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Abstract— Our goal is polygonal approximation of laser range
data points obtained by a mobile robot. The proposed approach
provides a precise estimation of the number of model components
(line segments) and their initial parameters independent of
their initial values. We use principles of perceptual grouping
to evaluate the approximation quality obtained in each Expecta-
tion Maximization (EM) step. By evaluating EM approximation
quality we are able to recognize a locally optimal solution, and
modify the number of model components and their parameters.
Consequently, EM can converge only to a globally optimal
solution independent of the initial number of model components
and their initial parameters.

I. INTRODUCTION

Our domain of interest is polygonal approximation of data
points. The existing solutions make assumptions about the
number of fitted line segments, extent of noise, and/or the
order of data points. An overview of techniques for polygonal
approximations of curves (when the order of data points is
known), which have been studied at least since early seventies
in computer vision, can be found in [1]. An overview of
approaches to obtain polygonal maps from laser range data can
be found in [2], [3]. We do not make any assumptions about
the order of data points and extent of noise. On contrary to the
existing approaches, the proposed method avoids the problem
of a locally optimal solution and produces stable approxima-
tions not only to straight but also to curved lines. Moreover,
the final number of fitted line segments depends on extent of
noise. This means that the number of model components is
adjusted to achieve the best possible approximation accuracy
as the function of noise extent.

The proposed approach adds two new steps that are well
integrated with the standard E and M steps of EM. In the first
new step, the model components obtained by a previous EM
iteration are examined for support of the data points. Parts
of the components that do not have sufficient support are
removed, which leads to component splitting and removal. The
main idea is that higher point density along a segment indicates
a presence of a linear structure in the data points around the
segment. This results in a new set of model components for
the next EM iteration. The second new step is merging similar
model components. It prevents generating statistical models
that over fit the data, i.e., fit noise in the data. This step requires

a similarity measure of statistical model components. Since
the similarity measure of model components requires domain
specific knowledge, we present the proposed methodology
in a context of a particular domain. However, the proposed
framework provides a domain independent extension of EM.

We use line segment similarity based on principles of
perceptual grouping that date back to the German school of
Gestalt psychology in the beginning of 20th century [4] in
merging similar line segments. Perceptual grouping is rooted
in human perception and is an active research topic in com-
puter vision. In our approach perceptual grouping principles,
based on [5], are used to merge pairs of line segments, visually
belonging together, to a single longer line segment.

Assuming that the initial number of model components (line
segments) is well estimated, the main difficulty of fitting line
segments to point data is that the correspondence of data points
to line segments is unknown. The Expectation Maximization
(EM) algorithm [6] provides an iterative solution to the
correspondence problem. Our departing point is an EM line
fitting algorithm. In fact EM applied to line fitting is known
as the Healy-Westmacott procedure in statistics, and predates
EM by many years [7]. However, since our goal is to fit
polylines (polygonal curves) to point data, we trim lines to line
segments (Section II-A). The main contribution of this paper is
the introduction of nonreversible split and merge steps. While
we base merging on principles of perceptual grouping, we
relate split directly to support in the data points. Both split
and merge steps in the proposed approach require only local
evaluation. Thus, we use local optimization to provide a better
model for EM. Due to the integration of these operations in
the EM framework, we are able to obtain a globally optimal
solution after just a few iterations (between 5 and 20) in all
our experiments.

The proposed approach also provides a solution to the well-
known problem of local optimum in EM. A classical case
of EM local optimum problem is illustrated in Fig. 1. Fig.
1(a) shows data points and the initial configuration of two
straight lines. Fig. 1(b) shows the final result obtained by the
classical EM algorithm. Finally, Fig. 1(c) shows a globally
optimal approximation obtained by the proposed method on
the same input.

An example application of our approach is outlined in Fig.
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Fig. 1. (a) shows the data points and the initial position of model lines. (b) shows the optimal approximation of the data points obtained by EM. (c) shows
the optimal approximation result obtained by the proposed method.

