm(ck, cm) for every x and
y belonging to two different components of bdA. We now show that d(ck, cm) ≥ 2r.

Assume that d(ck, cm) ≤ 2r. Consider the closed ball B such that ck, cm ∈ bdB and the
line segment ckcm is the diagonal of B (see Figure 12). Clearly, the radius of B is not greater
than r and B ∩ bdA = {ck, cm}.

B
OB

c

c
C

C
k

m

k

m

Figure 12:

Therefore, either B ⊆ A or intB ⊆ Ac. We assume intB ⊆ Ac. The proof in the
second case is analogous. Every closed ball OB such that OB is a proper subset of B and
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OB ∩ B = {ck} is an outside osculating ball of A at ck. Since the radius of B is not greater
than r and the center of B is collinear with all centers of balls OB, we obtain that B is an
outside osculating ball of A at ck. Yet, this contradicts the fact that B ∩ bdA = {ck, cm}.
Therefore, d(ck, cm) > 2r, and consequently d(x, y) > 2r for every x and y belonging to two
different components of bdA.

We can use parallel sets to define Hausdorff distance of planar sets:

Definition: Hausdorff distance dH of two planar sets A and B is given by

dH(A, B) = inf{r ≥ 0 : A ⊆ Par(B, r) and B ⊆ Par(A, r)}.

3 Digitization and Segmentation Preserving Topology

Let Q be a cover of the plane with closed squares of diameter r such that if two squares
intersect, then their intersection is either their common side or a corner point. A digital
image can be described a set of points that are located at the centers of the squares of a grid
Q and that are assigned some value in a gray level or color scale. By a digitization process
we understand a function mapping a planar set X to a digital image. By a segmentation
process we understand a process grouping digital points to a set representing a digital
object. Therefore, the output of a segmentation process can be interpreted as a binary
digital image, where each point is either black or white. We assume that digital objects
are represented as sets of black points. Thus, the input of a digitization and segmentation
process is a planar set X and the output is a binary digital image, which will be called a
digitization of X with diameter r and denoted Dig(X, r).

In the remainder of this paper, we will interpret a black point p ∈ Dig(X, r) as a closed
(black) square of cover Q centered at p and the digitization Dig(X, r) as the union of closed
squares centered at black points, i.e., Dig(X, r) will denote a closed subset of the plane.

We will treat digitization and segmentation processes satisfying the following conditions
relating a planar par(r)-regular set X to its digital image Dig(X, r):

ds1 If a square q ∈ Q is contained in X, then q ∈ Dig(X, r) (i.e., q is black).

ds2 If a square q ∈ Q is disjoint from X, then q 6∈ Dig(X, r) (i.e., q is white).

ds3 If a square q is black and area(X ∩ q) ≤ area(X ∩ p) for some square p ∈ Q, then
square p is black.

These conditions describe a standard model of the digitization and segmentation process
for CCD cameras if we exclude digitization errors. In the following, we define some important
digitization and segmentation processes satisfying the conditions ds1, ds2, and ds3 above.

Definition: Let X be any set in the plane. A square p ∈ Q is black (belongs to a digital
object) iff p∩X 6= ∅, and white otherwise. We will call such a digital image an intersection
digitization with diameter r of set X, and denote it with Dig∩(X, r), namely Dig∩(X, r) =
⋃{p ∈ Q : p ∩ X 6= ∅}. See Figure 13 (a), for example, where the union of all depicted
squares represents the intersection digitization of an ellipse. With respect to real camera
digitization and segmentation, the intersection digitization corresponds to the procedure of
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coloring a pixel black iff there is part of the object A in the field “seen” by the corresponding
sensor.

Now we consider digitizations corresponding to the procedure of coloring a pixel black
iff the object X fills the whole field “seen” by the corresponding sensor. For such digiti-
zations, a square p is black iff p ⊆ X and white otherwise. We will refer to such a digital
image of a set X as a square subset digitization4 and denote it by Dig⊂(X, r), where
Dig⊂(X, r) =

⋃{p ∈ Q : p ⊆ X}. In Figure 13 (b), the two squares represent Dig⊂(X, r),
where X is an ellipse.

b)a) c)

Figure 13: a) The union of all squares represents an intersection digitization of the ellipse.
b) The two squares represent a square subset digitization of the ellipse. c) The eight squares
represent a digitization of an ellipse with the area ratio equal to 1/5.

Next, let us consider a digitization and segmentation process in which a pixel is colored
black iff the ratio of the area of the continuous object in a sensor square to the area of the
square is greater than some constant threshold value v. An example is given in Figure 13
(c), where the squares represent a digitization of the ellipse with the ratio equal to 1/5. This
process models a segmentation by applying a threshold value to a gray-level digital image
for all real devices in which the sensor values can be assumed to be monotonic with respect
to the area of the object in the sensor square.

In the following, we briefly review the concept of homotopy equivalence.

Definition: Let X and Y be two topological spaces. Two functions f, g : X → Y are said
to be homotopic if there exists a continuous function H : X × [0, 1] → Y , where [0, 1] is
the unit interval, with H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. The function H is
called a homotopy from f to g. Sets X and Y are called homotopy equivalent or of the
same homotopy type if there exist two functions f : X → Y and g : Y → X such that
g ◦ f is homotopic with the identity over X (idX) and f ◦ g is homotopic with the identity
over Y (idY ).

Intuitively, a homotopy H from f to g represents a continuous deformation of the map
f to g. As a consequence of the properties of homotopy equivalence between planar sets X
and Y , there is a complete correspondence between connected components of X and Y and
the corresponding components are homotopy equivalent. The Euler characteristic, as well as
the fundamental groups of X and Y , are the same (see Naber [23]).

Definition: We say that two topological spaces X and Y are topologically equivalent or
homeomorphic if there exists a bijection f : X → Y such that f and the inverse function
f−1 are continuous.

4Observe that this digitization differs from subset digitization used by Serra and Pavlidis, where a square
p is black iff its center point is contained in X (see page 4).
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If two topological spaces X and Y are homeomorphic, then they are homotopy equivalent.
We will use topological equivalence as a definition for topology preserving.

Definition: We will say that a digitization Dig(X, r) of some set X is topology preserving
if X and Dig(X, r) are homeomorphic.

We now consider a special case of homotopy equivalence called a strong deformation
retraction. Intuitively, saying that there is a strong deformation retraction from a set X to
a set Y ⊆ X means that we can continuously shrink X to Y .

Definition: Let X and Y ⊆ X be two topological spaces. A continuous function H :
X× [0, 1] → X, where [0, 1] is the unit interval, is called a strong deformation retraction
of X to Y if H(x, 1) = x and H(x, 0) ∈ Y for every x ∈ X, and H(x, t) = x for every x ∈ Y
and t ∈ [0, 1]. Y is called a strong deformation retract of X.

Note that if Y is a strong deformation retract of X, then Y is homotopy equivalent to
X. To see this, take f : X → Y to be f(x) = H(x, 0) and g : Y → X to be inclusion.

Theorem 2 Let A be a par(r)-regular set. Then Par(A,−r) is a strong deformation retract
of A.

Proof: If x ∈ (A−Par(A,−r)), then there exists a unique normal vector −n(a, r), for some
a ∈ bdA, such that x ∈ −n(a, r). We define π : (A − Par(A,−r)) → bdPar(A,−r) by
π(x) = the end point of the vector −n(a, r), where a is such that x ∈ −n(a, r). Thus, π(x)
denotes the single point on bdPar(A,−r) with the closest distance to x, and therefore, π is
a metric projection onto bdPar(A,−r).

Let H be a function defined as follows:

H : A × [0, 1] → A,

H(x, t) = x for every x ∈ Par(A,−r) and t ∈ [0, 1],

H(x, t) = (1 − t)π(x) + tx for every x ∈ (A − Par(A,−r)) and t ∈ [0, 1]

Note that H(x, 1) = x for every x ∈ A and that H(x, t) = x for every x ∈ Par(A,−r)
and t ∈ [0, 1]. Note also that H(x, 0) = π(x) for all x ∈ (A − Par(A,−r)). Thus, H(x, 0) ∈
Par(A,−r) for every x ∈ A.

