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ABSTRACT 
In this paper, we propose a two-stream approach for 
adaptive rate control in multimedia applications. By 
monitoring a low-rate monitoring stream, we keep track of 
the available bandwidth (AB) of the network path and 
dynamically adjust the sending rate of the traffic stream 
close to the optimal rate. We also assure the higher priority 
of the monitoring stream in that the traffic stream is not 
allowed to affect the transmission of the monitoring 
stream. The proposed two-stream approach perfectly meets 
the requirements of the current best-effort Internet and fits 
well in multimedia applications. For example, there is no 
bandwidth overhead for the monitoring stream in peer-to-
peer video conferencing, because the monitoring stream is 
the audio stream. We show in our experiments that both 
the network and the application can benefit from this 
approach. The proposed two-stream approach is applicable 
to monitor the sending rate of the traffic stream over UDP 
as well as over TCP.  

Keywords: Adaptive rate control, TCP friendly 
congestion control, audio and video streaming, video 
conferencing, video telephone. 

1 Introduction 
We present a system for continuous adaptive rate control 
that is useful for real time multimedia streaming, 
particularly video telephone over the public Internet. No 
changes to existing transport protocols are required, since 
it is possible to incorporate our system at the transport 
layer.  
We ensure that audio stream has absolutely higher priority, 
and transmit video stream using only the remaining 
bandwidth. Steinmetz  [9] has shown that during a 
multimedia session over a congested network it is, in terms 
of human perception, more important to maintain a 
continuous (minimum jitter) audio stream than a video 
stream. Our system makes real time transmission of video 
over TCP possible since the one-way delay when video 
stream is transmitted over TCP with our rate control is on 
the same level as for video over UDP. We performed a 

large number of experiments both in the controlled 
environment as well as on real networks that included a 
dialup 28.8 kbps and cable modem connections. These 
experiments verify excellent performance of the proposed 
system. 
Our main contributions are several substantial extensions 
and modifications of Pathload  [1]. They were necessary 
since Pathload is designed for one-time bandwidth 
estimation, while we need continuous bandwidth 
monitoring in the interaction with the sender rate control. 
Following Pathload, the available bandwidth (AB) is 
detected at the application level by making use of the One 
Way Delay (OWD) property under congestion. On the 
level of OWD analysis, we propose a multiscale analysis 
of OWD properties and a method for detection of 
decreasing trend (Pathload uses only increasing trend). On 
the rate control level, we extend the Pathload iterative rate 
control algorithm to allow for instantaneous and 
immediate bandwidth adaptation for the traffic stream. 
Our modeling framework is different from Pathload. We 
use the two-stream model introduced in Latecki et al.  [3]. 
All network measurements are performed on so-called 
monitoring stream, called stream A for audio, which is 
assumed to be substantially smaller than the AB, while the 
main data transport stream is called traffic stream, called 
stream V for video. The measurements preformed on 
monitoring stream are used to adjust the sending rate of 
the traffic stream.  

2 Related Work 
The area of streaming multimedia has been extensively 
researched for several years. In this section, we compare 
our approach with a representative selection of earlier 
approaches.  
Jain and Dovrolis  [1] [2] propose a Self-Loading Periodic 
Streams (SLoPS) approach and a tool named Pathload to 
detect the AB of the network path based on the OWD 
property under congestion. Pathload sends periodic 
streams into the network path and detect the OWD trends 
at the receiver side. The congestion detection in Pathload 
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is based on detection of increasing trend in the OWDs. 
Two tests called PCT and PDT are used for OWD 
increasing trend detection (Section  3.1).  
Bansal and Balakrishnan  [6] present a family of innovative 
TCP congestion control algorithms called binomial 
algorithms. These algorithms prevent a drastic reduction in 
transmission rate upon congestion and are designed for 
streaming audio and video applications. They show that 
there exist infinitely many deployable TCP-friendly 
binomial algorithms. Our approach differs from  [6] in two 
important aspects. First, we consider a multimedia 
application as a whole consisting of simultaneous audio 
and video streams with an explicit hierarchy between 
them. In the event of congestion, our goal is to maintain 
the transmission rate of the audio stream while sacrificing 
the video stream. Second, we try to prevent the packet loss 
as an indicator of congestion in TCP, by using delay trends 
in the audio stream as our congestion signaling 
mechanism. Third, they require changes to the transport 
layer, while we do not. 
Cen et al.  [7] describe the Streaming Control Protocol 
(SCP) which is a TCP-like and TCP-friendly transport 
protocol designed to prevent the abrupt rate changes of 
TCP. However, the SCP does not allow inter-stream state 
sharing that our approach uses in order to provide a 
priority to the audio stream over the video stream.  
Following the results of Steinmetz in  [9], Ghinea at al.  [8] 
present the Dynamically Reconfigurable Protocol Stacks 
(DRoPS) architecture to dynamically reconfigure protocol 
elements in order to achieve maximum Quality of 
Perception (QoP). QoP is a subjective user side measure of 
perception. They also developed an analytic model relating 
traditional QoS measures to a QoP measure. The 
parameters of this model are application dependent. While 
DRoPS is an elaborate architecture with a Linux Kernel 
implementation our approach is lightweight and 
implemented entirely in user space. Also,  [8] reports that 
in applications with more perceptual weight to audio, such 
as the videoconferencing application considered in this 
paper, the TCP/IP stack (the one we used) performs better 
than DRoPS. 

