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a b s t r a c t

We propose a novel shape descriptor for matching and recognizing 2D object silhouettes. The contour of
each object is represented by a fixed number of sample points. For each sample point, a height function is
defined based on the distances of the other sample points to its tangent line. One compact and robust
shape descriptor is obtained by smoothing the height functions. The proposed descriptor is not only
invariant to geometric transformations such as translation, rotation and scaling but also insensitive to
nonlinear deformations due to noise and occlusion. In the matching stage, the Dynamic Programming
(DP) algorithm is employed to find out the optimal correspondence between sample points of every
two shapes. The height function provides an excellent discriminative power, which is demonstrated by
excellent retrieval performances on several popular shape benchmarks, including MPEG-7 data set,
Kimia’s data set and ETH-80 data set.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Shape matching is a very critical problem in computer vision,
which has been widely used in many applications such as object
recognition (Belongie et al., 2002; Siddiqi et al., 1999), character
recognition (Tang and You, 2003; You and Tang, 2007), shape evo-
lution (Lewin et al., 2010), medical image and protein analysis
(Wang et al., 2011), robot navigation (Wolter and Latecki, 2004),
and topology analysis in sensor networks (Jiang et al., 2009), etc.
It is a very difficult problem, as shape instances from the same cat-
egory, which look similar to humans, are often very different when
measured with geometric transformations (translation, rotation,
scaling, etc.) and nonlinear deformations (noise, articulation and
occlusion). Compared to geometric transformations, the nonlinear
deformations are much more challenging for shape similarity mea-
sures. Therefore, one key problem of shape matching is to define a
shape descriptor which is informative, discriminative, and efficient
for matching process. A good shape descriptor should tolerate the
geometric differences of objects from the same category, but at the
same time should allow to discriminate objects from different
shape classes.

As stated in a previous study (Alajlan et al., 2007), shape
descriptors with only global or local information may probably fail
to be robust enough in these situations. Global descriptors are ro-
bust to local deformations, but they cannot capture local details of
ll rights reserved.
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shape boundary. Local descriptors are precise to represent local
shape features, while they are too sensitive to noise. In fact, it is al-
ways challenging to distinguish between noise and local details of
the shape boundary. Naturally, one solution to this problem is to
define a ‘‘rich’’ shape descriptor, which consists of both global
and local shape characteristics. By combining local and global
shape features, many recent works (Ling and Jacobs, 2007; McNeill
and Vijayakumar, 2006; Felzenszwalb and Schwartz, 2007; Alajlan
et al., 2007; Xu et al., 2009) achieved excellent performances on
the most popular benchmark: MPEG-7 data set (Latecki et al.,
2000).

Some other important requirements for a promising shape
descriptor include: computational efficiency, compactness, and
generality of applications. It is difficult to satisfy all of these
requirements. In this paper, we propose a novel shape descriptor
that captures both global and local shape features similar to recent
works. For each sample point, a height function is defined as a vec-
tor of distances of the other sample points to its tangent line. Then,
the whole shape contour is represented as a sequence of the height
functions. A further process called smoothing is performed on
these height functions to make the descriptor more compact and
insensitive to local deformations. After the proposed descriptor is
calculated, the Dynamic Programming algorithm is employed to
accomplish the shape matching task. Experiments in Section 4
demonstrate the excellent discriminative power of this novel
shape descriptor.

Using height functions to represent a shape is partly inspired by
a recent work (Liu et al., 2008), which provided a novel definition
of curvature to discover the extreme points along the curves with
the height functions in all the directions. This work demonstrates
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that the height functions of the sample points of a given contour
can represent the geometric changes and deformations. However,
the height function was not used in (Liu et al., 2008) as a kind of
shape descriptor for shape matching.

1.1. Related work

There are mainly two categories of shape descriptors: contour-
based and region-based methods. In general, contour-based shape
descriptors exploit only boundary information, and they cannot
capture shape interior content. Besides, these methods cannot deal
with complex shapes consisting of disjoint parts (Zhang and Lu,
2002). In region-based techniques, shape descriptors are derived
using all the pixel information within a shape region. In contrast
to contour-based approaches, region-based methods are more reli-
able for complex shapes such as trademarks, logos and characters
(Kim and Kim, 2000). However, (especially some early) region-
based methods consist of only global shape characteristics without
many important shape details. Therefore, their discriminative
power is limited for large databases or complex situations when
there are a lot of intra-class variations.

