
Journal of Internet Technology 5(4), pp. 331-339, 2004

A Two-Stream approach for priority management and adaptive rate control in
multimedia applications

Longin Jan Latecki

Dept. of Computer and Information
Sciences

Temple University
Philadelphia, PA 19094

latecki@temple.edu

Tao Jin
Dept. of Computer and Information

Sciences
Temple University

Philadelphia, PA 19094

thomasjt@temple.edu

Jaiwant Mulik
Dept. of Computer and Information

Sciences
Temple University

Philadelphia, PA 19094

jmulik@temple.edu

ABSTRACT
In this paper, we propose a two-stream approach for
adaptive rate control in multimedia applications. By
monitoring a low-rate monitoring stream, we keep track of
the available bandwidth (AB) of the network path and
dynamically adjust the sending rate of the traffic stream
close to the optimal rate. We also assure the higher priority
of the monitoring stream in that the traffic stream is not
allowed to affect the transmission of the monitoring
stream. The proposed two-stream approach perfectly meets
the requirements of the current best-effort Internet and fits
well in multimedia applications. For example, there is no
bandwidth overhead for the monitoring stream in peer-to-
peer video conferencing, because the monitoring stream is
the audio stream. We show in our experiments that both
the network and the application can benefit from this
approach. The proposed two-stream approach is applicable
to monitor the sending rate of the traffic stream over UDP
as well as over TCP.

Keywords: Adaptive rate control, TCP friendly
congestion control, audio and video streaming, video
conferencing, video telephone.

1 Introduction
We present a system for continuous adaptive rate control
that is useful for real time multimedia streaming,
particularly video telephone over the public Internet. No
changes to existing transport protocols are required, since
it is possible to incorporate our system at the transport
layer.
We ensure that audio stream has absolutely higher priority,
and transmit video stream using only the remaining
bandwidth. Steinmetz [9] has shown that during a
multimedia session over a congested network it is, in terms
of human perception, more important to maintain a
continuous (minimum jitter) audio stream than a video
stream. Our system makes real time transmission of video
over TCP possible since the one-way delay when video
stream is transmitted over TCP with our rate control is on
the same level as for video over UDP. We performed a

large number of experiments both in the controlled
environment as well as on real networks that included a
dialup 28.8 kbps and cable modem connections. These
experiments verify excellent performance of the proposed
system.
Our main contributions are several substantial extensions
and modifications of Pathload [1]. They were necessary
since Pathload is designed for one-time bandwidth
estimation, while we need continuous bandwidth
monitoring in the interaction with the sender rate control.
Following Pathload, the available bandwidth (AB) is
detected at the application level by making use of the One
Way Delay (OWD) property under congestion. On the
level of OWD analysis, we propose a multiscale analysis
of OWD properties and a method for detection of
decreasing trend (Pathload uses only increasing trend). On
the rate control level, we extend the Pathload iterative rate
control algorithm to allow for instantaneous and
immediate bandwidth adaptation for the traffic stream.
Our modeling framework is different from Pathload. We
use the two-stream model introduced in Latecki et al. [3].
All network measurements are performed on so-called
monitoring stream, called stream A for audio, which is
assumed to be substantially smaller than the AB, while the
main data transport stream is called traffic stream, called
stream V for video. The measurements preformed on
monitoring stream are used to adjust the sending rate of
the traffic stream.

2 Related Work
The area of streaming multimedia has been extensively
researched for several years. In this section, we compare
our approach with a representative selection of earlier
approaches.
Jain and Dovrolis [1] [2] propose a Self-Loading Periodic
Streams (SLoPS) approach and a tool named Pathload to
detect the AB of the network path based on the OWD
property under congestion. Pathload sends periodic
streams into the network path and detect the OWD trends
at the receiver side. The congestion detection in Pathload