3 Two-Stream Approach 
Basic idea 
The basic idea is to use a low rate life-time monitoring 
stream to keep track of the ever-changing network, in 
order to find the optimal sending rate (close to the end-to-
end AB) for the traffic stream. The monitoring stream 
must be sent over UDP because the mechanism is based on 
the OWD properties of the stream packets, and only for 
UDP packets can we measure the packets OWD within the 
application layer. The traffic stream can be sent over any 
protocol. 

We continuously detect OWD trends in the monitoring 
stream, use them as an indication of the relationship 
between the current traffic rate and the AB, and adjust the 
transmission rate of the traffic stream close to the AB. By 
assigning the low-rate audio stream as the monitoring 
stream, we can make use of the information naturally 
contained in the in-band traffic without introducing any 
intrusive traffic. In our approach video can be sent over 
either UDP or TCP, since in both cases, the monitoring 
stream keeps video rate below the AB, preventing losses 
(UDP and TCP) and subsequent retransmissions (TCP). 
We assume that there exists sufficient bandwidth to 
transmit the monitoring stream. 

Improved performance when video is sent over UDP 
Since UDP is unresponsive to AB, in cases of constrained 
bandwidth, not only the video stream suffer due to packet 
loss but also the quality of audio will drop significantly 
due to the congestion caused by the video stream  [3]. 
By using our adaptive rate control mechanism, it is 
possible for the application to continually estimate the AB 
and set the optimal rate for the video stream, significantly 
improving the quality of both audio and video.  

Improved performance when video is sent over TCP  
If the video is sent over TCP, the TCP congestion control 
mechanism will constrain the actual transmission rate on 
the network, preventing the network from getting 
congested. However, TCP's reliable transmission will 
cause delay to accumulate, thus make it unsuitable for real 
time multimedia applications. One way to alleviate the 
accumulated delay is to drop the obsolete frames at the 
sending side. But most of the delay still could be very 
serious if we do not choose an appropriate video rate 
(Figure 3). Our adaptive rate control solves this problem 
by adjusting the video rate slightly below the AB, which 
makes TCP retransmission rate close to zero. This way we 
make real time video transmission over TCP a good 
option. The advantage of reliable video transport is a 
significant improvement of the received video quality. A 
study showing advantages of partially reliable video 
transmission is presented in  [10]. 

3.1 Detecting OWD Trends in the Continuous 
Monitoring Stream 

The OWD (one way delay) of a packet stream will 
increase when the traffic rate is above the end-to-end AB 
 [2]. 
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Figure 1: OWD property under congestion 

In an experiment illustrated in Figure 1, the end-to-end AB 
before we sent any traffic was set to 100 kbps. We sent the 
audio stream at a constant rate of 20.8 kbps, and the video 
stream over UDP at a rate of 120 kbps from audio packet 
number 1000 to 2000. The OWD was measured in the 
audio stream. As can be seen in Figure 1, that is a short 
transition phase in which the OWD shows obvious 
increasing trend at the beginning when the network 
become congested. If we detect this transition phase, we 
can respond to the congestion even before packet loss 
happens. Our two-stream approach for adaptive rate 
control is based on this fact.  