To prove that H is a strong deformation retraction, it remains to show that H is a con-
tinuous function. Clearly, for a fixed x, H(x, t) as a function of t is continuous. If t is fixed,
the continuity of H(x, t) as a function of x follows from the upper semi-continuity of the
metric projection π, which reduces to continuity of π, since π is a point valued function. This
implies that if x and y are close to each other, then π(x) and π(y) are close to each other,
and consequently, the line segments xπ(x) and yπ(y) are close to each other. Therefore, H
is a strong deformation retraction of A to Par(A,−r).

Theorem 3 Let A be a par(r)-regular set. Then Par(A,−r) is a strong deformation retract
of Dig(A, r) for every digital image Dig(A, r) (which satisfies conditions ds1, ds2, and ds3),
and dH(A, Dig(A, r)) ≤ r, where dH is Hausdorff distance (see Figure 14 for an illustration).
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Par(A, r)

Par(A, -r)

Dig(A, r)

A

Figure 14: Par(A,−r) is a strong deformation retract of Dig(A, r).

Proof: Let p be a closed square with diameter r such that p ∩ A 6= ∅. Since p ⊆ B(x, r) for
every closed ball B(x, r) such that the center x ∈ p, we obtain that p ⊆ Par(A, r). Therefore
Dig∩(A, r) ⊆ Par(A, r). For every closed square p with diameter r, it similarly holds that
if p∩Par(A,−r) 6= ∅, then p ⊆ A. Therefore Dig∩(Par(A,−r), r) ⊆ Dig⊂(A, r). Since it is
clear that Par(A,−r) ⊆ Dig∩(Par(A,−r), r), we obtain Par(A,−r) ⊆ Dig⊂(A, r). Thus we
obtain the following inclusions: Par(A,−r) ⊆ Dig⊂(A, r) ⊆ Dig∩(A, r) ⊆ Par(A, r). Since
by the definition of Dig(A, r) (conditions ds1, ds2), Dig⊂(A, r) ⊆ Dig(A, r) ⊆ Dig∩(A, r),
we obtain that

Par(A,−r) ⊆ Dig(A, r) ⊆ Par(A, r).

These inclusion relations imply that dH(A, Dig(A, r)) ≤ r, since Par(Par(A,−r), r) = A.

Let a ∈ bdPar(A,−r) and let x ∈ bdA be such that a is the end point of the inner normal
vector −n(x, r) (see Figure 15). The outer normal vector at a to bdPar(A,−r) of length
2r can be defined as n(a, 2r) = −n(x, r) ∪ n(x, r). Clearly, for every two distinct points
a, b ∈ bdPar(A,−r), n(a, 2r) and n(b, 2r) do not intersect.

bd Par(A, -r)

bd A

bd Par(A, r)

n(a, 2r)

a

x

Figure 15: n(a, 2r) = −n(x, r) ∪ n(x, r).

We intend to construct a strong deformation retraction

D : Dig(A, r)× [0, 1] → Dig(A, r)

from Dig(A, r) onto Par(A,−r).

In the following, x ∈ Dig(A, r) \ Par(A,−r). Let p(x) be a point on bdPar(A,−r) with
the closest distance to x. Let xp(x) be the line segment joining x with p(x). Since xp(x) ⊆
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n(p(x), 2r) and the normal vectors n(a, 2r) do not intersects for a ∈ bdPar(A,−r), p(x)
is uniquely determined. The metric projection p is a continuous function from Dig(A, r) \
Par(A,−r) to bdPar(A,−r).

If xp(x) ⊆ Dig(A, r), then we could define D(x, t) = (1 − t)p(x) + tx for every t ∈ [0, 1].
However, it can happen that xp(x) 6⊆ Dig(A, r). Therefore, for every line segment xp(x), we
must define a modified path mp(x, p(x)) ⊆ Dig(A, r) from x to p(x). If xp(x) ⊆ Dig(A, r),
then mp(x, p(x)) = xp(x).

If xp(x) 6⊆ Dig(A, r), then there exists two different sides s1, s2 ⊆ bdDig(A, r) of some
squares in grid Q such that xp(x) intersects s1 in point a1, s2 in point a2, and a1a2 ∩
Dig(A, r) = {a1, a2}, where a1a2 is the line segment joining a1 and a2. Since xp(x) ⊆
n(p(x), 2r), we can apply Lemma 1, which is stated below. We obtain that the sides s1, s2

share a vertex and are perpendicular (see Figure 17). Let c be the common vertex of sides
s1, s2. We define mp(x, p(x)) = p(x)a1 ∪ a1c ∪ ca2 ∪ a2x (see Figure 16). If mp(x, p(x)) 6⊆
Dig(A, r), then we can repeat this construction for p(x)a1 or a2x. We continue this process
until the modified path mp(x, p(x)) is contained in Dig(A, r).

a2

1a

bd Par(A, -r)

bd A

bd Par(A, r)

p(x)

x

c

p(y)

y

Figure 16: The construction of a modified path mp(x, p(x)) ⊆ Dig(A, r).

Observe that if two points x, y ∈ Dig(A, r) are close to each other, then the line segments
xp(x) and yp(y) are close to each other, since p(x) and p(y) are close to each other by the
continuity of the metric projection p. We show that in this case, also the modified paths
mp(xp(x)) and mp(yp(y)) are close to each other. If n(p(x), 2r) and n(p(y), 2r) intersect the
same sides s1, s2, then xp(x) and yp(y) are clearly close to each other. If n(p(y), 2r) does
not intersect the sides s1, s2, then a1c ∪ ca2 of mp(xp(x)) is contained in the strip region
determined by n(p(x), 2r) and n(p(y), 2r) (see Figure 16).

Now we parameterize uniformly mp(x, p(x)) with a continuous function
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fx : [0, 1] → mp(x, p(x)) such that fx(0) = p(x) and fx(1) = x.

If x ∈ Dig(A, r) \ Par(A,−r), then we define D(x, t) = fx(t).

It is easy to observe that for a fixed x, D(x, t) as a function of t is continuous. If t is
fixed, the continuity of D(x, t) as a function of x follows from the continuity of the metric
projection p, which implies that if x and y are close to each other, then the modified paths
mp(xp(x)) and mp(yp(y)) are close to each other, as shown above.

Finally, we need to establish that D satisfies the other properties of a strong deformation
retraction. By definition, D(x, t) = x for every x ∈ Par(A,−r) and t ∈ [0, 1]. Clearly,
D(x, 1) = x and D(x, 0) ∈ Par(A,−r) for every x ∈ Dig(A, r). Thus, D is a strong defor-
mation retraction of Dig(A, r) to Par(A,−r).

In the proof of Theorem 3 we used the following lemmas:

Lemma 1 Let A be a par(r)-regular set and let Dig(A, r) be a digital image of A (which
satisfies conditions ds1, ds2, and ds3).

Let s1, s2 be two different sides of some squares in grid Q such that s1, s2 ⊆ bdDig(A, r).
For every x ∈ bdPar(A,−r), if n(x, 2r) intersects first s1 in point a1 and then s2 in point a2

such that a1a2 ∩Dig(A, r) = {a1, a2}, where a1a2 is the line segment joining a1 and a2, then
the sides s1, s2 share a vertex and are perpendicular, and the square determined by s1, s2 is
white (i.e., does not belong to Dig(A, r)). (see Figure 17).

1

2s

s

Figure 17: The only possible situation in Dig(A, r).

Proof: Let x ∈ bdPar(A,−r) and let v = n(x, 2r). Since v has length 2r, v can intersect at
most three parallel horizontal grid lines or three parallel vertical grid lines.

We can have 15 cases (modulo reflection and 90o rotation) which satisfy the assumptions
of this lemma. The 7 cases in which sides s1, s2 are parallel are shown in Figure 18 and the
remaining 8 cases in which sides s1, s2 are perpendicular are shown in Figure 19. We show
that only the case number 8 is possible.