Some well known and recent works for the region-based shape
description include Zernike moments (Kim and Kim, 2000), generic
Fourier descriptor (Zhang and Lu, 2002), multi-scale Fourier-based
description (Direkoglu and Nixon, 2008) and so on. In (Kim and
Kim, 2000), a region-based shape descriptor is presented utilizing
a set of the magnitudes of Zernike moments. This descriptor has
many desirable properties such as rotation invariance, robustness
to noise, fast computation and multi-level representation for shape
description (Kim and Kim, 2000). Zhang and Lu (2002) propose a
generic Fourier descriptor (GFD), which is extracted from spectral
domain by applying 2-D Fourier transform on polar raster sampled
shape image. Compared with Zernike moments, GFD has no redun-
dant features and allows multi-resolution feature analysis in both
radial and angular directions (Zhang and Lu, 2002). In (Direkoglu
and Nixon, 2008), the authors believe that the boundary and exte-
rior parts create much more contributions to object recognition
than the central part. Based on this observation, they produce
new multi-scale Fourier-based descriptors in 2-D space, which rep-
resent the boundary and exterior parts of an object and also allow
the central part to contribute to shape classification slightly
(Direkoglu and Nixon, 2008).

As there have been a lot of contour-based works on shape
representation and matching, we only review the most recent
approaches. In the last decade, several contour-based shape
descriptors have been presented and studied, which are ‘‘rich’’
descriptors with both global and local information. These methods
include curvature scale space (CSS) (Mokhtarian et al., 1997), mul-
ti-scale convexity concavity (MCC) (Adamek and OĆonnor, 2004),
triangle area representation (TAR) (Alajlan et al., 2007, 2008), hier-
archical procrustes matching (HPM) (McNeill and Vijayakumar,
2006), shape tree (Felzenszwalb and Schwartz, 2007), contour flex-
ibility (Xu et al., 2009), shape context (SC) (Belongie et al., 2002),
inner-distance shape context (IDSC) (Ling and Jacobs, 2007) and
so on.

One type of ‘‘rich’’ descriptors is defined in a multi-scale space.
curvature scale space (CSS) (Mokhtarian et al., 1997) and multi-
scale convexity concavity (MCC) (Adamek and OĆonnor, 2004)
are two classical descriptors of this type. In both of them, contour
convolution is performed using Gaussian kernel smoothing. By
changing the sizes of Gaussian kernels, several shape approxima-
tions of the shape contour at different scales are obtained. The
descriptors are defined based on these shape approximations. For
CSS, a shape feature called Curvature Scale Space image is defined,
which records the locations of curvature zero crossings on all
evolved curves; the maxima of the curvature zero-crossing
contours in the Curvature Scale Space image are used to represent
shapes (Mokhtarian et al., 1997). For MCC, the displacements of
contour sample points between every two consecutive scale levels
are calculated, which are used to represent contour convexities and
concavities at different scale levels (Adamek and OĆonnor, 2004).
The main limitation for this type of descriptors is that it is difficult
to determine the optimal parameter of each scale. Another prob-
lem of CSS is that CSS is not a good choice for convex shapes, as
there is no curvature zero crossing for convex objects.

Another type of multi-scale descriptors is defined directly on
the original shape contours without any preprocessing, including
triangle area representation, hierarchical procrustes matching
and shape tree. triangle area representation (TAR) (Alajlan et al.,
2007, 2008) presents a measure of convexity/concavity of each
contour point using the signed areas of triangles formed by bound-
ary points at different scales. The area value of every triangle is a
measure for the curvature of corresponding contour point, and
the sign of the area is positive, negative or zero when the contour
point is convex, concave or on a straight line, respectively. This rep-
resentation is effective in capturing both local and global charac-
teristics of a shape (Alajlan et al., 2007).

Hierarchical procrustes matching (HPM) (McNeill and Vijayaku-
mar, 2006) and shape tree (Felzenszwalb and Schwartz, 2007) are
two classical segment-based shape matching algorithms. In both of
them, closed shape contours are divided into curve segments hier-
archically, and the matching process is performed by comparing
these segments explicitly. In HPM (McNeill and Vijayakumar,
2006), the contour of each shape is divided into overlapped seg-
ments with relative arc length percentages 50%, 25% and 12.5% of
the whole length. HPM achieves segment matching in a global to
local direction, i.e., longer segments that have already been
matched together provide an initial match for shorter segments
(McNeill and Vijayakumar, 2006). For shape tree, one curve can
be broken into two halves by the middle point on it, and each of
the two sub-curves can be broken into its halves. This hierarchical
description is represented by a binary tree called the shape tree.
When matching two curves A and B, they build a Shape Tree for
curve A and search a mapping from points in A to points in B such
that the shape tree of A is deformed as little as possible (Felzensz-
walb and Schwartz, 2007). Shape tree achieves high retrieval rates
on both MPEG-7 data set (87.70%) and Kimia’s data set (see in Sec-
tion 4). However, it suffers from an expensive computational
complexity.

Another interesting hierarchical approach is proposed by Payet
and Todorovic (2009), which convents the contour matching prob-
lem into a graph matching framework for the first time. The shape
representation in (Payet and Todorovic, 2009) based on salient
contour parts is similar to Felzenszwalb and Schwartz (2007).

Contour flexibility (Xu et al., 2009) is a kind of rich descriptor
for planar contours, which depicts the deformable potential at each
point along a curve. Contour flexibility provides the information
about how extensively the neighborhood of a contour point is con-
nected to the main body and about the deformation tolerance of an
object at this point. This method achieves an excellent retrieval re-
sult of 89.31% on MPEG-7 data set.