 2

is based on detection of increasing trend in the OWDs.
Two tests called PCT and PDT are used for OWD
increasing trend detection (Section 3.1).
Bansal and Balakrishnan [6] present a family of innovative
TCP congestion control algorithms called binomial
algorithms. These algorithms prevent a drastic reduction in
transmission rate upon congestion and are designed for
streaming audio and video applications. They show that
there exist infinitely many deployable TCP-friendly
binomial algorithms. Our approach differs from [6] in two
important aspects. First, we consider a multimedia
application as a whole consisting of simultaneous audio
and video streams with an explicit hierarchy between
them. In the event of congestion, our goal is to maintain
the transmission rate of the audio stream while sacrificing
the video stream. Second, we try to prevent the packet loss
as an indicator of congestion in TCP, by using delay trends
in the audio stream as our congestion signaling
mechanism. Third, they require changes to the transport
layer, while we do not.
Cen et al. [7] describe the Streaming Control Protocol
(SCP) which is a TCP-like and TCP-friendly transport
protocol designed to prevent the abrupt rate changes of
TCP. However, the SCP does not allow inter-stream state
sharing that our approach uses in order to provide a
priority to the audio stream over the video stream.
Following the results of Steinmetz in [9], Ghinea at al. [8]
present the Dynamically Reconfigurable Protocol Stacks
(DRoPS) architecture to dynamically reconfigure protocol
elements in order to achieve maximum Quality of
Perception (QoP). QoP is a subjective user side measure of
perception. They also developed an analytic model relating
traditional QoS measures to a QoP measure. The
parameters of this model are application dependent. While
DRoPS is an elaborate architecture with a Linux Kernel
implementation our approach is lightweight and
implemented entirely in user space. Also, [8] reports that
in applications with more perceptual weight to audio, such
as the videoconferencing application considered in this
paper, the TCP/IP stack (the one we used) performs better
than DRoPS.

3 Two-Stream Approach
Basic idea
The basic idea is to use a low rate life-time monitoring
stream to keep track of the ever-changing network, in
order to find the optimal sending rate (close to the end-to-
end AB) for the traffic stream. The monitoring stream
must be sent over UDP because the mechanism is based on
the OWD properties of the stream packets, and only for
UDP packets can we measure the packets OWD within the
application layer. The traffic stream can be sent over any
protocol.

We continuously detect OWD trends in the monitoring
stream, use them as an indication of the relationship
between the current traffic rate and the AB, and adjust the
transmission rate of the traffic stream close to the AB. By
assigning the low-rate audio stream as the monitoring
stream, we can make use of the information naturally
contained in the in-band traffic without introducing any
intrusive traffic. In our approach video can be sent over
either UDP or TCP, since in both cases, the monitoring
stream keeps video rate below the AB, preventing losses
(UDP and TCP) and subsequent retransmissions (TCP).
We assume that there exists sufficient bandwidth to
transmit the monitoring stream.

Improved performance when video is sent over UDP
Since UDP is unresponsive to AB, in cases of constrained
bandwidth, not only the video stream suffer due to packet
loss but also the quality of audio will drop significantly
due to the congestion caused by the video stream [3].
By using our adaptive rate control mechanism, it is
possible for the application to continually estimate the AB
and set the optimal rate for the video stream, significantly
improving the quality of both audio and video.

Improved performance when video is sent over TCP
If the video is sent over TCP, the TCP congestion control
mechanism will constrain the actual transmission rate on
the network, preventing the network from getting
congested. However, TCP's reliable transmission will
cause delay to accumulate, thus make it unsuitable for real
time multimedia applications. One way to alleviate the
accumulated delay is to drop the obsolete frames at the
sending side. But most of the delay still could be very
serious if we do not choose an appropriate video rate
(Figure 3). Our adaptive rate control solves this problem
by adjusting the video rate slightly below the AB, which
makes TCP retransmission rate close to zero. This way we
make real time video transmission over TCP a good
option. The advantage of reliable video transport is a
significant improvement of the received video quality. A
study showing advantages of partially reliable video
transmission is presented in [10].

3.1 Detecting OWD Trends in the Continuous
Monitoring Stream

The OWD (one way delay) of a packet stream will
increase when the traffic rate is above the end-to-end AB
 [2].