We show that cases 1-7 and 9-15 are not possible by applying Lemma 2 (which follows).
In the following we indicate whether we apply case(a) or case(b) of Lemma 2 and to which
sides (see Figures 18 and 19):

1. case(a) applied to sides s1, s2.

2. case(a) applied to sides s3, s2.
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Figure 18: The 7 cases in which sides s1, s2 are parallel.
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s
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11 12 13

14 15

Figure 19: The 8 cases in which sides s1, s2 are perpendicular.

3. If v intersects side s4, then we have case(a) applied to sides s4, s2. If v intersects side s3,
then we have case(b) for s3, s2.

4. In this case v must intersects s3. case(b) for s3, s2.

5. case(b) for s1, s2.

6, 7. case(b) for s3, s2.

8. This case is not ruled out by Lemma 1.

9, 10. case(a) for s3, s2.

11. case(b) for s1, s2.

12, 13, 14, 15. case(b) for s3, s2.
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The square determined by s1, s2 is white (i.e., does not belong to Dig(A, r)), since it
contains line segment a1a2 and a1a2 ∩ Dig(A, r) = {a1, a2}.

Lemma 2 Let A be a par(r)-regular set and let Dig(A, r) be a digital image of A which
satisfies conditions ds1, ds2, and ds3. Let x ∈ bdPar(A,−r) and let v = n(x, 2r) (v is
oriented from x to its end point).

case(a) Let squares s1, s2 of Dig(A, r) share the side s = s1 ∩ s2. Let v intersect first the
side parallel and opposite to the side s and then the side s (see Figure 20.case(a)). If square
s2 is black (i.e., s2 ∈ Dig(A, r)), then s1 is black.

case(b) Let squares s1, s2 share a vertex c but not share a side. Let v intersect first a side
of s1 that does not contain c and then a side of s2 that contains c (see Figure 20.case(b)).
If square s2 is black (i.e., s2 ∈ Dig(A, r)), then s1 is black.

s2s2

s1s1

case(a) case(b)

s
c

Figure 20: In both cases, if square s2 is black, then s1 is black.

Proof: Let m be the midpoint of vector v. Then m ∈ bdA. We show

area(A ∩ s1) ≥ area(A ∩ s2). (1)

Since (see Figure 21)
area(A ∩ s1) ≥ area(iob(m, r) ∩ s1) (2)

and
area((oob(m, r))c ∩ s2) ≥ area(A ∩ s2), (3)

it is sufficient to show

area(iob(m, r) ∩ s1) ≥ area((oob(m, r))c ∩ s2), (4)

as then (1) will follow from (4). The inequality (4) is proven in the appendix.

Now we are ready to prove our main theorems.

Theorem 4 Let A be a par(r)-regular set. Then A and Dig(A, r) are homotopy equivalent
for every digitization Dig(A, r), and dH(A, Dig(A, r)) ≤ r, where dH is Hausdorff distance
(which satisfies conditions ds1, ds2, and ds3).
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iob(m, r)
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oob(m, r)

m

iob(m, r)

case(a) case(b)

x
x

Figure 21: In both cases, area(iob(m, r) ∩ s1) ≥ area((oob(m, r))c ∩ s2).

Proof: By Theorem 2, Par(A,−r) is a strong deformation retract of A, and therefore A
and Par(A,−r) are homotopy equivalent. By Theorem 3, Par(A,−r) and Dig(A, r) are
homotopy equivalent. Thus, A and Dig(A, r) are homotopy equivalent.

For Theorem 5, we need the following concepts:

Definition: We call a closed set A a bordered 2D manifold if every point in A has a
neighborhood homeomorphic to a relatively open subset of a closed half-plane. A connected
component of a 2D bordered manifold is called a bordered surface.

We suspect strongly that every par(r)-regular set is a bordered 2D manifold. However,
a proof of this assertion would be beyond the scope of this paper. Therefore, in Theorem 5,
we explicitly assume that a set A is a bordered 2D manifold.

Theorem 5 Let A be a par(r)-regular bordered 2D manifold. Then A and Dig(A, r) are
homeomorphic for every digital image Dig(A, r) (which satisfies conditions ds1, ds2, and
ds3).

Proof: We will base our proof on the following theorem5 from Ahlfors and Sario [1], Section
42A, page 98:

“Two bordered surfaces are topologically equivalent (i.e., homeomorphic) if and only if they
agree in character of orientability, number of contours, and Euler characteristic.”

5We would like to thank Prof. Yung Kong (Queens College, CUNY, New York) for pointing out to us
both this theorem and its consequences.
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Since A and Dig(A, r) are subsets of the plane, they agree in character of orientability.
Without loss of generality, we can assume that set A is connected, since if A is not connected,
we can apply the following proof to every connected component of A and we have a complete
correspondence of components of A and Dig(A, r), since A and Dig(A, r) are homotopy
equivalent by Theorem 4. We recall that a connected component of a 2D bordered manifold
is a bordered surface. Thus, A is a bordered surface.

By Theorem 4, A and Dig(A, r) agree in Euler characteristic, and since A is connected,
Dig(A, r) is also connected. By Theorem 9 (given below), Dig(A, r) is a bordered surface.
It remains to show that A and Dig(A, r) agree in number of contours.

For (connected) bordered surfaces in the plane, the Euler characteristic is equal to (2 -
the number of contours). This follows, for example, from Theorem 1 of Chapter 13 (p. 91)
in Moise [21].6 Thus, we obtain that A and Dig(A, r) agree in number of contours, since A
and Dig(A, r) agree in Euler characteristic.

An important consequence of Theorem 5 is the fact that under correct digitization reso-
lution any two digital images of a given spatial object A are topologically equivalent. This
means, for example, that shifting or rotating an object or the camera cannot lead to topo-
logically different images, i.e., topological properties of obtained digital images are invariant
under shifting and rotation.

Theorem 6 Let A be a par(r)-regular bordered manifold. Then any two digitizations Dig1(A, r)
and Dig2(A, r) of A are homeomorphic.

Proof: By Theorem 5, both Dig1(A, r) and Dig2(A, r) are homeomorphic to A.

Theorem 7 Let A be a C2 subset of the plane (i.e., A is the closure of an open set whose
boundary can be described as a disjoint finite union of twice continuously differentiable simple
closed curves). Then there always exists a digitization resolution r > 0 such that every
digitization Dig(A, r) of A is topology preserving.

Proof: First we show that there always exists r > 0 such that, for every x, y ∈ bdA, n(x, r)
and n(y, r) do not intersect.

Step 1. Let kmax be the maximum of the absolute value of the principal curvatures at
every point on bdA (the existence follows from compactness of bdA).

Step 2. Let t < 1

kmax

be fixed. By elementary arguments from differential geometry (see
[3], for example), it follows that, for every x ∈ bdA, there exists e(x) > 0 such that, for all
y ∈ bdA, dbdA(x, y) < e(x) implies that n(x, t) and n(y, t) do not intersect, where dbdA is the
intrinsic distance on bdA.

6This theorem implies that any k-annulus is homeomorphic to some simple standard k-annulus of our
choice, for which we can easily relate the Euler characteristic and the number of contours and show that
(Euler characteristic = 2− the number of contours).
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Step 3. Let BbdA(x, e(x)) be an open ball in the intrinsic distance dbdA on bdA. Since the
collection {BbdA(x, e(x)) : x ∈ bdA} is an open covering of a compact set bdA, there exists
a finite subcovering {BbdA(x1, e(x1)), ..., BbdA(xn, e(xn))}. Therefore, there exists ε > 0 such
that ∀x ∈ bdA ∃i ∈ {1, ..., n} BbdA(x, ε) ⊆ BbdA(xi, e(xi)). Hence, for every x, y ∈ bdA,
dbdA(x, y) < ε implies that n(x, t) and n(y, t) do not intersect.