Besides the above descriptors, there is another type of rich
descriptors, for which the geometric relationship between contour
sample points is utilized. This type of descriptors includes Shape
Context and Inner-Distance Shape Context. For every sample point,
Shape Context (SC) (Belongie et al., 2002) captures the spatial distri-
bution of all the other sample points relative to it. The spatial distri-
bution is represented by a coarse histogram, and the bins in the
histogram are uniform in log-polar space, which makes the descrip-
tor more sensitive to nearby sample points than to points farther
away (Belongie et al., 2002). To make contour-based shape descrip-
tors articulation insensitive, Ling and Jacobs proposed one novel



136 J. Wang et al. / Pattern Recognition Letters 33 (2012) 134–143
distance definition called inner distance as a replacement for the
Euclidean distance. The inner distance is defined as the length of
the shortest path between landmark points within the shape silhou-
ette. Using the inner distance, Shape Context can be extended to a
novel descriptor called Inner-Distance Shape Context (IDSC) (Ling
and Jacobs, 2007). One limitation for the inner distance is that the
shape boundary is assumed to be known prior to the computation.

Besides improving shape descriptors, there is now growing inter-
est in learning context-sensitive or contextual similarity (Yang et al.,
2008, 2009; Bai et al., 2010,; Kontschieder et al., 2009) from a collec-
tion of pairwise similarities among the database (context) and using
this context to infer semantic similarities between query shapes/
images against the database and to perform concept-based informa-
tion retrieval. As pointed out by Yang et al. (2008), a ‘‘good’’ similar-
ity between a query shape q and a known shape p should describe
the relationship between q and p in the context of the database.
The solution of this intuition in (Yang et al., 2008) is to compute a
new similarity s for a given similarity measure s0 by a graph trans-
duction method named Label Propagation (LP). With the similar
manner to Yang et al. (2008), Locally Constrained Diffusion Process
(LCDP) (Yang et al., 2009) was developed to explore the contextual
information, which achieves better performances on several shape
benchmarks than LP (Yang et al., 2008). Another contribution of
Yang et al. (2009) is that a few ghost objects are constructed and
added into the similarities space to enhance the contextual informa-
tion. Then, Egozi et al. (2010) proposed a contextual similarity func-
tion named Meta Similarity (MS) which is to characterize a given
shape by its similarity to its K-NN database shapes. One advantage
of MS is the low time complexity as it does not require propagating
the similarities. Finally, an interesting context learning method
called Contextual Dissimilarity Measure (CDM) (Jegou et al., 2007)
is motivated by an observation that a good ranking is usually not
symmetrical in image search, which is mainly designed for image
search problem. To sum up, a new similarity is usually learned
through these context-sensitive approaches, which significantly im-
proves the performance of shape retrieval and classification. We
combine the shape similarities obtained by the proposed method
and a contextual similarity method (Yang et al., 2009), then achieve
the best ever score 96.45% on MPEG-7 data set.

The main contribution of this paper is a novel shape descriptor
for matching and recognizing planar shape contours that is:

(1) simple and easy to compute (see the definition of the pro-
posed descriptor in Section 2).

(2) invariant to geometric transformations such as translation,
rotation and scaling (see the analysis in Section 2).

(3) insensitive to nonlinear deformations (see the analysis in
Section 2 and experimental results in Section 4).

(4) compact and computationally efficient (see the analysis in
Sections 4.1 and 4.6).

The remainder of this paper is organized as follows. Section 2
presents the novel descriptor based on height functions in details.
Section 3 discusses the shape matching algorithm we use, along
with the similarity measure. Section 4 presents the experiments
and discusses the computational complexity. Finally, Section 5
draws some conclusions.

2. Shape descriptor with height functions

Let X = {xi} (i = 1, . . . ,N) denotes the sequence of equidistant
sample points on the outer contour of a given shape, where the
index i is according to the order of the sample points along the
contour in counter-clockwise direction. In our implementation,
we set N = 100, which is consistent with the setting in (Adamek
and OĆonnor, 2004; Ling and Jacobs, 2007).
To compute the height functions, the most important step is to
determine the axes. The method (Liu et al., 2008) which computes
the height values in all the directions in some discrete angle steps
is not favorable for efficient shape matching due to the high time
complexity and limited angular resolution. Therefore, we do not
consider any fixed angular directions, but instead adjust the angu-
lar direction for each sample point. Here the key observation is that
the tangent line provides an excellent reference line for height
functions. For each sample point xi, we denote as its reference axis
the tangent line li. The tangent line li inherits its orientation from
the contour orientation, i.e., its direction is always starting from
xi�1 to xi+1, where the point indices are considered modulo N.