OWD phases 
OWDs of the stream packets show different patterns under 
different network conditions. We can divide the whole 
process into the following four types of phases based on 
the congestion status and OWD trends. R is transmission 
rate of traffic stream 
• Increasing phase (R > AB): The short transition 

period before entering the congestion. The OWDs 
show increasing trend. 

• Decreasing phase (R < AB): The short transition 
period when recovering from congestion. The OWDs 
show decreasing trend. 

• Steady phase (R < AB): The OWDs are stable in this 
phase. 

• Congested phase (R > AB): The network is already 
congested. Even though usually more variant than in 
the steady phase, the OWDs in this phase are stable.  

OWDs are stable in both the steady and congested phases, 
so it is hard to discriminate these phases based on the 
measured OWDs, especially when we only have a small 
window of measurements in real time environment. Thus, 

it is crucial that we detect the increasing phase before the 
traffic goes into the congested phase. 

PCT and PDT 
Two complementary statistic metrics named PCT and PDT 
can be used to detect the OWD trends in the stream. 
Before calculating the PCT and PDT from K measured 
OWDs, we pre-process the data because they usually 
contain a lot of noise and outliers. The K OWDs {D1, 
D2,…, DK} are partitioned into Γ groups, each group use 
the median value iD̂  as its representative value. K is also 
known as the detection period. 
The original Pairwise Comparison Test (PCT) metric of a 
stream was defined in [2] as  
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ε is a predefined threshold value related to the granularity 
of the increasing or decreasing step.  
If the OWDs are independent, the expected value of SPCT is 
0. If there is a strong increasing trend, SPCT approaches 1. If 
there is a strong decreasing trend, SPCT approaches -1. Due 
to our modification, the modified SPCT can detect both 
increasing and decreasing trends. Moreover, by defining 
the threshold ε , it is more stable and noise resistant.  

The Pairwise Difference Test (PDT) metric of a stream is 
defined in [2] as  
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If the OWDs are independent, the expected value of SPDT is 
0. If there is a strong increasing trend, SPDT approaches 1. If 
there is a strong decreasing trend, SPDT approaches -1.  
SPCT and SPDT are complement. SPCT detects the ratio of the 
increasing and decreasing steps, while SPDT quantifies how 
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strong the start-to-end variation is. SPCT and SPDT are 
combined to determine the current OWD phase. 
"Increasing phase" and "decreasing phase" are reported 
when either of the two metrics detects it, and the other one 
does not disagree, while "steady phase" is reported only 
when both of the two metrics indicate a "steady phase". 
All the other situations are reported as "ambiguous phase". 
We define two thresholds LPCT and UPCT for SPCT, and 
another two LPDT and UPDT for SPDT. Our decision rules are 
summarized the following: 

• If SPCT > UPCT and SPDT > LPDT,   or SPDT > UPDT and SPCT > 
LPCT, "increasing phase" is reported 

• If SPCT < -UPCT and SPDT < -LPDT,   or   SPDT < -UPDT and 
SPCT < -LPCT, "decreasing phase" is reported  

• If -LPCT  < SPCT < LPCT, and -LPDT  < SPDT < LPDT, "steady 
phase" is reported 

• "ambiguous phase" is reported in all other situations. 

The thresholds can be adjusted depending on how 
sensitive PCT and PDT should be. In our experiments, LPCT 
and LPDT were set to 0.25; UPCT and UPDT were set to 0.5. 

With these two statistic metrics, we can detect the current 
OWD phase in the monitoring stream, and use it as an 
indicator of the relationship between the transmission rate 
and AB. Figure 2 illustrates the detected PCT (line with 'x' 
marks) and PDT for the OWDs in Figure 1. PCT and PDT 
were calculated every 32 measured OWDs in the audio 
stream. One obvious observation from Figure 1 andFigure 
2 is that the OWD transition phase is usually very short. 
When the traffic rate is above the AB, the OWD will 
quickly increase until congestion sets in. After this short 
transition phase, the OWD will remain relatively stable, 
hence using PCT and PDT it is hard to distinguish whether 
or not the network is congested. However since we can 
detect the increasing phase, the congested phase will 
never appear without a correct rate adjustment, so it is 
tolerable that we cannot detect the congested phase 

.

