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ABSTRACT 

 
This paper proposes a new approach for skeletonization 
based on the skeleton strength map (SSM) caculated by 
Euclidean distance transform of a binary image. After the 
distance transform and gradient are computed, isotropic 
diffusion is performed on the gradient vector field and the 
skeleton strength map is computed from the diffused vector 
field. A critical point set is then selected from local maxima 
of the SSM. The critical points are located on significant 
visual parts of the object. The skeleton is obtained by 
connecting the critical points with geodesic paths. This 
approach overcomes intrinsic drawbacks of distance 
transform based skeletons, since it yields stable and 
connected skeletons without losing significant visual parts.  
 
Index terms—Skeletonization, gradient vector field, 
isotropic diffusion, distance transform, skeleton strength 
map (SSM) 
 

1. INTRODUCTION 
 

Skeleton, also known as Medial Axis, is defined by the 
grassfire model [3] or with centers of maximum disks [4]. It 
is an important descriptor of object since it preserves the 
topological and geometrical properties. It is important for 
object representation and recognition in different areas, such 
as image retrieval and computer graphics, character 
recognition, image processing, and analysis of biomedical 
images.  

Broadly used skeletonization approaches can classified 
in four types: thinning algorithms, discrete domain 
algorithms based on the Voronoi diagram, algorithms based 
on distance transform, and algorithms based on 
mathematical morphology. Many algorithms based on 
distance transform compute the skeleton by detecting ridges 
on the distance transform surface [5][6][7]. Those 
algorithms can ensure the accurate localization of skeleton 
points but neither connectivity nor completeness, that is, the 
branches extracted may be disconnected and may not be able 
to represent all the significant visual parts. 

Siddiqi et al. [8] measure the average outward flux of the 
vector field that underlies the Hamiltonian system and 
combine the flux measurement with a homotopy preserving 
thinning process applied in a discrete lattice. This approach 
leads to a robust and accurate algorithm for computing 
skeletons in 2D as well as 3D. However, the error in 
calculating the flux is both limited by the pixel resolution 

and also proportional to the curvature of the boundary 
evolution front. This makes the exact location of endpoints 
difficult. Torsello et al. [9] overcome this problem by taking 
into account variations of density due to boundary curvature 
and eliminating the curvature contribution to the error. Aslan 
and Tari [10] present an unconventional approach for shape 
recognition using unconnected skeletons in the coarse level. 
This approach can leads to stable skeletons in the presence 
of boundary deformations, however, the obtained skeletons 
do not represent any shape details.  

The skeletons computed by the proposed approach are 
localized accurately in the middle between corresponding 
boundary curves in accord with the definition of medial axis. 
Moreover, the computed skeletons are guaranteed to be 
connected and complete (all significant visual branches are 
present). Details of the proposed approach are presented in 
Section 2. Experimental results that demonstrate the above 
properties are given in Section 3. 
 

2. EXTRACTION OF SKELETONS 
 

The basic idea of this approach is to select critical points 
from the skeleton strength map (SSM) and connect them by 
geodesic paths computed with Dijkstra’s shortest path 
algorithm [12]. The skeletonization process is demonstrated 
in Fig. 1.  

  
           (a)                      (b) 

  
           (c)                      (d) 

  
           (e)                      (f) 
Fig. 1 Illustration of skeletonization by this approach. (a) is 
the original image, (b) the distance transform of (a), (c) is 
the SSM, (d) is the local maxima, (e) is the critical point set 
extracted from (d), (f) is the final skeleton. 



Critical point selection from the SSM yields a complete set 
of critical points so that this approach does not miss visual 
parts. Finally, the critical points are connected with geodesic 
paths, which guarantees the connectivity of the obtained 
skeleton.  
 
2.1. Isotropic diffusion of the gradient vector field of the 
Euclean distance transform 
 
Distance transform )(rdt v is the distance of an interior point 
rv to the nearest boundary point. It is a scalar field and we 
can easily compute its gradient vector. However, here we 
first compute ||)()(||1)( rdtrGrf vvv ∗∇−= δ

to replace )(rdt v , 
where )(rG v

δ is the Gaussian kernel function, δ is its 
standard covariance and ∗ is the convolution operator. 

)(rf v can be treated as an inverted version of the smoothed 
gradient magnitude of )(rdt v . The main advantage of 
working with )(rf v in place of )(rdt v  is based on the fact the 
relative value between skeleton point and it neighbors is 
significantly larger for )(rf v than for )(rdt v . Therefore, we 
work with the gradient of )(rf v :  
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After the gradient vector field of )(rf v  is computed, the 
isotropic diffusion is performed. The diffusion process is 
ruled by a partial differential equation set as in [1], 
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Here, μ is the regular parameter, u, ν are two components of 
the diffused gradient vector field, xf and yf are the two 
components of )(rf v . Initializing u, ν with u0, ν0 in equation 
(2), the partial differential equation set (2) can be solved 
iteratively by finite difference technique. We denote by 

)(rgvf v  the diffused gradient vector field obtained by (2) at 
point rv .  

We use isotropic diffusion here because it makes the 
vectors propagate towards the actual location of the skeleton 
points. This is very important in order to get the accurate 
skeleton. Moreover, it is an efficient way of smoothing noise, 
which makes the extracted skeleton robust under boundary 
noise.   
 