Then, the distance between the jth (j = 1, . . . ,N) sample point xj

and the tangent line li is defined as a height value hi,j. Moreover, we
give the height value hi,j a symbol. Specifically, the height value hi,j

is positive, negative or zero when the jth sample point xj is to the
left of, to the right of or just on the axis li. Obviously, the positive/
negative symbol of the height value makes a more precise repre-
sentation for the relative location of the point xj to the axis li: we
know not only the distance, but also which side it stands on. Note
that some height values may be negative especially when the point
xi is in a concave part of the shape X, and the contour of X is divided
into two or more parts by the axis li consequently. Fig. 1(a) shows
an example of the proposed height values. In Fig. 1(a), the height
function is defined for the sample point xi. The height value hi,v is
positive as the sample point xv is to the left of the axis li, and the
height values hi,u, hi,w are negative as the corresponding sample
points xu, xw are both to the right of the axis li.

We calculate the height values of every sample point to the axis
li. Then the shape descriptor of the point xi with respect to the
shape X is the ordered sequence of the height values
Hi ¼ ðh1
i ;h

2
i ; . . . ;hN

i Þ
T ¼ ðhi;i;hi;iþ1; . . . ;hi;N;hi;1; hi;2; . . . ;hi;i�1ÞT ; ð1Þ
where hi,j (j = 1, . . . ,N) denotes the height value of the jth sample
point xj according to the reference axis li of the point xi. Note that
the height values in this sequence is in the order of the sequence
of sample points {xi} (i = 1, . . . ,N), always starting from hi,i, the
height value of the sample point xi itself to its reference axis li.
We observe that h1

i ¼ hi;i ¼ 0 for every i = 1, . . . ,N. We treat Hi as a
column vector.

The proposed descriptor Hi depends not only on the direction of
the reference axis li, but also on the location of the sample point xi

on the shape contour X. In Fig. 1(b), the height descriptors for three
sample points xi, xw and xu are given. It is obvious that our descriptor
may be totally different even if the reference axis has nearly the
same direction. This leads to a strong discriminative power to find
out the correct correspondence between the sample points from
two shapes.

Since the reference axis and the height values are defined di-
rectly on the sample points, the proposed descriptor explicitly con-
tains the information of geometric relationship of the sample
points. This makes the height function representation invariant
to translations and rotations, as all the sample points will translate
and rotate synchronously and the geometric relationship between
them will remain unchanged.

However, the descriptor defined above consists of the relative
location for EVERY SINGLE sample point to the reference axis. Such
a precise description may be too sensitive to local boundary defor-
mations. One solution to this problem is to smooth the predefined
descriptor Hi in Eq. (1) without losing too much geometric infor-
mation. A simple strategy is adopted here: for a given integer k
(1 < k < N), we divide the sequence of integers 1,2, . . . ,N into
disjoint intervals [1,k], [k + 1,2k], . . . , and compute the mean value
of the height values in each interval:



Fig. 1. Height functions. The ‘‘heart’’ shape is selected from MPEG-7 data set (Latecki et al., 2000). (a) The height function for the sample point xi. (b) Height descriptors for
different sample points with similar axis direction.
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f j
i ¼

1
k

Xjk

t¼ðj�1Þkþ1

ht
i ; ð2Þ

where j = 1, . . . ,M with M = bN/kc (the integer part of N/k), and the
arithmetic is modulo N. In this way, we obtain a new feature vector
representing the smoothed height values of the sample point xi as

Fi ¼ ðf 1
i ; f

2
i ; . . . ; f M

i Þ
T
: ð3Þ

Fi can be regarded as a smooth version of Hi. The smoothing process
not only makes the descriptor more stable to local deformations but
also reduces its dimensionality from N to M by the ratio k, since
k > 1 and M < N consequently. For example, if N = 100 and k = 5,
then the dimensionality of the descriptor is reduced to M = 20.

For every sample point xi (i = 1, . . . ,N), we get a descriptor Fi

(i = 1, . . . ,N). As the proposed descriptor of the shape X, we define
a matrix

F ¼ FðXÞ ¼ ðF1; F2; . . . ; FNÞ: ð4Þ

We observe that F is an M � N matrix with column i being the
shape descriptor Fi of the sample point xi. In our implementation,
the values of N and M are 100 and 20, respectively.

In order to make our shape representation scale invariant, we
row wise normalize F by dividing by the maximal absolute value
of each row:

f j
i ¼

f j
i

maxt¼1;...;Nfjf j
t jg

: ð5Þ

Separated from the usual normalization process by some global
measure for the shape contour, the normalization according to Eq.
(5) can be regarded as local normalization. A detailed analysis for
the advantages of this kind of normalization is given in (Alajlan et
al., 2007). Consequently, the value of each entry in the matrix F
after normalization is in the interval [�1,1].

3. Similarity measure using the height descriptor

For the task of shape recognition, usually a shape similarity or
dissimilarity (distance) is computed by finding the optimal corre-
spondence of contour points, which is used to rank the database
shapes for shape retrieval. In this paper, we use Dynamic Program-
ming (DP) algorithm to find the correspondence. Then the shape
dissimilarity is the sum of the distances of the corresponding
points.