 3

Figure 1: OWD property under congestion

In an experiment illustrated in Figure 1, the end-to-end AB
before we sent any traffic was set to 100 kbps. We sent the
audio stream at a constant rate of 20.8 kbps, and the video
stream over UDP at a rate of 120 kbps from audio packet
number 1000 to 2000. The OWD was measured in the
audio stream. As can be seen in Figure 1, that is a short
transition phase in which the OWD shows obvious
increasing trend at the beginning when the network
become congested. If we detect this transition phase, we
can respond to the congestion even before packet loss
happens. Our two-stream approach for adaptive rate
control is based on this fact.

OWD phases
OWDs of the stream packets show different patterns under
different network conditions. We can divide the whole
process into the following four types of phases based on
the congestion status and OWD trends. R is transmission
rate of traffic stream
• Increasing phase (R > AB): The short transition

period before entering the congestion. The OWDs
show increasing trend.

• Decreasing phase (R < AB): The short transition
period when recovering from congestion. The OWDs
show decreasing trend.

• Steady phase (R < AB): The OWDs are stable in this
phase.

• Congested phase (R > AB): The network is already
congested. Even though usually more variant than in
the steady phase, the OWDs in this phase are stable.

OWDs are stable in both the steady and congested phases,
so it is hard to discriminate these phases based on the
measured OWDs, especially when we only have a small
window of measurements in real time environment. Thus,

it is crucial that we detect the increasing phase before the
traffic goes into the congested phase.

PCT and PDT
Two complementary statistic metrics named PCT and PDT
can be used to detect the OWD trends in the stream.
Before calculating the PCT and PDT from K measured
OWDs, we pre-process the data because they usually
contain a lot of noise and outliers. The K OWDs {D1,
D2,…, DK} are partitioned into Γ groups, each group use
the median value iD̂ as its representative value. K is also
known as the detection period.
The original Pairwise Comparison Test (PCT) metric of a
stream was defined in [2] as

1
)ˆˆ(

2 1

−Γ

>
= ∑

Γ

= −k kk
PCT

DDI
S ,

where I(X) is one if X holds, and zero otherwise.
This metric is only sensitive to the OWD increasing trend
in the stream. But as described in Section 3.2, we also
need to detect the decreasing phase in the stream. So we
introduce and extended PCT as

1
)ˆ,ˆ(

2 1

−Γ
= ∑

Γ

= −k kk
PCT

DDI
S ,

where,

−<−−

≤−
>−

=

−

−

−

−

ε

ε
ε

1

1

1

1

ˆˆ,1

ˆˆ,0

ˆˆ,1
)ˆ,ˆ(

kk

kk

kk

kk

DDif

DDif
DDif

DDI

ε is a predefined threshold value related to the granularity
of the increasing or decreasing step.
If the OWDs are independent, the expected value of SPCT is
0. If there is a strong increasing trend, SPCT approaches 1. If
there is a strong decreasing trend, SPCT approaches -1. Due
to our modification, the modified SPCT can detect both
increasing and decreasing trends. Moreover, by defining
the threshold ε , it is more stable and noise resistant.

The Pairwise Difference Test (PDT) metric of a stream is
defined in [2] as

∑Γ

= −

Γ

−

−
=

2 1

1

|ˆˆ|

ˆˆ

k kk

PDT
DD

DDS

If the OWDs are independent, the expected value of SPDT is
0. If there is a strong increasing trend, SPDT approaches 1. If
there is a strong decreasing trend, SPDT approaches -1.
SPCT and SPDT are complement. SPCT detects the ratio of the
increasing and decreasing steps, while SPDT quantifies how

 4

strong the start-to-end variation is. SPCT and SPDT are
combined to determine the current OWD phase.
"Increasing phase" and "decreasing phase" are reported
when either of the two metrics detects it, and the other one
does not disagree, while "steady phase" is reported only
when both of the two metrics indicate a "steady phase".
All the other situations are reported as "ambiguous phase".
We define two thresholds LPCT and UPCT for SPCT, and
another two LPDT and UPDT for SPDT. Our decision rules are
summarized the following:

• If SPCT > UPCT and SPDT > LPDT, or SPDT > UPDT and SPCT >
LPCT, "increasing phase" is reported

• If SPCT < -UPCT and SPDT < -LPDT, or SPDT < -UPDT and
SPCT < -LPCT, "decreasing phase" is reported

• If -LPCT < SPCT < LPCT, and -LPDT < SPDT < LPDT, "steady
phase" is reported

• "ambiguous phase" is reported in all other situations.