 
Figure 2: Graphs of PCT PDT for OWD in Figure 1 

 
Figure 3: Audio OWD when video sent over TCP 

The detection period 
A suitable length of detection period K is critical in 
detecting the OWD trends in the continuous monitoring 
stream. In order for the PCT and PDT metrics to be able to 
detect the OWD transition phases (increasing and 
decreasing phases), it is important that the detection period 
is within the OWD transition phase. In other words, if the 
detection period only covers part of the transition phase, it 
may not able to detect it. In this sense, the detection period 
should be as short as possible; but on the other hand, the 
detection period cannot be too short, otherwise the 
increasing trend will be too minor to be detected.  
Experiments show that the length of the OWD transition 
phase vary greatly under different conditions, e.g., when 
the traffic rate is far above the end-to-end AB, the OWD 
quickly increases to the peak. When the traffic rate is 
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slightly above the AB, the increasing phase will be longer. 
Experiments also show that when the traffic stream is sent 
over TCP, the OWDs usually only show long-term 
increasing (or decreasing) trends and display great local 
variance (Figure 3).  
Our experiments indicate that a short detection period 
works well under UDP environment, while a longer 
detection period is more suitable when the traffic is sent 
over TCP.   
The setting of the experiment corresponding to Figure 3 
was the same as of the experiment in Figure 1, except that 
the video was sent over TCP. The sender tried to send the 
video stream at rate 100 kbps, but was regulated by the 
TCP congestion control mechanism. The OWDs in the 
audio stream clearly shows the TCP's slow-start and 
AIMD (Additive Increase Multiplicative Decrease) effects. 
Compared with Figure 1, the OWD transition phases are 
much longer, and the OWDs are more variant in small 
scale during the transition phases. 

Multiscale and Sliding-window Measurement 
Since it seems impossible to decide an appropriate 
detection period that can work under all circumstances, we 
use a multiscale and sliding-window method to detect the 
OWD phases in the monitoring stream.  
Multiscale means that we calculate the PCT and PDT over 
multiple scales of detection periods simultaneously. 
Figure 4 illustrates 3-scale measurements over the OWDs 
displayed in Figure 3. In scale 1, PCT and PDT were 
calculated every 32 packets; in scale 2, they were 
calculated every 64 packets; and every 128 packets in 
scale 3. Scale 1, in most cases, would not report the 
increasing or decreasing phases, because either the PCT or 
PDT could not satisfy the thresholds (see the decision 
rules in Section  3.1). The fundamental reason is that the 
detection period was so small so that the measurements 
were dominated by the noises. Scale 2 seems better, but 
still would miss a lot if the thresholds were set a little bit 
high. Scale 3 very nicely caught all the increasing and 
decreasing trends and would report them correctly. 
The final decision is based on the 3-scale measurements. 
The decision rules are summarized as follows  
• If any of the 3-scale measurements reports "increasing 

phase", and the other two do not disagree (i.e., report 
"decreasing phase"), then "increasing phase" is 
reported 

• If any of the 3-scale measurements reports 
"decreasing phase", and the other two do not disagree 
(i.e., report "increasing phase"), then "decreasing 
phase" is reported 

• If at least 2 of the 3-scale measurements report 
"steady phase", then "steady phase" is reported 

• Otherwise "ambiguous phase" is reported 

Figure 5 shows the final result from the 3-scale detection 
in Figure 4. Here we use 1 to represent "increasing phase", 
-1 to represent "decreasing phase", 0 to represent "steady 
phase", and 0.5 and -0.5 to represent "ambiguous phase" (-
0.5 means "more probably a decreasing phase", and 0.5 
means "more probably a increasing phase"). We can see 
that Figure 5 perfectly matches the OWD phases 
corresponding to Figure 3. 
We also use sliding and overlapping windows to make the 
measurements more frequent without making the detection 
period too short.  