To match two shapes X, Y (represented by two sequences of
sample points), the dissimilarity between any pair of points should
be computed. Let p, q denote contour points of X, Y, respectively,
and Fp, Fq denote their height features. The cost (distance) of
matching p and q is computed by comparing their height features:

cðp; qÞ ¼
XM

t¼1

xtjf t
p � f t

q j; ð6Þ

where xt is the weight coefficient for every component of the
height feature. In order to be able to tolerate boundary deforma-
tions, the differences of the height values of points further away
from points p and q are treated as less important than the differ-
ences of points closer to p and q. To achieve this, the weight coeffi-
cients are set as follows:

xt ¼
1

minft;M � tg : ð7Þ

Given two shapes X = {xi} and Y = {yi} for i = 1, . . . ,N, we compute
c(xi,yj) for i, j = 1, . . . ,N. Then with DP we compute an optimal corre-
spondence g⁄ :X ? Y such that

PN
i¼1cðxi; g�ðxiÞÞ is minimal. Finally

the dissimilarity between the two shapes is given by
DPminðX;YÞ ¼
XN

i¼1

cðxi; g�ðxiÞÞ: ð8Þ

One additional factor in measuring shape dissimilarity is shape com-
plexity, which has been used by MCC (Adamek and OĆonnor, 2004)
and TAR (Alajlan et al., 2007, 2008) to improve the shape similarity
measure. The idea comes from the observation that humans are
generally more sensitive to contour deformations when the com-
plexity of the contour is lower (Adamek and OĆonnor, 2004). The
novel descriptor defined in Section 2 can be easily utilized to define
the shape complexity:

CðXÞ ¼ 1
M

XM

t¼1

std f t
1; f

t
2; . . . ; f t

N

� �
; ð9Þ

where std denotes the standard deviation. Note that the shape com-
plexity defined here is different from those defined in (Adamek and
OĆonnor, 2004; Alajlan et al., 2007). In (Adamek and OĆonnor,
2004; Alajlan et al., 2007), the difference between the maximum
and minimum value of each row of the descriptor matrix is used
and averaged instead of the standard deviation used here. We make
this change to make the shape complexity values more stable.

The dissimilarity or distance between two shapes X, Y normal-
ized by their shape complexity values is given by

DCNðX;YÞ ¼ DPminðX;YÞ
bþ CðXÞ þ CðYÞ ; ð10Þ

where the factor b, which is used to avoid divide-by-zero, is set
empirically.
4. Experiments and analysis

In this section, we show that the proposed method achieves
encouraging results on three popular benchmarks: MPEG-7 data
set (Latecki et al., 2000), Kimia’s 99 data set (Sebastian et al.,
2004) and ETH-80 data set (Leibe and Schiele, 2003). We also give
an analysis for the computational complexity of the proposed
method.

4.1. MPEG-7 data set

The MPEG-7 data set (Latecki et al., 2000) is widely used for
testing the performances of shape descriptors in the last decade.
This database consists of 1400 silhouette images which are
grouped into 70 classes with 20 objects per class. Some shapes
from different categories are similar, and there are always some
complex deformations for the shapes within the same category.
Some examples for this data set are given in Fig. 2(a). The retrieval
rate on MPEG-7 data set is measured by the so-called bull’s eyes
score which counts how many objects within the 40 most similar
objects belong to the class of the query object. Every shape in the
data set is used as a query, and the retrieval result for the whole
data set is obtained by averaging among all shapes.

In Table 1, the overall retrieval rates on MPEG-7 database for
the novel height based descriptor and other recent important
methods are put together. We observe that the proposed method
DPmin outperforms almost all the other shape descriptors even
without using the global information of shape complexity pre-
sented in Section 3. When shape complexity is further used to nor-
malize the shape distance based on DPmin, the overall retrieval rate
of the proposed method (with DCN) is 90.35%, the first result over
90.0% for methods only with shape descriptors (without context
information among the database). Respectively, the best perfor-
mance ever reported is 89.62% by the Locally Affine Invariant
Descriptors (Wang and Liang, 2010).



Fig. 2. Databases used in the experiments, (a) Some examples from MPEG-7 data set (Latecki et al., 2000). (b) Kimia’s 99 data set (Sebastian et al., 2004). (c) ETH-80 data set
(Leibe and Schiele, 2003).

J. Wang et al. / Pattern Recognition Letters 33 (2012) 134–143 139
Note that a shape recognition scheme can be easily performed
here based on the pairwise shape matching scores by one kind of
very simple classifier: one nearest neighbor (1NN). With the
leave-one-out procedure, every one of the 1400 shapes in the data-
base is used as a test input, and the recognition result is considered
correct if the closest (non-identical) match in the database is in the
same category as the query shape (Super, 2006). Experiment shows
that height functions achieves an excellent result comparative with
some recent approaches. With DCN, the recognition rate is 98.86%,
which equals the state-of-art result reported by Variational Shape
Matching (Nasreddine et al., 2010). This result is followed by that
of Symbolic Representation (Daliri and Torre, 2008) (98.57%), Class
Segments Set (Sun and Super, 2006) (97.93%), and Polygonal Mul-
tiresolution (Attalla and Siy, 2005) (97.79%). The value of our result
means that only 16 out of 1400 shapes are assigned to the wrong
class, which is a rather low error rate.