The thresholds can be adjusted depending on how
sensitive PCT and PDT should be. In our experiments, LPCT
and LPDT were set to 0.25; UPCT and UPDT were set to 0.5.

With these two statistic metrics, we can detect the current
OWD phase in the monitoring stream, and use it as an
indicator of the relationship between the transmission rate
and AB. Figure 2 illustrates the detected PCT (line with 'x'
marks) and PDT for the OWDs in Figure 1. PCT and PDT
were calculated every 32 measured OWDs in the audio
stream. One obvious observation from Figure 1 andFigure
2 is that the OWD transition phase is usually very short.
When the traffic rate is above the AB, the OWD will
quickly increase until congestion sets in. After this short
transition phase, the OWD will remain relatively stable,
hence using PCT and PDT it is hard to distinguish whether
or not the network is congested. However since we can
detect the increasing phase, the congested phase will
never appear without a correct rate adjustment, so it is
tolerable that we cannot detect the congested phase

.

Figure 2: Graphs of PCT PDT for OWD in Figure 1

Figure 3: Audio OWD when video sent over TCP

The detection period
A suitable length of detection period K is critical in
detecting the OWD trends in the continuous monitoring
stream. In order for the PCT and PDT metrics to be able to
detect the OWD transition phases (increasing and
decreasing phases), it is important that the detection period
is within the OWD transition phase. In other words, if the
detection period only covers part of the transition phase, it
may not able to detect it. In this sense, the detection period
should be as short as possible; but on the other hand, the
detection period cannot be too short, otherwise the
increasing trend will be too minor to be detected.
Experiments show that the length of the OWD transition
phase vary greatly under different conditions, e.g., when
the traffic rate is far above the end-to-end AB, the OWD
quickly increases to the peak. When the traffic rate is

 5

slightly above the AB, the increasing phase will be longer.
Experiments also show that when the traffic stream is sent
over TCP, the OWDs usually only show long-term
increasing (or decreasing) trends and display great local
variance (Figure 3).
Our experiments indicate that a short detection period
works well under UDP environment, while a longer
detection period is more suitable when the traffic is sent
over TCP.
The setting of the experiment corresponding to Figure 3
was the same as of the experiment in Figure 1, except that
the video was sent over TCP. The sender tried to send the
video stream at rate 100 kbps, but was regulated by the
TCP congestion control mechanism. The OWDs in the
audio stream clearly shows the TCP's slow-start and
AIMD (Additive Increase Multiplicative Decrease) effects.
Compared with Figure 1, the OWD transition phases are
much longer, and the OWDs are more variant in small
scale during the transition phases.

Multiscale and Sliding-window Measurement
Since it seems impossible to decide an appropriate
detection period that can work under all circumstances, we
use a multiscale and sliding-window method to detect the
OWD phases in the monitoring stream.
Multiscale means that we calculate the PCT and PDT over
multiple scales of detection periods simultaneously.
Figure 4 illustrates 3-scale measurements over the OWDs
displayed in Figure 3. In scale 1, PCT and PDT were
calculated every 32 packets; in scale 2, they were
calculated every 64 packets; and every 128 packets in
scale 3. Scale 1, in most cases, would not report the
increasing or decreasing phases, because either the PCT or
PDT could not satisfy the thresholds (see the decision
rules in Section 3.1). The fundamental reason is that the
detection period was so small so that the measurements
were dominated by the noises. Scale 2 seems better, but
still would miss a lot if the thresholds were set a little bit
high. Scale 3 very nicely caught all the increasing and
decreasing trends and would report them correctly.
The final decision is based on the 3-scale measurements.
The decision rules are summarized as follows
• If any of the 3-scale measurements reports "increasing

phase", and the other two do not disagree (i.e., report
"decreasing phase"), then "increasing phase" is
reported