Figure 4: 3-scale PCT and PDT detectionFigure 4: 3-scale PCT and PDT detection
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Figure 5: Final result from 3-scale detection in Fig. 4 

3.2 An Interactive Adaptive Rate Control 
Algorithm in the Two-Stream Environment 

The advantage of having a lifetime monitoring stream is 
that we can detect the AB at any moment in the traffic. 
The adaptive rate control mechanism is designed to be able 
to detect congestion and adjust the sending rate close to 
AB at any moment of the traffic lifetime. The whole 
process of the traffic regulation consists of two alternative 
stages: rate-adaptation stage followed by steady stage. 
The algorithm searches for the AB during the rate-
adaptation stage. Once the sending rate converges to the 
optimal rate, it enters the steady stage. During the steady 
stage, we still continuously keep track of the network 
status through the monitoring stream. If there is any 
congestion detected during the steady stage, or we decide 
to try a higher rate, the traffic changes into the rate-
adaptation stage and search for the AB again. 
The algorithm used for searching the AB in the rate-
adaptation stage is very similar to the iterative algorithm 
used in the Pathload  [1]. We denote the sending rate at 
time n as R(n),  the lower and upper bounds for the AB as 
Rmin and Rmax. At time n, we calculate R(n+1) as: 

If  R(n) > AB, Rmax = R(n); 
If  R(n)≤  AB, Rmin = R(n); 
R(n+1) = (Rmax+Rmin)/2; 

But we need to do the following adjustments, because our 
traffic is continuous while Pathload only sends short 
streams.   
• When an "increasing phase" is reported (R(n) > A), 

we add a break in traffic stream before trying the next 
sending rate, so that the OWD can drop to the normal 

level (the queues in the routers can be cleaned) before 
we send more traffic  

• The break last as long as the "decreasing phase" is 
detected. We resume sending of the traffic stream 
when the decreasing phase is finished 

• When "ambiguous phase" is reported for sufficiently 
long time, we regard it as a symptom of slight 
congestion, so slightly decrease the sending rate 

The break period is needed so that two consecutive 
increasing tends can be detected. Also, we wait until the 
decreasing phase disappears since it means that the 
network is still recovering from congestion. 

4 Experimental Results 
We present some experimental results that illustrate the 
benefits of our adaptive rate control for both the network 
and the multimedia application. We performed a large 
number of experiments both in the controlled environment 
as well as on the real networks that include a dialup 28.8 
kbps and cable modem connections. We present here our 
experiments conducted in Emulab (Netbed)  [5] 
environment, since the obtained results are representative 
for all our experiments (including experiments on real 
networks) and the experiments on Emulab can be verified 
independently. A detailed report from our experiments 
(including experiments on real networks) and the program 
source code can be obtained from 
http://www.cis.temple.edu/~latecki/ARC.  

4.1 Experimental Setting 

The bandwidth of the tight link between the sender host 
SEND and receiver host RECV was set to 100 kbps. When 
there is no cross traffic over the tight link, the end-to-end 
AB of the path is 100 kbps. We simulated the two-stream 
traffic from SEND to RECV, in uni-direction. The audio 
(monitoring) stream was sent over UDP, at a constant 
transmission rate of 20.8 kbps, and the packet interval was 
40 ms. The video frames were generated every 20 ms, and 
the SEND sent the frames as soon as they were generated. 
The video frame size can be controlled by the application. 
For video sent over UDP, the actual transmission rate on 
the network can be easily calculated from the frame size, 
because each frame will result in a UDP packet on the 
network. So the transmission rate is  
(video frame size + UDP header size + IP header size + 
Ethernet header size) / 20 ms.  
All the experiments followed the same scenario: 
1. We first streamed just audio data for 40 seconds (1000 

audio packets) 
2. Then we sent the video stream for 120 seconds 

(between audio packet number 1000 and 4000) 
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3. Then we stop video stream and sent only audio 
packets for another 40 seconds 

We used both UDP and TCP to transmit video stream. For 
each of the protocols, we performed two runs of the 
experiments, one without rate control and the other with 
our adaptive rate control, and compared the results. After 
applying our adaptive rate control, both streams' loss rates 
dropped to zero after the optimal rate was found. When 
cross traffic was added, no matter sent over TCP or UDP, 
all the experiments showed similar results. In Section  4.2 
we present our experiments when video was sent over 
TCP. The results for UDP are omitted, since streaming 
video over TCP seems to be a more interesting case. 