For the experiments on MPEG-7 data set, we set k = 5 so that the
height descriptor for each sample point is a vector with the size 20
(i.e., M = 20), which is significantly smaller than that of SC (5 dis-
tance scales and 12 angle scales for building the histogram, thus
60 bins in total (Belongie et al., 2002)), that of IDSC (8 distance
scales and 12 angle scales, thus 96 bins in total (Ling and Jacobs,
2007)) and that of TAR (the number of scales is b(N � 1)/2c, i.e.,
the integer part of (N � 1)/2, which is 63 when N = 128 (Alajlan
et al., 2007, 2008)). Although the proposed descriptor leads to a
more compact representation, we achieved better retrieval perfor-
mance than these descriptors. This is because our descriptor in-
cludes not only the height value of each sample point but also
the order information of the sample points along the contour
(see Eq. (1)).

Besides the retrieval and recognition experiments on MPEG-7
data set, we show that the similarities obtained by the proposed
method can be improved by combining them with a context-sensi-
tive learning method: Locally Constrained Diffusion Process (LCDP)
(Yang et al., 2009). Table 2 shows the result and compares it to
other context-sensitive methods. With LCDP, our method achieves
the best ever score 96.45% on MPEG-7 data set.

For LCDP, we set the number of nearest neighbors K1 = 8 and the
number of iterations r = 18. When converting distance matrices to
affinity matrices, the parameters for Gaussian kernel are set as
K2 = 31 and a = 0.34. Details of these parameters can be checked
in (Yang et al., 2009).

4.2. Kimia’s data set

The Kimia’s data set (Sebastian et al., 2004) is also widely used
in shape matching and classification. It contains 99 images from
nine categories (as shown in Fig. 2(b)). There are some occlusions,



Table 1
Bull’s eyes scores on MPEG-7 data set (Latecki et al., 2000).

Algorithm Score (%)

Height functions + shape complexity 90.35
Height functions 89.66
Locally affine invariant descriptors (Wang and Liang, 2010) 89.62
Contour flexibility (Xu et al., 2009) 89.31
Variational shape matching (Nasreddine et al., 2010) 89.05
Layered graph (Lin et al., 2009) 88.75
Two strategies (Temlyakov et al., 2010) 88.39
Aspect shape context (Ling et al., 2010) 88.30
Hierarchical parts (Payet and Todorovic, 2009) 88.30
Hilbert curve (Ebrahim et al., 2009) 88.30
Shape tree (Felzenszwalb and Schwartz, 2007) 87.70
TAR + shape complexity + global (Alajlan et al., 2007) 87.23
TAR + shape complexity (Alajlan et al., 2008) 87.13
SC + DP (Bai et al., 2010) 86.80
HPM (McNeill and Vijayakumar, 2006) 86.35
Symbolic representation (Daliri and Torre, 2008) 85.92
IDSC + DP (Ling and Jacobs, 2007) 85.40
Planar graph cuts (Schmidt et al., 2009) 85.00
MCC + shape complexity (Adamek and OĆonnor, 2004) 84.93
Polygonal multiresolution (Attalla and Siy, 2005) 84.33
Fixed correspondence (Super, 2006) 84.05
Optimized CSS (Mokhtarian et al., 1997) 80.54
Generative model (Tu and Yuille, 2004) 80.03
Skeletal contexts (Xie et al., 2008) 79.92
Distance set (Grigorescu and Petkov, 2003) 78.38
SC + TPS (Belongie et al., 2002) 76.51

Table 2
Bull’s eyes scores of descriptors combined with context-sensitive methods on MPEG-
7 data set (Latecki et al., 2000).

Algorithm Score

Height functions + LCDP 96.45
Aspect shape context + LCDP (Ling et al., 2010) 95.96
Two strategies + LCDP (Temlyakov et al., 2010) 95.60
IDSC + mutual graph (Kontschieder et al., 2009) 93.40
IDSC + SSP (Wang et al., 2011) 93.35
IDSC + LCDP (Yang et al., 2009) 93.32
SC + LP (Bai et al., 2010) 92.91
ZGM + SC + meta descriptor (Egozi et al., 2010) 92.51
IDSC + LP (Bai et al., 2010) 91.61
GM + IDSC + meta descriptor (Egozi et al., 2010) 91.46
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missing parts, and articulations in this data set. Thus, it is popular
for both contour-based approaches and skeleton-based ones. In the
experiment, every shape in the database is considered as a query,
and the retrieval result is summarized as the number of top 1 to
top 10 closest matches in the same class (excluding the query it-
self). The best possible result for each of the ranking is 99. Table
3 lists the results of height functions and some other recent meth-
ods. Our method performs comparably with some recent ap-
proaches such as perceptual strategies (Temlyakov et al., 2010),
Table 3
Retrieval results on Kimia’s 99 data set (Sebastian et al., 2004).