2. (a) shows an original data set of laser range scan points
aligned with the algorithm presented in [8]. The original
set is composed of 395 scans, each with 361 points. Thus,
the original input map is composed of 142,595 points. We
initialize our algorithm with only two segments, the two
diagonals. (b) shows the output of the second iteration of
our algorithm. The final polygonal map in (d), obtained after
12 iterations, is composed of 49 segments, i.e., of 98 points.
Thus, the proposed approach yields the data compression
ratio of 1455:1. The mean distance of scan points to the
closest line segments is 5cm. We selected this map, since it
contains surfaces of curved objects. The obtained polylines
in (d) illustrate that the proposed approach is well suited to
approximate linear as well as curved surfaces. Some of the data
points are not approximated by line segments. These points are
very likely to represent noise artifacts due to their low density.
(Due to the limited size of the figures, it is hard to perceive
the point densities.) Therefore, it is necessary to approximate
only point structures with sufficient point density. The required
point density is determined automatically in our approach
(Section II-C). Further results obtained by our approach for
several other indoor and outdoor maps can be viewed on our
home page.

The proposed approach is presented in Section II, and it is
related to the existing approaches in Section IV.

II. SPLIT AND MERGE IN THE EM FRAMEWORK

We begin with a short overview of EM applied to line
fitting (a detailed presentation can be found in [9]). As
mentioned before, EM applied to line fitting is known as the
Healy-Westmacott procedure in statistics, and predates EM by
many years [7]. The following two steps are alternated until
the algorithm converges, and the algorithm is guaranteed to
converge to some local optimum. The input is a set of data
points on the plane and an initial set of straight lines.

• E-Step (Expectation Step): Given a current set of lines,
for each point the probabilities of its correspondences to
all lines are estimated based on its distances to lines.

• M-step (Maximization Step): Given the probabilities
computed in the E-step, the new positions of the lines

are computed using a regression weighted with these
probabilities.

A. Expectation Maximization Segment Fitting (EMSF)

The proposed approach requires a minor extension of EM
line fitting to work with line segments, which we will call
Expectation Maximization Segment Fitting (EMSF). The
only difference of EMSF in comparison to EM line fitting is
that it starts and finishes with line segments. The input is a set
of line segments and a set of data points. EMSF is composed
of the following three steps:

(1) E-step with line segments (the EM probabilities are
computed based on the point distances to line segments
instead of lines, see below)

(2) M-step with the probabilities computed in the E-step and
lines extending the line segments

(3) Trimming lines to line segments. The new lines com-
puted in the M-step are trimmed to line segments.

Now we describe these steps in detail. First we need to
recall the computation of EM probabilities in the E-step. Let
x1, . . . , xm be a set of data points on the plane, and let
s1, . . . , sn be a set of line segments. Usually m is significantly
larger than n. For each point xi, the probability wij that xi

corresponds to segment sj is computed for j = 1, . . . , n.
Formally, wij = p(zi = j), where zi is the hidden variable
associated with point xi whose values range over the segment
indices. Analog to EM line fitting, this probability is computed
based on the distance d(xi, si) from point xi to segment sj :

wij ∝ e−d(xi,si)
2/2,

and normalized so that
∑n

j=1 wij = 1 for each i. The only
difference to the standard EM line fitting is that we have
substituted the distance point to line with the distance point
to segment. After every E-step we obtain a new matrix (wij),
where each row i represents the probabilities for point xi,
and each column j can be viewed as weights representing
the influence of each point on the computation of a new line
position in the M-step.

The output of the M-step, which performs an orthogonal
regression weighted with (wij), is a set of lines l1, . . . , ln
corresponding to the input segments s1, . . . , sn. The normal
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Fig. 2. (a) An original outdoor map is composed of 142,595 scan points obtained during the Rescue Robot Camp in Rome, 2004. We begin the approximation
process with only two line segments that are the two diagonals. (b) shows the output of the second iteration of our algorithm. (d) The final polygonal map
obtained after 12 iterations is composed of only 49 segments. The obtained compression rate is 1455:1, and the approximation accuracy is 5cm.

vector to line lj is the vector corresponding to the smallest
eigenvalue of the matrix Mj defined as
[

∑m
i=1 wij(xix − x̄)2

∑m
i=1 wij(xix − x̄)(xiy − ȳ)

∑m
i=1 wij(xix − x̄)(xiy − ȳ)

∑m
i=1 wij(xiy − ȳ)2

]

(1)
where xi = (xix, xiy) are the coordinates of the data points,
and (x̄, ȳ) is their average weighted with wij for i = 1 . . . m,
and line lj goes through the point (x̄, ȳ).

The step (3) is composed of two substeps:

(3.1) Assignment of supporting data points to lines.
(3.2) Trimming the lines to segments.