2.2. Computation of the SSM and its local maxima 
 
To localize the skeleton points from the diffused gradient 
vector field, we compute a skeleton strength map (SSM) 
from it. In SSM the value at each point indicates the 
probability of being a skeleton point. The higher the value at 
a point, the more probable this point is a skeleton point. It is 
known that the skeleton points are located where two or 

more vectors confront. Based on this principle, the skeleton 
strength map is computed by adopting the formula from [2].  
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where )(rN v denotes the eight-neighbors of rv . Each of rv ’s 
eight-neighbors projects its vector to the unit vector pointing 
from rv to 'rv . The intensity of the SSM at rv is then assigned 
the value of the sum of projections if the sum is positive. 
The intuition is that if all rv ’s neighbors have gradient vector 
pointing to it, the intensity of SSM at rv is high and it is 

ly to be a skeleton point.  like   
Definition 1: A local maximum of SSM is a point rv whose 
distance transform )(rSSM v satisfies the condition
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Notice that from the definition, if the equality is achieved, 
some local maxima may be connected to form a connected 
region, usually a line, others may be isolated. In order to 
compute the geodesic curves that define the final skeleton, 
we select some isolated points from connected local maxima 
regions to represent them. Those isolated local maxima are 
defined as critical points in the next subsection.  
 
2.3. Critical point selection and connection 
 
2.3.1. Critical point selection 
Definition 2: For a given connected component of local 
maxima, we select a point with the lowest value of the 
gradient magnitude ||)()(|| rdtrG vv ∗∇ δ . We call it a critical 
point. We also call the endpoints of the connected 
component critical points.  
 
Our definition ensures that critical points correspond to 
significant visual parts of the object. Therefore, the obtained 
skeleton contains branches representing all significant visual 
parts. Notice that in the definition of the critical point, we 
also include the ends of the connected local maxima regions, 
because those points usually do not have minimum gradient 
magnitude. If they are not selected, the skeleton branches 
may be shortened. 
 
2.3.2. Critical points connection 
To connect the critical point set, a distance measure is 
defined on the surface of function f. 
Definition 3: Given an 8-connected path },...,{ 21 nrrrR vvv= , 

its gradient length is defined as ∑
=

=
n
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The gradient distance between two points rr and 'rv is 
defined as minimum over the gradient lengths of all 8-paths 
joining them. The 8-path with the smallest gradient distance 
is called a gradient path.  
 
The gradient path corresponds to a geodesic path on the 



surface defined by the original distance transform. It is 
computed with Dijkstra’s shortest path algorithm. 

After isotropic diffusion and computation of the SSM, 
this problem does not occur, because the SSM value depends 
not on the distance transform but the diffused gradient vector 
field. As shown in Fig. 2(b), in the lower-left part of the 
hand, there are some peaks, and therefore, critical points can 
be selected there as shown in Fig. 2(c). In addition, SSM 
values tend faster to zero when the distance form the 
skeleton increases. The final skeleton computed by our 
method is shown in Fig. 2(d).  

We obtain the skeleton by connecting the critical points 
with gradient paths. To begin, we choose the point having 
the maximum distance transform as the center of the 
skeleton and connect iteratively all the other critical points to 
it until all the critical points are connected.  
 

3. RESULTS AND DISCUSSION 
 A similar result is also shown for the skeleton of the 

camel in Fig. 3. Again the proposed method is able to 
compute skeleton branches in all significant visual parts (b), 
while this is not the case if the computation is based on the 
distance transform only (c). 

In this section, we show several example images and 
their skeletons extracted by the proposed approach, and 
compare them with the results based on distance transform 
only.  

Fig. 2 demonstrates the superiority of the propose 
approach in comparison to computing the skeleton directly 
on the distance transform map. The result of the proposed 
method is shown in the first row. The second row 
demonstrates the computation result based on the distance 
transform directly. Observe that the lower-left branch of the 
hand skeleton is missing in Fig. 2(h). As can be seen in (g) 
no critical points for this region are selected. This is due to 
the fact that the distance transform value in this region is 
always increasing, which is quite common for sub-arc like 
parts due to the nature of the distance transform. Hence true 
skeleton points find their distance transform always less than 
some of their 8 neighbors and are not selected as local 
maxima.

From Fig. 4, we can see that this approach yields 
comparable results as the method describe in Torsello and 
Hancock [9]. 

We tested our approach some other images in order to 
demonstrate its stability, completeness and connectedness. 
Fig.5 shows skeletons of four different bats. Although the 
shape variation is great, and the obtained skeletons have 
similar structure and are positioned accurately.  

Fig. 6 shows the skeletons of four rats whose shapes 
differ in some small boundary deformation. We can see that, 
this approach yields stable skeletons in this case as well. In 
all the examples, we choose δ =0.5 and μ=0.07.  
 

 

 
(a)              (b)             (c)      (d) 

 
           (e)              (f)              (g)      (h) 
Fig. 2 Comparison of results of this approach and the method based on distance transform only. (a) SSM of the hand shown in 
(d), (b) the SSM surface, (c) is the critical point set selected from the SSM. (d) the final skeleton computed by our method, (e) 
the distance transform of the hand, (f) the distance transform surface, (f) the critical point set selected from the distance 
transform, (h) the skeleton computed based on the critical points in (g).  
 



 
（a）        (b)           (c) 

Fig.3 Comparison of results of this approach and the method 
based on distance transform only. (a) The original figure. (b) 
The skeleton obtained by this approach (c) The skeleton 
computed using the distance transform only.  

.   

    

 
Fig. 4 Left column shows the original images, in middle are 
the skeletons computed by the method in [9], and the right 
column shows skeletons obtained by our approach.  
 

 
Fig. 5 Skeletons of four different bats of very different shape  
 

4. CONCLUSIONS AND FUTURE WORK 
 
We propose a new approach of skeletonization based on 
isotropic diffusion and computing the SSM of the distance 
transform. Because of the process of isotropic diffusion and 

computation of the SSM, this approach overcomes intrinsic 
drawbacks of methods based on the distance transform 
related to skeleton connectedness and completeness. Our 
further work will focus on extending this approach to 3D.  

 

  
Fig.6 Skeletons of four different rats of similar shape. 
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