Algorithm 1st 2nd 3rd

SC (Belongie et al., 2002) 97 91 88
Generative model (Tu and Yuille, 2004) 99 97 99
Path similarity (Bai and Latecki, 2008) 99 99 99
Hierarchical parts (Payet and Todorovic, 2009) 99 99 98
Shock Graph (Sebastian et al., 2004) 99 99 99
IDSC (Ling and Jacobs, 2007) 99 99 99
TAR (Alajlan et al., 2007) 99 99 99
Shape tree (Felzenszwalb and Schwartz, 2007) 99 99 99
GM + SC (Egozi et al., 2010) 99 99 99
Two strategies (Temlyakov et al., 2010) 99 99 99
Height functions 99 99 99
Symbolic representation (Daliri and Torre, 2008) 99 99 99
shape tree (Felzenszwalb and Schwartz, 2007) and geometric
shape matching (Egozi et al., 2010). The best performance on this
data set is achieved by Symbolic Representation (Daliri and Torre,
2008).
4.3. ETH-80 data set

The ETH-80 data set (Leibe and Schiele, 2003) contains eight
categories of objects with 10 objects per category. For each object,
41 color images from different viewpoints are provided. Thus there
are 3,280 (8 � 10 � 41) images in total in this database. 80 in-
stances (one image/viewpoint for every object) of this data set
are given in Fig. 2(c).

The intended test mode is leave-one-object-out cross-validation.
That is, we train with 79 objects and test with the one unknown
object. Recognition is considered successful if the object is assigned
to the correct category label. The final result is achieved by averag-
ing over all 80 objects (Leibe and Schiele, 2003).

Table 4 lists the results of height functions and some other sin-
gle-cue methods. Again, the proposed method achieves an excel-
lent recognition rate, which outperforms all methods except for
only one result (comparable) reported by Symbolic Representation
(Daliri and Torre, 2008).

4.4. Matching and retrieval under noisy conditions

The experiments on the above three commonly used data sets
have demonstrated the effectiveness of the proposed method.
However, the shapes are usually quite smooth in these data sets.
To evaluate the performance of our descriptor under noisy condi-
tions, we add Gaussian noise to shape boundaries and perform
matching between the noise-deformed shapes.

We use Kimia’s 99 data set (Sebastian et al., 2004) as the origi-
nal shape boundaries. Noise is added by perturbing all pixels on
each shape contour in both x- and y-coordinates by values drawn
from a Gaussian random variable with zero mean and standard
derivation r. As the parameter r increases, we add increasing
Gaussian noise to the shape boundaries. Fig. 3 shows an example
of shape boundaries with increasing Gaussian noise.

The test mode is the same as in Section 4.2. We evaluate our
method along with two other kinds of classical descriptors, SC
and IDSC. In this experiment, we use 8 distance scales and 12 angle
scales for building the histograms of both SC and IDSC. In the
matching stage, we use dynamic programming algorithm for all
of the three methods. Table 5 lists the results of height functions,
SC and IDSC with different Gaussian noise levels. Under low level
noisy conditions (when r 6 0.4), our method outperforms SC and
IDSC; when noise becomes serious, i.e., when r P 0.6, the three
methods perform comparably.

To make it easier to compare the performances of our method
with other descriptors, Fig. 4 shows the results of the 2nd, 5th, 8th,
4th 5th 6th 7th 8th 9th 10th

85 84 77 75 66 56 37
98 96 96 94 83 75 48
99 96 97 95 93 89 73
98 98 97 96 94 93 82
98 98 97 96 95 93 82
98 98 97 97 98 94 79
98 98 97 98 95 93 80
99 99 99 99 97 93 86
99 99 99 99 97 93 86
98 99 99 99 97 96 84
99 98 99 99 96 95 88
98 99 98 98 95 96 94



Table 4
Recognition rates on ETH-80 data set (Leibe and Schiele, 2003).

Algorithm Score (%)

Symbolic representation (Daliri and Torre, 2008) 90.28
Height functions + shape complexity 89.73
Height functions 88.72
IDSC + DP (Ling and Jacobs, 2007) 88.11
SC + DP (Leibe and Schiele, 2003) 86.40
SC greedy (Leibe and Schiele, 2003) 86.40
PCA masks (Leibe and Schiele, 2003) 83.41
PCA gray (Leibe and Schiele, 2003) 82.99
Mag-lap (Leibe and Schiele, 2003) 82.23
DxDy (Leibe and Schiele, 2003) 79.79
Color histogram (Leibe and Schiele, 2003) 64.85

Fig. 3. An example of shape boundaries with increasing Gaussian noise. (a) The
original shape boundary. The parameter r from (b) to (e) increases from 0.2 to 0.8.
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and 10th top matches separately. The performances of the three
methods with respect to increasing noise levels are put together.
Note that all data in Fig. 4 is selected from Table 5. From the results
we find that, for the 2nd and 5th top matches, our method outper-
forms SC and IDSC; for the 8th and 10th top matches, the three meth-
ods perform comparably.
4.5. The settings of parameters

There are three parameters in the proposed method: k, the num-
ber of consecutive sample points when we smooth the original
height functions; k, the penalty factor in the DP algorithm; and b,
the factor when we improve the shape distances with shape
complexity.