In order to trim the lines to line segments (3.1), we first need
to assign supporting data points to lines. This assignment is
based on the probabilities computed in the E-step for the input
segments. A support set Sup(sj) for a given line segment sj

is defined as set of points whose probability of supporting
segment sj is the largest, i.e.,

Sup(sj) = {xi : wij = max(wi1, . . . , win)}.

Thus, we map each data point to a segment using the Maxi-
mum A Posteriori principle. The support set for a given output
line lj is the same as for the corresponding input segment, i.e.,
Sup(lj) = Sup(sj) for j = 1, . . . , n.

Trimming the lines to segments (3.2) is a simple step
now. The straight lines l1, . . . , ln computed in the M-step are
trimmed using the support sets Sup(lj). For each j, we project
the set of points in Sup(lj) onto the line lj . Then a new
segment s

(new)
j is defined as the smallest segment contained

in line lj that contains all points in Plj (Sup(lj)), where Plj

is the orthogonal projection to the line lj . We obtain a set of
new segments s

(new)
1 , . . . , s

(new)
n such that s

(new)
j ⊂ lj .

B. Split and merge EM segment fitting

Now we introduce the outline of the proposed algo-
rithm. The proposed split and merge EM segment fitting
(SMEMSF) algorithm iterates the following steps (described
in detail below):

1) EMSF (Expectation Maximization Segment Fitting)
2) LSS (Line Segment Split): data support evaluation of

segment obtained by EMSF (Section II-C)
3) EMSF
4) Line segment merge (Sections II-D and III)

Thus, we alternate line segment splitting and merging between
the steps of the segment fitting EM algorithm.

The main goal of LSS is to evaluate the quality of the
EMSF output, i.e., how well the EM weights positioned the
new segments. The subsegments of the new segments that



do not have sufficient support in the data points will be
removed leading to splits into two or more smaller segments.
Hence LSS creates a sufficient number of segments in order to
optimally fit the input data points. This way we overcome the
problem of locally optimal solutions, since such a solution will
not have a good global support in the data points. The initial
position of the line segments also does not matter, since the
following EMSF will reposition the split segments to better fit
the data. This is illustrated in Fig. 3.

If a pair of line segments is supported by a nearly the same
set of collinear data points, EMSF (in step 3) maps them to
two similar segments. In the merging step (4), pairs of similar
segments are merged to single segments. Due to merging, the
number of segments cannot grow to infinity. Therefore, in the
EM framework extended by the merging step, the number
and position of the new segments introduced by the split is
not critical. Iterating split and merge in the EM framework
is a powerful tool to adjust the number and position of line
segments to better fit the data points.

A few iterations of the proposed algorithm are illustrated in
Fig. 2. The proposed algorithm converges, since EM converges
and the LSS procedure (Section II-C) stops splitting if a certain
goodness of fit criterion is met. Usually just a few iterations of
steps (1)-(4) are required. Our stop condition is the stability
of distances of data points to the closest line segments. By
partially ordering the line segments into polylines, we obtain
a global polygonal approximation (2(d)).

C. Line segment split (LSS)

A classical case of EM local optimum problem is illustrated
in Fig. 3(a). Clearly, the problem here is that the model
consists of one line segment, while two line segments are
needed. Fig. 3(b) illustrates a split operation described in this
section. It is based on removal of subsegments that do not have
sufficient support in the data points. As the result we obtain
two line segments. Finally, Fig. 3(c) shows a globally optimal
approximation of the data points obtained by EM applied to
the two segments.

The main observation is that higher point density along a
segment indicates a presence of a linear structure in the data
points around the segment. The approach in [10] uses this idea
to find polygonal structures in point data sets. The computation
is based on counting the points in all possible rectangular
strips (i.e., neighborhoods of all possible segments), and then
selecting the strips representing polygonal structures based
on statistics of the count. This approach works only if the
noise points have uniform distribution, which is an unrealistic
assumption for our application.

The main difference of our approach to the approach in [10]
is that we do not select the structures based on the data point
density, but evaluate the existing structures (selected by EM).
This makes our computation more efficient, since we do not
need to numerate all possible strips, and more accurate, since
the line segments are optimally fitted to the data points in our
approach.

Each segment obtained by an EMSF is examined on having
sufficient support in data points measured as point density
around it. Only parts of segments that have sufficient support
of the data points remain. This leads to split of existing
segments allowing us to adjust the number of the line segments
(i.e., the number of EM model components) to better fit the
input data points.