• If any of the 3-scale measurements reports
"decreasing phase", and the other two do not disagree
(i.e., report "increasing phase"), then "decreasing
phase" is reported

• If at least 2 of the 3-scale measurements report
"steady phase", then "steady phase" is reported

• Otherwise "ambiguous phase" is reported

Figure 5 shows the final result from the 3-scale detection
in Figure 4. Here we use 1 to represent "increasing phase",
-1 to represent "decreasing phase", 0 to represent "steady
phase", and 0.5 and -0.5 to represent "ambiguous phase" (-
0.5 means "more probably a decreasing phase", and 0.5
means "more probably a increasing phase"). We can see
that Figure 5 perfectly matches the OWD phases
corresponding to Figure 3.
We also use sliding and overlapping windows to make the
measurements more frequent without making the detection
period too short.

Figure 4: 3-scale PCT and PDT detectionFigure 4: 3-scale PCT and PDT detection

 6

Figure 5: Final result from 3-scale detection in Fig. 4

3.2 An Interactive Adaptive Rate Control
Algorithm in the Two-Stream Environment

The advantage of having a lifetime monitoring stream is
that we can detect the AB at any moment in the traffic.
The adaptive rate control mechanism is designed to be able
to detect congestion and adjust the sending rate close to
AB at any moment of the traffic lifetime. The whole
process of the traffic regulation consists of two alternative
stages: rate-adaptation stage followed by steady stage.
The algorithm searches for the AB during the rate-
adaptation stage. Once the sending rate converges to the
optimal rate, it enters the steady stage. During the steady
stage, we still continuously keep track of the network
status through the monitoring stream. If there is any
congestion detected during the steady stage, or we decide
to try a higher rate, the traffic changes into the rate-
adaptation stage and search for the AB again.
The algorithm used for searching the AB in the rate-
adaptation stage is very similar to the iterative algorithm
used in the Pathload [1]. We denote the sending rate at
time n as R(n), the lower and upper bounds for the AB as
Rmin and Rmax. At time n, we calculate R(n+1) as:

If R(n) > AB, Rmax = R(n);
If R(n)≤ AB, Rmin = R(n);
R(n+1) = (Rmax+Rmin)/2;

But we need to do the following adjustments, because our
traffic is continuous while Pathload only sends short
streams.
• When an "increasing phase" is reported (R(n) > A),

we add a break in traffic stream before trying the next
sending rate, so that the OWD can drop to the normal

level (the queues in the routers can be cleaned) before
we send more traffic

• The break last as long as the "decreasing phase" is
detected. We resume sending of the traffic stream
when the decreasing phase is finished

• When "ambiguous phase" is reported for sufficiently
long time, we regard it as a symptom of slight
congestion, so slightly decrease the sending rate

The break period is needed so that two consecutive
increasing tends can be detected. Also, we wait until the
decreasing phase disappears since it means that the
network is still recovering from congestion.

4 Experimental Results
We present some experimental results that illustrate the
benefits of our adaptive rate control for both the network
and the multimedia application. We performed a large
number of experiments both in the controlled environment
as well as on the real networks that include a dialup 28.8
kbps and cable modem connections. We present here our
experiments conducted in Emulab (Netbed) [5]
environment, since the obtained results are representative
for all our experiments (including experiments on real
networks) and the experiments on Emulab can be verified
independently. A detailed report from our experiments
(including experiments on real networks) and the program
source code can be obtained from
http://www.cis.temple.edu/~latecki/ARC.