Step 4. For every x ∈ bdA, let A(x) = {y ∈ bdA: dbdA(x, y) ≥ ε}. Since x 6∈ A(x) and
the set A(x) is compact, we obtain that d(x, A(x)) > 0, where d is the Euclidean distance in
IR2. By compactness of bdA, there exists δ > 0 such that δ ≤ d(x, A(x)) for every x ∈ bdA.7

Hence, for every x, y ∈ bdA, dbdA(x, y) ≥ ε implies d(x, y) ≥ δ.

Step 5. Let 0 < r < min{δ/2, t}. For every x, y ∈ bdA, n(x, r) and n(y, r) do not
intersect: Let x ∈ bdA. From Step 3, it follows that, for every y ∈ bdA such that dbdA(y, x) <
ε, n(x, r) and n(y, r) do not intersect. From Step 4, it follows that, for every y ∈ bdA such
that dbdA(y, x) ≥ ε, n(x, r) and n(y, r) do not intersect, since d(x, y) ≥ δ > 2r.

Applying these steps to clAc, we obtain that there exists a constant s > 0 such that, for
every x, y ∈ bdA, −n(x, s) and −n(y, s) do not intersect. Taking u = min(r, s), we obtain
that A is u parallel regular, by Theorem 1. The assertion follows from Theorem 5.

It is easy to give examples of non par(r)-regular sets which are not topologically equiv-
alent to their digital images. For example, set A in Figure 22(a) is simply connected, but
Dig∩(A, r) represented by gray squares is not simply connected. Of course, one can always
find a set X having some special shape which is not par(r)-regular, yet X and Dig∩(X, r)
are homotopy equivalent, like the set presented in Figure 22(b). Although topology was pre-
served in digitizing the set shown in Figure 22(b), it is clear that important local geometric
properties were lost. It can be shown that if a set A is par(r)-regular, then Dig∩(A, r) will
never significantly change its local geometric properties (Gross and Latecki [9]).

(a) (b)

Figure 22: (a) A and Dig∩(A, r) are not homotopy equivalent. (b) X and Dig∩(X, r) are
homotopy equivalent.

7We can obtain δ by similar arguments as for ε in Step 3 or by the continuity of function x 7−→ d(x, A(x)).
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4 Digital Patterns in Digitizations

In this section, we show that if A is a par(r)-regular set, then some digital patterns cannot
occur in its digitization Dig(A, r). This is very useful for noise detection, since if these
patterns occur, they must be due to noise. So, if in a practical application the resolution r
of the digitization is such that the parts of the object which have to be preserved under the
digitization are compatible with the square sampling grid, then our results allow for efficient
noise detection. By Theorem 8 below, Dig(A, r) is well-composed as defined in Latecki, et
al. [18]. Well-composed sets have very nice digital topological properties; in particular, a
digital version of the Jordan Curve Theorem holds and the Euler characteristic is locally
computable. These results imply that many algorithms in digital image processing can be
simpler and faster.

Theorem 8 Let A be par(r)-regular. Then the pattern shown in Figure 23 and its 90o

rotation cannot occur in any Dig(A, r).

Figure 23: This pattern and its 90o rotation cannot occur in every Dig(A, r).

Proof: Let c be the common vertex of all four closed squares. We first assume that c 6∈ A
and show that the pattern shown in Figure 23 and its 90o rotation cannot occur in the
configuration of the four squares.

Let S2 and S4 be black, and S1 and S3 be white as shown in Figure 24.a, where S1, S2, S3,
and S4 are closed squares. We prove that this assumption leads to a contradiction. Since A
is closed and c 6∈ A, there is an e > 0 such that B(c, e) ∩ A = ∅, where B(c, e) denotes (as
always) a closed ball.

c

b)

c
B(c, e)

a)

B(c, t)

S

S S

S

S

S

S

S

p

p

4 3

4

2

3

21

4

1 2

Figure 24: The small circle illustrates ball B(c, e) and the big circle illustrates ball B(c, t).

There must be points of A in both squares S2 and S4, since if S2 ∩A = ∅, then S2 would
be white by ds2. Therefore, S2 ∩ A 6= ∅, and similarly S4 ∩ A 6= ∅.

Let p2 be a point with the shortest distance t to c in S2 ∩ A.

Let p4 be a point with the shortest distance d to c in S4 ∩ A.
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Clearly, points p2, p4 belong to bdA and t > 0, d > 0, since c 6∈ A, c ∈ S2, and c ∈ S4.
Without loss of generality, we assume that t ≥ d. Consider the closed ball B(c, t). We show
that p2 and p4 belong to two different components of B(c, t) ∩ bdA. Assume that this is not
the case. Then, for some component C of bdA, it follows that C = arc1(p2, p4)∪arc2(p2, p4),
arc1(p2, p4) ∩ arc2(p2, p4) = {p2, p4}, and arc1(p2, p4) ⊆ B(c, t) or arc2(p2, p4) ⊆ B(c, t).

Assume arc1(p2, p4) ⊆ B(c, t) and, without loss of generality, assume that arc1(p2, p4)
goes through S3. Then

arc1(p2, p4) ∩ face(S2, S3) ∩ (B(c, t) − B(c, e)) 6= ∅ and

arc1(p2, p4) ∩ face(S3, S4) ∩ (B(c, t) − B(c, e)) 6= ∅,
where face denotes the common face of two squares (see Figure 24.b). In this case,

arc1(p2, p4) ∩ S3 ⊆ (B(c, t) − B(c, e)) ∩ S3.

Since the diameter of square S3 is r, no component other then C of bdA intersects S3, by
Proposition 5. Therefore, A ∩ S3 contains (S3 − B(c, t)) together with part of A between
arc1(p2, p4) and bdB(c, t) in S3. We also have that A ∩ S2 ⊆ (S2 − B(c, t)), since no point
in S2 ∩ A is closer to c than distance t (by the definition of constant t). Consequently,
area(A ∩ S3) ≥ area(A ∩ S2). Thus, square S3 should be black.

This contradiction implies that arci(p2, p4) 6⊆ B(c, t) for i = 1, 2. Therefore, bdA∩B(c, t)
has at least two components, one containing p2 and the second containing p4. In each of
these components there is a point with the shortest distance (≤ t) to c; call them x2 and x4.
Then c ∈ n(x2, r) ∩ n(x4, r), a contradiction. We have thus shown that

(∗) if c 6∈ A, then the pattern shown in Figure 23 and its 90o rotation cannot occur in the
four squares of Dig(A, r) which have c as their common vertex.

The case in which c ∈ A − bdA follows directly from the result above applied to the
digitization of the complement Ac of A (i.e., the roles of Ac and A are interchanged).

It remains to consider the case in which c ∈ bdA. Let again S2 and S4 be black, and S1

and S3 be white in Dig(A, r), as shown in Figure 24.a, where S1, S2, S3, and S4 are closed
squares. This implies that

ε = min{area(S2 ∩ A), area(S4 ∩ A)} − max{area(S1 ∩ A), area(S3 ∩ A)} > 0. (5)

We denote by X +v the translation of a set X by vector v and by A/B = (A−B)∪(B−A).
It is easy to observe that

|area(S ∩ A) − area((S + v) ∩ A)| ≤ area(S / (S + v)) (6)

for every square S ∈ Q and every vector v (see Figure 25).

Since c ∈ bdA, there are points of the complement Ac in every neighborhood of c. There-
fore, there exists a vector v such that c + v 6∈ A and area(S / S ′) < ε/2 for every square
S ∈ Q, where S ′ = S + v. As a consequence of this fact and inequalities (5) and (6), we
obtain

min{area(S ′
2 ∩ A), area(S ′

4 ∩ A)} − max{area(S ′
1 ∩ A), area(S ′

3 ∩ A)} > 0. (7)
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S

S + v

v A

Figure 25: |area(S ∩ A) − area((S + v) ∩ A)| ≤ area(S / (S + v)).

Therefore, S ′
2 and S ′

4 are black, and S ′
1 and S ′

3 are white, in the digitization Dig′(A, r) of A
with respect to the square cover Q translated by v. This contradicts (∗), since c + v 6∈ A
and c + v is the common vertex of the four squares. The obtained contradiction proves that
if c ∈ bdA, then the pattern shown in Figure 23 and its 90o rotation cannot occur in the four
squares of Dig(A, r) which have c as their common vertex.