Line Segment Split (LSS) is composed of the steps:

(2.1) Subsegment support computation.
(2.2) Removal of subsegments with insufficient support.

The input to LSS are segments s1, . . . , sn created in EMSF.
We divide each segment sj ∈ {s1, . . . , sn} into subsegments
of a predefined length 2r, i.e., sj = I

j
1 ∪ · · · ∪ I

j
l , so that two

consecutive subsegments overlap in a single point, where l is
the number of subsegments. (For simplicity we assume that
the length of sj is exactly multiple of 2r.) For each iteration
the subsegment length 2r is defined based on the distribution
of the distances of data points to segments they support (see
below). For each subsegment I

j
k , we define its support as the

number of data points in the square S(I j
k) whose two sides

are parallel to subsegment I
j
k and whose center is contained

in I
j
k , i.e.,

support(Ij
k) = #({xi} ∩ S(Ij

k)).

A few such squares are illustrated in Fig. 3(b).
In each iteration a support threshold C is computed from

the statistics of support(Ij
k) values over all subsegments of

all line segments (see below). Finally subsegments I
j
k with

support(Ij
k) ≤ C are removed. The subsegments to be re-

moved are marked with crosses in Fig. 3(b). New segments are
created as connected components of remaining subsegments of
segment sj . Then the original input segment sj is removed,
and the newly created segments are added to the list of original
segments for the next iteration of EMSF. If all its subsegments
are removed, then the segment sj is removed. The parameters
2r and C are computed dynamically each time the subsegment
removal step is called.

D. Merging

Before we introduce merging, we elaborate on its role in the
EM framework. The main idea is that if a given segment is
split correctly to two subsegments, then EMSF will reposition
the two segments to better fit the data points. Consequently,
the two segments will move and turn away from each other,
and therefore, will not be similar segments, e.g., Fig. 3(c).
If a segment is unnecessarily split to two subsegments, the
two segments remain very similar after an EMSF iteration,
where similar means that they will be nearly collinear and
close to each other. This elaboration suggests that merging
should combine two perceptually similar segments to a single
segment, and leave unchanged pairs of perceptually dissimilar
segments. Without merging the model may end up with too
many components, which could mean fitting the noise in
the data. The segment similarity measure used in merging
is responsible for the accuracy of the statistical model. The
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Fig. 3. (a) shows the best possible approximation of the data points obtained by EM. (b) illustrates the line segment split (LSS) based on subsegment
removal. The subsegments to be removed are marked with crosses. (c) shows the final approximation result obtained by EM after the split.

proposed merging operation is introduced in Section III, where
also the perceptually motivated segment similarity measure is
introduced.
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Fig. 4. (a) shows line segments introduced by split and repositioned by EM.
(b) shows line segments obtained by merging similar segments in (a).

III. LINE SEGMENT MERGING BASED ON PERCEPTUAL

GROUPING

The goal of this section is to define a similarity measure
of EM model components so that we can merge similar
components. Merging in connection with split allows us to
automatically determine the number of model components.
Since in our case the model components are line segments,
we will use human visual perception to define the similarity
of line segments.

Given a pair of line segments, L1 and L2, the objective
of the merging process is to compute a merged segment
ms(L1, L2). The main idea is to only merge line segments
that are sufficiently similar. Therefore, we will define a cost
function C(L1, L2) that measures the similarity of L1 and L2.
The geometric intuition of the presented merging process and,
in particular, the definition of merging cost C(L1, L2) is based
on cognitively motivated principles of perceptual grouping that
date back to [4]. Lowe [5] states that proximity of endpoints,
parallelism, and collinearity are the main geometric relations
that influence the perceptual grouping of line segments. How-
ever, Lowe did not consider merging but rule based grouping,
i.e., he did not reduce the number of segments but grouped
them to some predefined spatial structures. Therefore, we
developed a new cost function that integrates these geometric
relations with a goal of segment merging.