4.1 Experimental Setting

The bandwidth of the tight link between the sender host
SEND and receiver host RECV was set to 100 kbps. When
there is no cross traffic over the tight link, the end-to-end
AB of the path is 100 kbps. We simulated the two-stream
traffic from SEND to RECV, in uni-direction. The audio
(monitoring) stream was sent over UDP, at a constant
transmission rate of 20.8 kbps, and the packet interval was
40 ms. The video frames were generated every 20 ms, and
the SEND sent the frames as soon as they were generated.
The video frame size can be controlled by the application.
For video sent over UDP, the actual transmission rate on
the network can be easily calculated from the frame size,
because each frame will result in a UDP packet on the
network. So the transmission rate is
(video frame size + UDP header size + IP header size +
Ethernet header size) / 20 ms.
All the experiments followed the same scenario:
1. We first streamed just audio data for 40 seconds (1000

audio packets)
2. Then we sent the video stream for 120 seconds

(between audio packet number 1000 and 4000)

 7

3. Then we stop video stream and sent only audio
packets for another 40 seconds

We used both UDP and TCP to transmit video stream. For
each of the protocols, we performed two runs of the
experiments, one without rate control and the other with
our adaptive rate control, and compared the results. After
applying our adaptive rate control, both streams' loss rates
dropped to zero after the optimal rate was found. When
cross traffic was added, no matter sent over TCP or UDP,
all the experiments showed similar results. In Section 4.2
we present our experiments when video was sent over
TCP. The results for UDP are omitted, since streaming
video over TCP seems to be a more interesting case.

4.2 Video Stream Sent Over TCP

Figure 6 shows the audio and video stream rate from the
application when adaptive rate control was not applied.
Figure 7 shows the actual video transmission rate on the
network (due to the TCP congestion control). For easy
comparison, we plot the video rate with respect to audio
packet number. Figure 8 displays the two streams' rates
from the application when the adaptive rate control was
applied. We see from Figure 8 that it took about 20
seconds for the video stream rate to converge to 48.8 kbps
(actual transmission rate was a little higher than the stream
rate). Figure 9 shows the actual video transmission rate on
the network sent over TCP when the adaptive rate control
was applied on the application level. Observe by
comparing Figure 8 and Figure 9 that the actual video
sending rate from the application matches the TCP sending
rate when our rate control runs on the application layer.
This is not the case if there is no rate control on the
application layer (Figures 6 and 7).
Figure 10 compares the audio OWDs in the two
experiments. While the mean of the audio OWDs during
video transmission without rate control increased by 1221
ms (from 53 ms to 1274 ms), it increased only by 2 ms
(from 55 ms to 57 ms) with our rate control (in comparison
to the first phase when only audio packets were sent). We
can clearly see that the TCP increasing trend is reflected in
OWD of audio packets by comparison of the audio OWD
without rate control in Figure 10 to video rate sent over
TCP in Figure 6.
Figure 11 compares the video OWDs (we measured the
frame delay in the application layer) in the two
experiments. While the mean of the video OWDs was
8409 ms without rate control, it was only 70 ms with our
rate control (most in the rate-adaptation stage), with the
difference between minimum OWD and mean OWD of 11
ms. Both audio and video delays are acceptable for real
time audio-video communication [4]. Thus, the proposed

rate control makes it possible to have video transmission
over TCP in real time, peer-to-peer video conferencing.
Figure 12 shows the loss rate change in the audio stream.
While 143 out of the total 3000 audio packets were lost
during the video transmission without rate control
(average loss rate was 4.77%), 0 packet was lost after our
rate control was applied in the video stream. Figure 13
shows the drop rate of the video stream (SEND makes the
best effort to send frames, and drops frames when they
become obsolete). Without rate control, there were 1064
out of the total 6000 video frames were dropped (average
drop rate was 17.75%). When the rate control was applied,
302 frames were dropped only in the rate-adaptation stage.
The overall drop rate in the video becomes 0 when the
traffic is sufficiently long.