Theorem 9 Let A be par(r)-regular. Then Dig(A, r) is a bordered 2D manifold.

Proof: Since the configuration shown in Figure 23 (and its 90o rotation) cannot occur in
Dig(A, r) by Theorem 8, there exist only three 2 × 2 configurations of boundary squares in
Dig(A, r) shown in Figure 26 (modulo reflection and 90o rotation).

Figure 26: The only possible 2 × 2 configurations of boundary squares in Dig(A, r) of a
par(r)-regular set A (modulo reflection and 90o rotation).

Therefore, if we view Dig(A, r) as a subset of IR2, every point in Dig(A, r) has a neigh-
borhood homeomorphic to a relatively open subset of a closed half-plane. Hence Dig(A, r)
is a bordered 2D manifold.

5 Conclusions

In this paper, we gave conditions on the correct digitization resolution which guarantee that
topology is preserved under a digitization and segmentation process. For a par(r)-regular set
A, A and each of its digital images Dig(A, r) are topologically equivalent. We also proved
that Hausdorff distance of sets A and Dig(A, r) is less or equal to r. This results have many
consequences. For example, under correct digitization resolution any two digital images of a
given spatial object A are topologically equivalent. Furthermore, Dig(A, r) is well-composed,
i.e., the checker board digital patterns cannot occur in Dig(A, r). In Latecki et al. [18] it
is shown that well-composed sets have very nice digital properties, which imply that many
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algorithms for digital image processing can be simpler and faster. Well-composedness can be
useful for noise detection, since if the neighborhood of a boundary point contains a checker
board digital pattern, it must be due to noise. For a large class of 2D objects, which includes
projections of some real 3D objects, a constant r can be computed such that they are par(r)-
regular.

Our definition of a digitization models a real digitization process. However, we did not
consider blurring effects to the underlying objects. Thus, we modeled perfectly focused
object boundaries. We are currently extending our results to the digitizations of objects
with blurred boundaries (see Gross and Latecki [10]).

A Appendix

The goal of this appendix is to prove the inequality (4) in the proof of Lemma 2 (Figure 21):

area(s2 − oob(m, r)) ≤ area(iob(m, r) ∩ s1).

We will prove this inequality in case (a); the proof in case (b) is based on analogous
arguments. We first restate the assumptions of case (a) in Lemma 2.

Let squares s1 and s2 have a side with endpoints C and O in common, i.e., CO = s1∩ s2.
Let the other side of s1 that is parallel to CO have endpoints D and E, and the other side
of s2 that is parallel to CO have endpoints B and A (see Figure 27). We assume that vector
v = n(x, 2r) first intersects side DE and then CO. Without loss of generality, we can assume
that the length of the sides of a square (in the square grid) is 1, and therefore, r =

√
2 and

the length of vector v is 2
√

2. Let M be the midpoint of v. The beginning point of v is the
center of ball iob(M,

√
2) of radius

√
2, the endpoint of v is the center of ball oob(M,

√
2) of

radius
√

2, and iob(M,
√

2) ∩ oob(M,
√

2) = {M}. We will denote iob(M,
√

2) by bb (black
ball) and the its boundary by bc (black circle). Similarly, we will denote oob(M,

√
2) by wb

(white ball) and the its boundary by wc (white circle). We will denote the center of bb by
Zb and the center of wb by Zw.

We introduce the Cartesian coordinate system such that the origin is at point O, i.e., O =
(0, 0), and A = (0, 1) and C = (−1, 0). The goal of this appendix is to prove

Theorem 10
area(s2 − wb) ≤ area(s1 ∩ bb). (8)

Adding area(s1 − bb) to both sides of (8) yields

area(s2 − wb) + area(s1 − bb) ≤ 1, (9)

since area(s1) = area(s2) = 1. Inequality (9) is trivially true when s2 ⊆ wb or s1 ⊆ bb.
Therefore, we assume that s2 6⊆ wb and s1 6⊆ bb. We will prove inequality (9) for the
following four cases:

(I.1) ((M is below or on line CO) and (O ∈ wb or C ∈ wb)) or
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(I.2) ((M is below or on line CO) and (O 6∈ wb and C 6∈ wb)) or

(II.1) ((M is above CO) and (O ∈ bb or C ∈ bb)) or

(II.2) ((M is above CO) and (O 6∈ bb and C 6∈ bb)).

The inequality (8) for cases (I.2) and (II.2) is proved in Lemma 5 below. By Lemma 6
below, case (I.1) reduces to the case in which (O ∈ v or C ∈ v). By Lemma 7 below, case
(II.1) reduces to the case in which (D ∈ v or E ∈ v). Lemma 8 below demonstrates how to
prove (9) for these cases. We begin with the following simple geometric fact.

Lemma 3 Let point X lie outside a closed ball B with center Z. Let H(XZ) denote one of
the closed half planes determined by the straight line XZ. Let B ′ be a closed ball B rotated
around X such that the center Z ′ of B′ is not contained in H(XZ) and H(XZ)∩B∩B ′ 6= ∅
(see Figure 28(a)). Then H(XZ) ∩ B ′ ⊂ H(XZ) ∩ B.

Proof: The circles bdB and bdB ′ intersect at exactly two points. The line L that passes
through the two intersection points of bdB and bdB ′ goes through the midpoint of line
segment ZZ ′ and is perpendicular to ZZ ′ (see Figure 28(a)). Let H(L) be the half plane de-
termined by L that contains point Z. Since two distinct circles can intersect at no more than
two points and Z ′ 6∈ H(L), we obtain H(L)∩B ′ ⊂ H(L)∩B. Since H(XZ)∩B ⊂ H(L)∩B,
we have H(XZ) ∩ B′ ⊂ H(XZ) ∩ B.

Using arguments similar to those of Lemma 3, we can also prove
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Lemma 4 Let point X lie inside a closed ball B with center Z, where X 6= Z. Let B ′ be a
closed ball B rotated around X such that B ′ 6= B (see Figure 28(b)). Let L be the straight
line through the two intersection points of bdB and bdB ′ and let H(L) be the half plane
determined by L that contains point Z. Then L goes through X and H(L)∩B ′ ⊂ H(L)∩B.

Lemma 5 If the midpoint M of vector v is on or below line CO and O 6∈ wb and C 6∈ wb,
then area(s2 − wb) ≤ area(s1 ∩ bb). If M is on or above line CO and O 6∈ bb and C 6∈ bb,
then area(s2 − wb) ≤ area(s1 ∩ bb).

Proof: We prove only the first part. The proof of the second part is analogous with wb and
bb interchanged. Let M be below or on line CO and O 6∈ wb and C 6∈ wb. First we will
bound the area(s2 − wb) from above.

Since wc only intersects line CO (i.e., line y = 0) between points C and O, the point S
with the smallest y-coordinate in wb is contained in wb ∩ s1 (see Figure 29(a)). Let wb′, v′,
and S ′ denote wb, v, and S translated parallel to y-axis (by vector � 0, y � with 0 ≤ y)
such that S ′ ∈ CO. Since wb′ ∩ s2 ⊆ wb ∩ s2, we have area(s2 −wb) ≤ area(s2 −wb′). Now
we will bound area(s2 − wb′) from above.

We have the situation in which S ′ ∈ CO is the point with the smallest y-coordinate in
wb′. If S ′ is different from C and O, then s2 − wb′ is a union of two connected sets, say L
and R, such that L ∩ R = {S ′} and L is to the left and R to the right of S ′ (see Figure
29(b)). If area(L) ≤ area(R), then area(s2 −wb′) = area(L) + area(R) can only increase if
we translate wb′ parallel to x-axis in the negative direction, i.e., by vector � x, 0 �, where
x < 0. Let wb′x and S ′

x denote wb′ and S ′ translated by vector � x, 0 � such that S ′
x = C

(see Figure 30(a)). Then area(s2 − wb′) < area(s2 − wb′x), and consequently

area(s2 − wb) ≤ area(s2 − wb′x). (10)
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Now we will show that area(s2 − wb′x) < area(s1 ∩ bb). Since M is on or below line CO
and O 6∈ wb and C 6∈ wb, we have wc∩ BC 6= ∅ and wc ∩AO 6= ∅. Let wc ∩BC = {S} and
wc ∩ AO = {T} (see Figure 31(a)).