We begin with a construction of the merged segment
ms(L1, L2). Let L1 = AB and L2 = CD be oriented in
the same direction so that ||AB − CD|| ≤ ||AB + CD||,
i.e., the scalar product AB · CD ≥ 0, then the weighted
average direction ad of L1 and L2 is obtained as the direction
of vector AB + CD. The line lad with direction ad is
positioned between L1 and L2 so that the following equation
d1 · l1 = d2 · l2 is satisfied, where li is the length of segment
Li and di is the distance of the midpoint of Li to line ld for
i = 1, 2. This has the effect of positioning line lad closer to
the larger of two segments. Finally, the segment ms(L1, L2)
obtained by merging L1 and L2, called the merged segment,
is defined as the shortest segment contained in ld that contains
the projections of L1 and L2 on line ld.

The main intuition for the segment merging cost is that we
want to measure how visually significant is to replace L1 and
L2 with ms(L1, L2). The cost of merging segments L1 and
L2 is defined by:

C(L1, L2) = w1 · parC(L1, L2) +

w2 · colC(L1, L2) + w3 · proxC(L1, L2),

where parC, colC, proxC are measures of parallelism,
collinearity, and proximity between line segments L1 and L2

correspondingly, defined in [11] using elementary geometric
relations. The weights are used to obtain an adequate balance
between of the geometric relations of parallelism, collinearity
and proximity. In our approach they were determined with
cognitive experiments and set to w1 = 2, w2 = 1

4 , w3 = 1
2 .

IV. RELATION TO THE EXISTING APPROACHES

A. Statistics

We provide a domain specific solution to one of the most
challenging problems in statistical reasoning which is the
estimation of the number of components of a statistical model.
A general discussion of this problem in statistical framework
can be found in Richardson and Green [12]. The importance of
statistical models is computer vision is discussed in Mumford
[13].

In [14] the usage of Bayesian Information Criterion (BIC)
to estimate the number of model components is discussed.
BIC is equivalent to Minimum Description Length (MDL).



For a fix number of data points, which is the case in our
application at each given time t, BIC calculates a trade-off
between the model complexity and the likelihood of the data
points. Typically a model that has the highest BIC value is
selected by repeatedly executing EM for all possible numbers
of model components. The problem with this approach is that
it works only if EM converges to the global optimum for the
evaluated numbers of model components. If for some number
of components EM gets stuck in a local optimum, the BIC
estimate may be wrong. For example, the correct number of
model components cannot be determined for the situation in
Fig. 1(b). Due to the fact that EM got stuck in a local optimum,
the likelihood of the model with two components will be very
low. To our best knowledge, this problem is not addressed
by any existing approach to estimate the number of model
components.

Moreover, in practice there is a hidden parameter that is
manually adjusted to obtain the desired number of model
components in BIC. This parameter is the standard deviation
of the measurement process. In the BIC this standard deviation
realizes a weighing factor between the likelihood of the data
points and the model complexity.

In addition, as determined experimentally on ground-truth
data in [14] BIC tends to over penalize the complexity, which
leads to a too small number of model components.

It is also important to mention that the proposed method
yields a quicker convergence of the EM since it adopts
the number of model components and model parameters to
the given environment after every EM operation while BIC
requires EM convergence for each number of model compo-
nents.

Green [15] proposed a solution based on iterative merging
and splitting components of a mixture model with the goal
of obtaining a better mixture model in the case of univariate
normal mixtures. Green’s solution is based on fully Bayesian
mixture analysis that is making use of reversible jump Markov
chain Monte Carlo methods, which are capable of jumping
between the parameter subspaces corresponding to different
numbers of components in the mixture. The jumps are realized
by split and merge moves that are reversible. In the proposed
approach, the split and merge steps are not reversible. While
spit is based on the goodness of fit measure of model com-
ponents to the data points, the merge is based on similarity
of model components that is not directly related to the data
points. The merge allows us to estimate the number of model
components based on perceptual grouping of segments. Since
Green’s merge move is evaluated based on the data points, it
cannot be used to estimate the number of model components.
Hence Green’s approach requires an additional penalty for
the number of models. Consequently, the number of models
heavily depends on this penalty, which is not directly related
to the model quality assessment, which is the case in our
approach.

Green’s approach is used to fit polygons to contours in
digital images in [16], where split corresponds to inserting a
new vertex to the polygon and merge corresponds to removing

a vertex. The split and merge moves are based on a random
selection that is then evaluated and executed with a probability
corresponding to the outcome of the evaluation, e.g., a vertex
to be removed is randomly selected, and the probability of
its removal depends on the goodness of fit of the polygon
with this vertex removed. Not only has the algorithm required
a huge number of iterations (Green reported 20000 in some
experiments), but also the random selection seems to be
unintuitive from point of view of human visual perception.
Humans are able to identify good and bad fitting parts of a
given polygon by visual inspection. Thus, it seems to be more
intuitive to base the moves on local visual inspection rather
than on random selection.