4.2 Video Stream Sent Over TCP 

Figure 6 shows the audio and video stream rate from the 
application when adaptive rate control was not applied. 
Figure 7 shows the actual video transmission rate on the 
network (due to the TCP congestion control). For easy 
comparison, we plot the video rate with respect to audio 
packet number. Figure 8 displays the two streams' rates 
from the application when the adaptive rate control was 
applied. We see from Figure 8 that it took about 20 
seconds for the video stream rate to converge to 48.8 kbps 
(actual transmission rate was a little higher than the stream 
rate). Figure 9 shows the actual video transmission rate on 
the network sent over TCP when the adaptive rate control 
was applied on the application level. Observe by 
comparing Figure 8 and Figure 9 that the actual video 
sending rate from the application matches the TCP sending 
rate when our rate control runs on the application layer. 
This is not the case if there is no rate control on the 
application layer (Figures 6 and 7). 
Figure 10 compares the audio OWDs in the two 
experiments. While the mean of the audio OWDs during 
video transmission without rate control increased by 1221 
ms (from 53 ms to 1274 ms), it increased only by 2 ms 
(from 55 ms to 57 ms) with our rate control (in comparison 
to the first phase when only audio packets were sent). We 
can clearly see that the TCP increasing trend is reflected in 
OWD of audio packets by comparison of the audio OWD 
without rate control in Figure 10 to video rate sent over 
TCP in Figure 6. 
Figure 11 compares the video OWDs (we measured the 
frame delay in the application layer) in the two 
experiments. While the mean of the video OWDs was 
8409 ms without rate control, it was only 70 ms with our 
rate control (most in the rate-adaptation stage), with the 
difference between minimum OWD and mean OWD of 11 
ms. Both audio and video delays are acceptable for real 
time audio-video communication  [4]. Thus, the proposed 

rate control makes it possible to have video transmission 
over TCP in real time, peer-to-peer video conferencing. 
Figure 12 shows the loss rate change in the audio stream. 
While 143 out of the total 3000 audio packets were lost 
during the video transmission without rate control 
(average loss rate was 4.77%), 0 packet was lost after our 
rate control was applied in the video stream. Figure 13 
shows the drop rate of the video stream (SEND makes the 
best effort to send frames, and drops frames when they 
become obsolete). Without rate control, there were 1064 
out of the total 6000 video frames were dropped (average 
drop rate was 17.75%). When the rate control was applied, 
302 frames were dropped only in the rate-adaptation stage. 
The overall drop rate in the video becomes 0 when the 
traffic is sufficiently long.  

 
Figure 6: Audio and video rate (without rate control) 
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5 Conclusions 
The proposed adaptive rate control algorithm is suitable 
for real time multimedia streaming over UDP as well as 
over TCP. In particular, it significantly improves real time 
performance of TCP congestion control, so that real time 
video transmission over TCP is possible. The reason is that 
our rate control (that does not introduce any packet loss) 
suppresses TCP rate control, and consequently the packet 
loss due to the TCP increasing trend is kept very close to 
zero. Our experiments demonstrate that not only the 
performance of the video stream but also the audio stream 
is drastically improved. Our real network experiments 
indicate that a small amount of retransmissions due to 
sporadic packet loss (it was below 0.01%) has only minor 
influence on OWD. We implemented our algorithm on the 
application layer, but it is also possible to use it on the 
transport layer, in particular in conjunction with future 
transport protocols that are more suitable for the 
multimedia data. 
The effect of datagrams within a stream taking different 
routes Given the datagram forwarding nature of most of 
the Internet, we should mention that packets not following 
the same route is a limitation present in most AB 
measurement tools also. However, we assume that due to 
several measurements the effects of packet taking different 
routes in minimized, which is verified by our experiments 
on the public Internet, and that work on this is part of 
future work. 

6 Acknowledgements 
We would like to thank Phillip Conrad for his helpful 
comments. We are grateful to Jay Lepreau and the support 
staff of Netbed (formerly known as Emulab), the Utah 
Network Emulation Testbed (which is primarily supported 
by NSF grant ANI-00-82493 and Cisco Systems) for 
making their facilities available for our experiments. 

Figure 8: Audio and video rate (with rate control)  
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Figure 12: Audio loss rate 

 
Figure 13: Video drop rate 
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