Let wbα, vα, and Mα denote wb, v, and M rotated around the center Zb of bb by angle
α. Let wcα ∩ BC = {Sα} and wcα ∩ AO = {Tα}. Since points S and T are in two different
half planes determined by vector v, we have the following implications by Lemma 3:

If α > 0, then |CSα| < |CS| and |OTα| > |OT |. If α < 0, then |CSα| > |CS| and
|OTα| < |OT |.
Therefore, there exists angle α such that |CSα| = |OTα|. (Since bb does not change its
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location during this rotation, area(s1∩bb) remains constant.) Let wb′, v′, M ′, and bb′ denote
wbα, vα, Mα, and bb translated parallel to y-axis by vector � 0,−|CSα| � (see Figure 31(b)).
Then wc′ ∩ BC = {C} and wc′ ∩ AO = {O}, and area(s1 − bb) ≤ area(s1 − bb′). We also
have that M ′ ∈ wc′ ∩ s1, since M and Mα both lie in between lines x = −1 and x = 0.
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We assume that M ′ is distinct from C and O. Observe that (s1 − bb′) − (wb′ ∩ s1) is a
union of two disjoint connected sets, say L and R, such that L is to the left and R to the
right of M ′.

If area(L) ≤ area(R), then area((s1 − bb′) − (wb′ ∩ s1)) = area(L) + area(R) can only
increase if BB is rotated clockwise around Zw (i.e., to the left). Let wb′′, v′′, M ′′, and
bb′′ denote wb′r, v′

r, M ′
r, and bb′ rotated clockwise around Zw by the smallest angle such

that M ′′ = C (see Figure 30(b)). The configuration wb′′, v′′, M ′′, and bb′′ shown in Figure
30(b) is uniquely determined for every starting configuration wb′r, v′

r, M ′
r, and bb′, where

area(L) ≤ area(R). Thus, we obtain

area((s1 − bb′) − (wb′ ∩ s1)) < area((s1 − bb′′) − (wb′ ∩ s1)),

and consequently area(s1 − bb′) ≤ area(s1 − bb′′). Therefore, area(s1 − bb) ≤ area(s1 − bb′′),
which implies

area(s1 ∩ bb′′) ≤ area(s1 ∩ bb). (11)

By calculating area(s2 −wb′x) and area(s1 ∩ bb′′), we obtain area(s2 −wb′x) ≤ area(s1 ∩ bb′′)
(this inequality is visualized in Figure 32). By (10) and (11), we obtain area(s2 − wb) ≤
area(s1 ∩ bb).
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Lemma 6 Let (M be on or below line CO) and (O ∈ wb or C ∈ wb). Then

area(s2 − wb) + area(s1 − bb) ≤ area(s2 − wb′) + area(s1 − bb),

where wb′ and v′ are wb and v rotated around Zb such that either O ∈ v′ or C ∈ v′ (see
Figure 33(a)).
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Proof: Observe first that (O ∈ wb or C ∈ wb) iff

1. (O ∈ wb and C 6∈ wb) or
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2. (O 6∈ wb and C ∈ wb) or

3. (O ∈ wb and C ∈ wb).

Since the distance between M and the endpoint Zw of vector v is not greater than
√

2 and the
angle of v (with x-axis) is in the interval [45o, 135o], the endpoint Zw of v must be contained
in squares s2 ∪ ... ∪ s7, where s2, ... , s7 are closed squares named as shown in Figure 34. If
Zw ∈ s2 ∪ s5 ∪ s6 ∪ s7, then one of these squares is contained in wb, and consequently their
common corner A is contained in wb. Therefore, at least one of the points A and B is always
contained in wb.

It can be calculated that if C 6∈ wb, then Zw 6∈ s3 ∪ s4, and therefore A ∈ wb. Similarly,
if O 6∈ wb, then B ∈ wb. This implies that (O ∈ wb or C ∈ wb) iff

1. (O ∈ wb and C 6∈ wb and A ∈ wb) or

2. (O 6∈ wb and C ∈ wb and B ∈ wb) or

3. (O ∈ wb and C ∈ wb and (A ∈ wb or B ∈ wb) ).
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These three cases imply the following two cases

(A) (O ∈ wb and A ∈ wb) or

(B) (C ∈ wb and B ∈ wb).

Below, we will show this lemma for case (A). The proof for case (B) is analogous. We thus
assume case (A), which implies that line segment AO is contained in wb. Since the lemma
is trivially true when O ∈ v, we will assume that O 6∈ v. Let wb′ and v′ be wb and v rotated
around Zb such that O ∈ v′ (see Figure 33(a)).

We denote by LH the closed half plane determined by vector v which does not contain
O, and by RH the complement of LH. Since O ∈ v′ and the center Z ′

w of wb′ is the endpoint
of v′, we have Z ′

w 6∈ LH. By Lemma 3, LH ∩ wb′ ⊂ LH ∩ wb. Therefore,

LH ∩ wb′ ∩ s2 ⊂ LH ∩ wb ∩ s2. (12)
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Since M is on or below line CO, the line segment v ∩ s2 is contained in wb. Since line
segment OA is contained in wb, the convex hull of v ∩ s2 and OA is contained in wb. Since
RH∩s2 is contained in this convex hull, RH∩s2 ⊂ RH∩wb. Hence RH∩s2 ⊆ RH∩wb∩s2.
Since RH ∩ wb′ ∩ s2 ⊆ RH ∩ s2, we obtain

RH ∩ wb′ ∩ s2 ⊆ RH ∩ wb ∩ s2. (13)

By (12) and (13),
wb′ ∩ s2 ⊂ wb ∩ s2,

which implies s2 − wb ⊂ s2 − wb′. Therefore,

area(s2 − wb) < area(s2 − wb′),

which implies

area(s2 − wb) + area(s1 − bb) ≤ area(s2 − wb′) + area(s1 − bb).

Using the same arguments as in Lemma 6, we can also prove

Lemma 7 Let (M be on or above line CO) and (O ∈ bb or C ∈ bb). Then

area(s2 − wb) + area(s1 − bb) ≤ area(s2 − wb) + area(s1 − bb′),

where bb′ and v′ are bb and v rotated around Zw such that either E ∈ v′ or D ∈ v′ (see
Figure 33(b)).

By Lemmas 6 and 7, it is sufficient to prove inequality (8) for the following cases:

(I.1′) ((M is below or on line CO) and (O ∈ v or C ∈ v)) or

(II.1′) ((M is above CO) and (D ∈ v or E ∈ v)).

Lemma 8 proves (8) when M lies below or on line CO and O ∈ v. Since the proofs for the
remaining three cases are analogous, they are omitted.

Lemma 8 Let the midpoint M of v lie on or below line CO and O ∈ v (see Figure 35(a)).
Then

area(s2 − wc) ≤ area(s1 ∩ bc).

Proof: We assume that point Zw (the endpoint of v and the center of the white circle wc)
has coordinates (p, q), where 0 ≤ p, q. Under this assumption, the white circle wc satisfies
the equation (x − p)2 + (y − q)2 = 2. The point Zb, which is the starting point of v and the
center of the black circle bc, has coordinates (−a,−b), where 0 ≤ a, b. Thus, the black circle
bc satisfies the equation (x + a)2 + (y + b)2 = 2.
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Figure 35:

Observe that a ≤ b and p ≤ q, since the angle of vector v (with x-axis) is in the
interval [45o, 90o]. Since the length of v is 2

√
2, we have

√
a2 + b2 +

√
p2 + q2 = 2

√
2.

Since M lies below the line segment CO, M belongs to line segment ZbO ⊆ v. Therefore,
we have

√
p2 + q2 ≤

√
2, which implies p, q ≤

√
2, and

√
2 ≤

√
a2 + b2. Note also that√

a2 + b2 ≤ 2
√

2 and a, b ≤ 2
√

2.