In general, it seems to be reasonable to assume that a
decision whether to merge two mixture components to one
can be based on a similarity measure, i.e., we merge two
components to one if they are sufficiently similar. Clearly,
similarity of two mixture components can be expressed in
statistical framework. However, it is unclear whether the defi-
nition of similarity must be restricted to a statistical framework
only. In our domain specific solution, we base the definition of
similarity on principles of perceptual grouping. It is an open
question whether it is possible to express this definition in a
pure statistical framework.

B. Robot Mapping

Since polygonal maps are very attractive means to represent
range scan data, particularly due to their very compact size and
simplicity, several approaches have been proposed to obtain
such maps, the most recent ones being [3] and [17]. We do
not provide an overview of approaches to obtain polygonal
maps, since an excellent overview can be found in [3].

Sack and Burgard [2] use EM to obtain polygonal approxi-
mation of laser range data. As stated in [2] a crucial problem
when applying EM is the number of model components. The
algorithm in [2] applies the approach presented in Bennewitz
et al. [18], which uses BIC to estimate the number of model
components. In the proposed approach we use similarity of
model components to adjust the number of model components
in that similar components are merged. The other significant
difference is that we remove only parts of lines that do not
have sufficient support while the whole lines that have low
utility measured as function of EM weights are removed in
[2]. Additionally the experimental results in [2] demonstrated
that shorter linear structures were not approximated well
using the EM algorithm in [2]. Sack and Burgard [2] raised
the following question related the their EM algorithm: One
important question is, whether the EM based approach can
be extended to operate on line segments instead of lines.
Our approach provides a positive answer to this question.
Our algorithm approximates extremely well short as well
long linear structures as is demonstrated by our experimental
results.

One of the main differences in comparison to the existing
approaches, in particular to [17] and [3], is the fact that
information about the robot pose is not required in our



approach. In contrary, a robust estimation of robot pose is
an essential information required for merging segments in
[17]. The merging of polyline segments in [3] is based on
the distance between their endpoints, using a threshold of
15cm, which is often not capable to master the challenges.
Utilizing perceptual grouping overcomes these problems in our
approach.

The other significant difference in comparison to the exist-
ing approaches is the fact that the proposed approach can be
applied incrementally, which is mainly due to the excellent
performance of the proposed merging method. This allows us
to keep the size of data needed to incrementally construct
a global map very small. A global map G(t) at time t

is represented with polylines, and we only need G(t) and
the data points obtained from the last few scans to obtain
a new global map G(t + 1). Consequently, only a small
amount of computational resources is needed for a real time
implementation. Thus, our approach provides a solution to
the main issues raised in [3]: “The current system requires
a huge amount of computational resources and can only be
applied offline after the data has been recorded. In the future
we therefore will investigate how to speed-up the learning
process in order to obtain an on-line variant and to even
further increase the accuracy.

V. RELATION TO SLAM APPROACHES

The SLAM problem, the Simultaneous Localization and
Mapping problem [19] is of high importance to mobile
robotics. A solution to it is judged a prerequisite for true
autonomy. Consequently, it has received considerable attention
(see Thrun [20] for an overview). A relation between the
SLAM problem and map building is given by the common task
of place recognition, also termed the correspondence problem,
which is part of localization. Odometry information and scan
matching techniques provide good means for incremental
updates to estimate robot pose in the EM framework.

In the classical EM based approach to SLAM, there is a
fixed number of model components, which are robot poses.
In our framework, the model components, which are line
segments, are dynamically estimated. No information about
the robot poses, and consequently, no odometry information
is used in our framework. However, we can derive the robot
poses in our approach at any time, while we incrementally
build the global map.

VI. CONCLUSION

The combination of Expectation Maximization Segment
Fitting with alternating Segment Splitting and Merging was
proven to be a powerful tool to gain a polyline representation
of maps formerly consisting of laser range scanner reflection
points, leading to a geometrically higher representation and
an excellent data compression rate. The newly introduced,
perceptual grouping based merging step balances the number
of segments, created by partitioning and splitting, in a visually
natural way and therefore allows for the number of starting
segments and their positions to be imprecise.
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