Figure 6: Audio and video rate (without rate control)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

100

120

140

160

180

audio packet number

video
rate
(kbps)

TCP sending rate of video in kbps without rate control

Figure 7: Video rate in kbps sent over TCP without
rate control

 8

5 Conclusions
The proposed adaptive rate control algorithm is suitable
for real time multimedia streaming over UDP as well as
over TCP. In particular, it significantly improves real time
performance of TCP congestion control, so that real time
video transmission over TCP is possible. The reason is that
our rate control (that does not introduce any packet loss)
suppresses TCP rate control, and consequently the packet
loss due to the TCP increasing trend is kept very close to
zero. Our experiments demonstrate that not only the
performance of the video stream but also the audio stream
is drastically improved. Our real network experiments
indicate that a small amount of retransmissions due to
sporadic packet loss (it was below 0.01%) has only minor
influence on OWD. We implemented our algorithm on the
application layer, but it is also possible to use it on the
transport layer, in particular in conjunction with future
transport protocols that are more suitable for the
multimedia data.
The effect of datagrams within a stream taking different
routes Given the datagram forwarding nature of most of
the Internet, we should mention that packets not following
the same route is a limitation present in most AB
measurement tools also. However, we assume that due to
several measurements the effects of packet taking different
routes in minimized, which is verified by our experiments
on the public Internet, and that work on this is part of
future work.

6 Acknowledgements
We would like to thank Phillip Conrad for his helpful
comments. We are grateful to Jay Lepreau and the support
staff of Netbed (formerly known as Emulab), the Utah
Network Emulation Testbed (which is primarily supported
by NSF grant ANI-00-82493 and Cisco Systems) for
making their facilities available for our experiments.

Figure 8: Audio and video rate (with rate control)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90
TCP sending rate of video in kbps witt rate control

audio packet number

video
rate
(kbps)

Figure 9: Video rate (kbps) over TCP with rate control

Figure 10: Audio OWD

Figure 11: Video OWD

 9

Figure 12: Audio loss rate

Figure 13: Video drop rate

7 References
[1] Jain, M. and Dovrolis C., “Pathload: A measurement

tool for end-to-end available bandwidth.” Proc. of
Passive and Active Measurements (PAM) Workshop,
Mar. 2002.

[2] Jain, M. and Dovrolis C., “End-to-End Available
Bandwidth: Measurement Methodology, Dynamics,
and Relation with TCP Throughput.” Proc. ACM
SIGCOMM, 2002.

[3] Latecki, L. J., Kulkarni, K., and Mulik, J., “Better
Audio Performance When Video Stream Is
Monitored By TCP Congestion Control.” Proc. IEEE
Multimedia and Expo, July 2003.

[4] Steinmetz, R., “Synchronization Properties in
Multimedia Systems.” IEEE J. on Selected Areas in
Communications 8(3), 1990, pp. 401-412.

[5] White, B., Lepreau, J., Stoller, L., Ricci, R.,
Guruprasad, S., Newbold, M., Hibler, M., Barb, C.,
and Joglekar, A., “An Integrated Experimental
Environment for Distributed Systems and Networks.”
Proc. 5th Symposium on Operating Systems Design
and Implementation, 2002.

[6] Bansal, D. and Balakrishnan, H., “Binomial
Congestion Control Algorithms.” Proc. IEEE
INFOCOM 2001, Vol. 2, Anchorage, Alaska, 2001,
pp. 631-640.

[7] Cen, S., Pu, C., and Walpole, J., “Flow and
congestion control for Internet streaming
applications.” Proc. Multimedia Computing and
Networking (MMCN), 1998.

[8] Ghinea, G., Thomas, J. P., R. and Fish, S.,
“Multimedia, network protocols and users - Bridging

the gap.” Proc. ACM Int. Conf. on Multimedia,
Orlando, Florida, 1999, pp. 473 – 476.

[9] Steinmetz, R., “Human Perception of Jitter and
Media Synchronization.” IEEE Journal on Selected
Areas in Communications 14(1), 1996, pp. 61 – 72.

[10] Molteni, M. and Villari, M., “Using SCTP with
Partial Reliability for MPEG-4 Multimedia
Streaming.” Proc. of BSDCon Europe 2002.