Since the distance between M and the endpoint Zw of vector v is not greater than
√

2
and the angle of v (with x-axis) is in the interval [45o, 90o], the endpoint Zw of v must be
contained in squares s2∪s5∪s6∪s7, where s2, s5, s6, s7 are closed squares as shown in Figure
34. Therefore, one of these squares is contained in wb, and consequently its corner A. Since
O ∈ wb, side AO is contained in wb. Therefore, there are the following configurations in
which wc can intersect the sides of square s2:

s2(1) : wc ∩ BA 6= ∅ and wc ∩ CO 6= ∅ (see Figure 35(a)),

s2(2) : wc ∩ BA = ∅ and wc ∩ CO 6= ∅; in this case wc ∩ CB 6= ∅,

s2(3) : wc ∩ BA 6= ∅ and wc ∩ CO = ∅; in this case wc ∩ CB 6= ∅,

s2(4) : wc ∩ BA = ∅ and wc ∩ CO = ∅; in this case s2 ⊂ wb, since all corner points of s2 are
in wb.

Since midpoint M of v lies below line segment CO, there are the following configurations
in which bc can intersect the sides of square s1:

s1(1) : bc ∩ CD 6= ∅ and bc ∩ OE 6= ∅ (see Figure 35(a)),
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s1(2) : bc ∩ CD = ∅ and bc ∩ OE 6= ∅,

s1(3) : bc ∩ CD 6= ∅ and bc ∩ OE = ∅,

s1(4) : bc ∩ CD = ∅ and bc ∩ OE = ∅.

It is necessary to consider the conjunction of the cases for s2 with the cases for s1. We
will give a detailed proof of this lemma only in case s2(1)s1(1). The remaining cases will be
omitted, since their proofs follow similar arguments or are comparatively simpler. We thus
assume

s2(1)s1(1): wc ∩ BA 6= ∅, wc ∩ CO 6= ∅, bc ∩ CD 6= ∅, and bc ∩ OE 6= ∅.
Let wc intersect side CO at a point L and side BA at a point K, and let bc intersect

sides CD and OF at points G and F , respectively (see Figure 35(a)). Since area(s2 −wc) ≤
|BC| |BK|+|CL|

2
, |DE| |EF |+|DG|

2
≤ area(s1 ∩ bc), and |BC| = |DE| = 1, it is sufficient to show

|BK| + |CL| ≤ |EF | + |DG|. (14)

First, we express |BK| + |CL| in algebraic form. To find the intersection points of the
white circle with sides BA and CO of square s2, we solve the equation (x−p)2 +(y−q)2 = 2
for y = 0 and y = 1. If y = 0, then x2 − 2px + p2 + q2 − 2 = 0 and x1,2 = p±√

2 − q2. Since
we need the smaller x, we obtain x = p − √

2 − q2 by y = 0. Thus L = (p − √
2 − q2, 0) is

an intersection point of wc with CO.

If y = 1, then x2−2px+p2 +q2−2q−1 = 0 and x1,2 = p±√−q2 + 2q + 1. Since we need
the smaller x, we obtain x = p−√−q2 + 2q + 1 by y = 1. Thus K = (p−√−q2 + 2q + 1, 1)
is an intersection point of wc with side BA. Therefore,

|BK|+ |CL| = p−
√

−q2 + 2q + 1+1+p−
√

2 − q2 +1 = 2+2p−
√

−q2 + 2q + 1−
√

2 − q2

(15)

To calculate |EF | + |DG|, we find the intersection points of the black circle with sides
CD and OE of square s1, i.e., we solve the equation (x + a)2 + (y + b)2 = 2 for x = 0 and
x = −1.

If x = 0, then y2 + 2by + a2 + b2 − 2 = 0 and y1,2 = −b ±
√

2 − a2. Since we need the
greater value of y, we obtain y = −b +

√
2 − a2 by x = 0. Thus F = (0,−b +

√
2 − a2) is an

intersection point of bc with side OE. We also obtain that a ≤
√

2.

If x = −1, then y2 + 2by + a2 + b2 − 2a − 1 = 0 and y1,2 = −b ±
√
−a2 + 2a + 1. Since

we need the greater value of y, we obtain y = −b +
√
−a2 + 2a + 1 by x = −1. Thus

G = (−1,−b +
√
−a2 + 2a + 1) is an intersection point of bc with side CD. Therefore,

|EF |+|DG| = −b+
√

2 − a2+1−b+
√
−a2 + 2a + 1+1 = 2−2b+

√
2 − a2+

√
−a2 + 2a + 1.

(16)

In order to show that area(s2 − wc) ≤ area(s1 ∩ bc), using equations (15) and (16), it is
sufficient to show that

2p −
√

−q2 + 2q + 1 −
√

2 − q2 ≤ −2b +
√

2 − a2 +
√
−a2 + 2a + 1 (17)
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Inequality (17) is equivalent to the following

0 ≤ −2p +
√

−q2 + 2q + 1 +
√

2 − q2 − 2b +
√

2 − a2 +
√
−a2 + 2a + 1 (18)

Before we prove (17), we will show that if area(s2 − wc) 6= 0, then
√

a2 + b2 ≤
√

5 and√
p2 + q2 ≥ 2

√
2 −

√
5.

We first assume that a ≥ 1. If we had b < 1, then DE ∩ v = ∅. Therefore, b ≥ 1. Since
bc ∩ OE 6= ∅ and O 6∈ bb, we have E ∈ bb, which implies (see Figure 35(a)):

a2 + (b − 1)2 ≤ 2 ⇒ 0 ≤ b ≤ 2 and a2 + (b − 1)2 ≤ 2 ⇒ a2 + b2 ≤ 2b + 1 ≤ 5.

Therefore
√

a2 + b2 ≤
√

5.

We show that the assumptions 0 ≤ a < 1 and
√

a2 + b2 >
√

5 imply s2 ⊂ wb. Since√
a2 + b2 +

√
p2 + q2 = 2

√
2, we obtain

√
p2 + q2 ≤ 2

√
2 −

√
5(≈ 0.592). Therefore, the

endpoint of vector v (i.e. the center of wb) is contained in the square to the right of s2 that
shares a side with s2 (see Figure 35(b)). Since this square is then contained in wb, its corners
A and O are contained in wb.

Since the assumptions 0 ≤ a < 1 and
√

a2 + b2 ≥
√

5 imply b ≥ 2, we obtain q

p
= b

a
> 2

if p > 0, and therefore 2p < q for p ≥ 0. Since 2p < q ≤ √
p2 + q2 ≤ 2

√
2 −

√
5, we have

2p < 2
√

2−
√

5. The corner point C of s2 is contained in wb iff (1+ p)2 + q2 ≤ 2 (see Figure
35(b)), which is true:

(1 + p)2 + q2 = 1 + 2p + p2 + q2 < 1 + (2
√

2 −
√

5) + (2
√

2 −
√

5)2(≈ 1.943) ≤ 2.

The corner point B of s2 is contained in wb iff (1 + p)2 + (1− q)2 ≤ 2 (see Figure 35(b)).
Since 2p < q and p2 < 1

4
q2, we obtain

(1 + p)2 + (1 − q)2 = 2 + 2p − 2q + p2 + q2 ≤ 2 − q +
5

4
q2.

Since 2 − q + 5

4
q2 ≤ 2 iff q(5

4
q − 1) ≤ 0, which is true for 0 ≤ q ≤ 4

5
, we obtain that

(1 + p)2 + (1 − q)2 ≤ 2. Since all corner points of s2 are contained in wb, s2 ⊂ wc. This
inconsistency implies that if 0 ≤ a < 1, then

√
a2 + b2 <

√
5. Since

√
a2 + b2 +

√
p2 + q2 =

2
√

2, we obtain
√

p2 + q2 ≥ 2
√

2 −
√

5. We have thus shown that
√

a2 + b2 ≤
√

5 and√
p2 + q2 ≥ 2

√
2 −

√
5.

Now we will prove inequality (18) when the angle z of v (with x-axis) is in the interval
[π
3
, π

2
] (see Figure 35(a)). Let r =

√
p2 + q2. Then 2

√
2 −

√
5 ≤ r ≤

√
2. In this case

q = r sin(z), p = r cos(z), b = (2
√

2 − r) sin(z), and a = (2
√

2 − r) cos(z). In order to show
that (18) holds it is sufficient to show that f(r, z) ≥ 0, where

f(r, z) = −2 r cos(z) +

√

2 −
(

2
√

2 − r
)2

cos(z)2

+

√

1 + 2
(

2
√

2 − r
)

cos(z) −
(

2
√

2 − r
)2

cos(z)2 −

2
(

2
√

2 − r
)

sin(z) +
√

2 − r2 sin(z)2 +
√

1 + 2 r sin(z) − r2 sin(z)2.
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Since the second derivative of f with respect to r is negative

∂2f(r, z)

∂r
= −

(

2
√

2 − r
)2

cos(z)4

(

2 −
(

2
√

2 − r
)2

cos(z)2

)
3

2

− cos(z)2

√

2 −
(

2
√

2 − r
)2

cos(z)2

−

(

−2 cos(z) + 2
(

2
√

2 − r
)

cos(z)2
)2

4
(

1 + 2
(

2
√

2 − r
)

cos(z) −
(

2
√

2 − r
)2

cos(z)2

)
3

2

−

cos(z)2

√

1 + 2
(

2
√

2 − r
)

cos(z) −
(

2
√

2 − r
)2

cos(z)2

− r2 sin(z)4

(

2 − r2 sin(z)2
)

3

2

−

sin(z)2

√

2 − r2 sin(z)2
−

(

2 sin(z) − 2 r sin(z)2
)2

4
(

1 + 2 r sin(z) − r2 sin(z)2
)

3

2

− sin(z)2

√

1 + 2 r sin(z) − r2 sin(z)2
,

f is a concave function, i.e., for every r ∈ [2
√

2 −
√

5,
√

2] and every z ∈ [π
3
, π

2
] we have

∀t ∈ [0, 1] f(r, z) ≥ (1 − t)f(2
√

2 −
√

5, z) + tf(
√

2, z),

and consequently
f(r, z) ≥ min{f(2

√
2 −

√
5, z), f(

√
2, z)}.

Since it can be shown that the two one-variable functions

f(2
√

2 −
√

5, z) = 2
(

−2
√

2 +
√

5
)

cos(z) +
√

2 − 5 cos(z)2 +
√

1 + 2
√

5 cos(z) − 5 cos(z)2 − 2
√

5 sin(z) +

√

2 −
(

2
√

2 −
√

5
)2

sin(z)2 +
√

1 + 2
(

2
√

2 −
√

5
)

sin(z) −
(

2
√

2 −
√

5
)2

sin(z)2

and

f(
√

2, z) = −2
√

2 cos(z) +
√

2
√

cos(z)2 +
√

2
√

2 cos(z) − cos(2 z) −
2
√

2 sin(z) +
√

2
√

sin(z)2 +
√

cos(2 z) + 2
√

2 sin(z)

are positive for z ∈ [π
3
, π

2
], we obtain that f(r, z) ≥ 0 for r ∈ [2

√
2 −

√
5,
√

2] and z ∈ [π
3
, π

2
].

Finally we will prove inequality (17) when the angle z of v (with x-axis) is in the interval
[π
4
, π

3
]. Let c =

√
a2 + b2, i.e., c is the distance from the center Zb of bb to point O. As we

have shown,
√

2 ≤ c ≤
√

5.

By Lemma 4 applied for X = O to wb, the left side of inequality (17) is maximal for
angle z = π

4
. In this case, we have p = q ⇒ √

p2 + q2 =
√

2q = 2
√

2 − c ⇒ q = 2 − c√
2
.

Therefore, the left side of inequality (17) is less than or equal to

4 −
√

2c −
√

1 +
√

2c − c2

2
−

√

−2 + 2
√

2c − c2

2
(19)
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In the following, we will bound from below the right side of inequality (17). By substi-
tuting b =

√
c2 − a2 in the right side of (17), we obtain

r(a, c) = −2
√

c2 − a2 +
√

2 − a2 +
√
−a2 + 2a + 1. (20)

Since a ≤
√

2 and a = c cos z implies a ≥
√

2 cos(π
3
) =

√
2

2
, we obtain a ∈ [

√
2

2
,
√

2]. We will

show that the function r(a, c) obtains its minimum at a =
√

2

2
for every c ∈ [

√
2,
√

5].

First, we further restrict the domain of a. Let c ∈ [
√

2,
√

5] be fixed. Let bbc
z denote a bb

such that the distance from the center Zb to O is c and the angle of vector vz (which contains
ZbO) with the x-axis is z. By Lemma 3 applied for X = O to bbc

z, if E 6∈ bbc
π

3

, then E 6∈ bbc
z

for every z ∈ [π
4
, π

3
].

Since we consider case s2(1)s1(1), we only need to consider those c for which there exists
at least one z such that E ∈ bbc

z (see Figure 35(a)). Therefore, we must have E ∈ bb π

3
, which

means that
a2 + (b − 1)2 = a2 + (

√
3a − 1)2 = 4a2 − 2

√
3a + 1 ≤ 2,

since in this case b
a

= tan(π
3
) =

√
3. By solving this inequality, we obtain 2

√
3−2

√
7

8
≤ a ≤

2
√

3+2
√

7

8
, which implies that a ∈ [

√
2

2
, 2

√
3+2

√
7

8
] (since 2

√
3+2

√
7

8
≈ 1.094 ≤

√
2).

To find the minimum of (20), we split this expression into two parts. We observe first

that the minimum of
√
−a2 + 2a + 1 for a ∈ [

√
2

2
, 2

√
3+2

√
7

8
] is obtained at a =

√
2

2
and is equal

to
√

1

2
+
√

2.

To find the minimum of the remaining part of (20), we will treat gc(a) = −2
√

c2 − a2 +√
2 − a2 as a function of one variable a with parameter c. We calculate

g′
c(a) = − a√

2 − a2
+

2 a√
−a2 + c2

and

g′′
c (a) = − a2

(2 − a2)
3

2

− 1√
2 − a2

+
2 a2

(−a2 + c2)
3

2

+
2√

−a2 + c2
.

We obtain g′
c(a) = 0 ⇔ a = 0 or a = ±

√

8−c2

3
. Since g′′

c (0) = 2
√

2−c√
2c

> 0 for every

c ∈ [
√

2,
√

5], gc has a minimum at a = 0 and maxima at a = ±
√

8−c2

3
.

Since the image of the function a(c) =
√

8−c2

3
for c ∈ [

√
2,
√

5] is in the interval [1,
√

2],

the function gc(a) obtains a maximum for a ∈ [1,
√

2]. If gc(a) obtains a maximum for

a ∈ [2
√

3+2
√

7

8
,
√

2], then g defined over [
√

2

2
, 2

√
3+2

√
7

8
] obtains the minimum at a =

√
2

2
. If

gc(a) obtains a maximum for a ∈ [1, 2
√

3+2
√

7

8
), then g obtains the minimum at one of the

endpoints of interval [
√

2

2
, 2

√
3+2

√
7

8
]. Since g(2

√
3+2

√
7

8
) ≥ g(

√
2

2
) for every c ∈ [

√
2,
√

5], function

g defined over [
√

2

2
, 2

√
3+2

√
7

8
] obtains the minimum at a =

√
2

2
. Since g(

√
2

2
) =

√

3

2
− 2

√

c2 − 1

2
,

we obtain that r(a, c) is greater than or equal to

√

3

2
− 2

√

c2 − 1

2
+

√

1

2
+
√

2 (21)
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for every c ∈ [
√

2,
√

5].

In order to prove inequality (17) it is sufficient to show that (19) ≤ (21), which is true,
since it can be shown that the one-variable function i(c) = (21) − (19) is greater than or
equal to 0 for every c ∈ [

√
2,
√

5].
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