For different data sets, the three parameters are adjusted accord-
ingly to achieve the optimal retrieval results. For MPEG-7 data set,
the best result is achieved when k = 5, k = 0 and b = 0.19. For Kimia’s
99 data set, these parameters are set as k = 5, k = 0.1 and b = 0.46. For
Table 5
Retrieval results on Kimia’s 99 data set (Sebastian et al., 2004) with contours perturbed b

r Algorithm 1st 2nd 3rd

0 SC 99 97 97
IDSC (Ling and Jacobs, 2007) 99 99 99
Height functions 99 99 99

0.2 SC 99 97 96
IDSC 99 97 97
Height functions 99 99 99

0.4 SC 99 97 96
IDSC 99 97 97
Height functions 99 99 99

0.6 SC 99 96 97
IDSC 99 97 97
Height functions 99 99 99

0.8 SC 99 97 97
IDSC 99 97 97
Height functions 99 99 98
ETH-80 data set, the optimal values for the parameters are k = 5, k = 0
and b = 0.023. We find that the optimal values for the parameters k
and k are quite stable over different data sets. On the contrary, the
optimal value for the parameter b is not that stable. One possible
explanation to the instability of b is given here. As defined by Eq.
(10), the effect of the parameter b is not only to avoid divide-by-zero,
but also to help to achieve a more reasonable distance (DCN) be-
tween two shapes. As Eq. (10) makes use of the summation of b
and the shape complexity values as the normalization factor, the
optimal value of b is closely dependent on the shape complexity val-
ues. For example, if the shape complexity values for one database are
all between 0 and 1, then we cannot set b = 10,000; if the value of b is
too large, the parameter b will be dominant, and the distance be-
tween shapes will not get any improvement through Eq. (10). More-
over, from Eq. (9) we know that the shape complexity is directly
defined on the descriptor-height functions, i.e., dependent on char-
acteristics of every shape. Different shapes (from different dat-
abases) have different shape complexity values. As a result, the
optimal value of the parameter b varies for different data sets.

In noisy shape matching experiments, parameter value adjust-
ment is performed in a similar manner. For different noise levels,
the parameters are adjusted accordingly to achieve the optimal re-
trieval results. As we test three descriptors (height functions, SC,
and IDSC) under noisy conditions, we introduce the parameter set-
tings for each method one by one. For the proposed method, there
are three parameters as stated in previous paragraphs. In all noise
levels, the optimal value of the parameter k is set to 5. The value of
the parameter k is set to 0.1 under low level noisy conditions
(when r 6 0.4), and is set to 0.2 when noise becomes serious
(i.e., when r P 0.6). The optimal value of the parameter b varies
under different noise levels: the optimal value is 0.46, 0.68, 0.27,
0.37, and 0.49 when r = 0, 0.2, 0.4, 0.6, and 0.8, respectively. Again,
we find that the optimal values for the parameters k and k are quite
stable when the proposed method is used for different noise levels,
and the optimal value for the parameter b varies.

For the experiments of SC and IDSC under noisy conditions,
there is only one parameter-k, the penalty factor in the DP algo-
rithm. The value of this parameter is set manually depending on
the noise level in the experiment. For SC, its value is 0.0, 0.9, 0.9,
0.5, and 0.5 when r = 0, 0.2, 0.4, 0.6, and 0.8, respectively. For IDSC,
the corresponding value is 0.3 (this value is given in (Ling and Ja-
cobs, 2007)), 0.8, 0.7, 1.0, and 0.6.

The parameter k has no significant influence to the final retrie-
val result when the value is in some proper range. Fig. 5 illustrates
the changes of the retrieval result of the proposed method (DPmin)
on MPEG-7 data set as a function of the parameter k. The retrieval
rate remains stable above 89.3% when 2 6 k 6 9.
y adding Gaussian noise with the parameter r = 0, 0.2, 0.4, 0.6 and 0.8.

4th 5th 6th 7th 8th 9th 10th

97 97 97 96 98 95 87
98 98 97 97 98 94 79
99 98 99 99 96 95 88

97 97 97 96 95 95 85
97 97 96 98 95 95 82
99 99 98 98 95 94 88

97 96 98 96 96 94 83
97 97 97 96 96 94 82
99 98 98 97 95 94 84

97 97 98 94 91 93 86
97 96 97 97 93 94 83
99 98 97 97 94 91 80

97 96 97 97 95 91 80
97 97 97 98 94 92 80
98 98 98 95 92 92 78



Fig. 4. The (a) 2nd, (b) 5th, (c) 8th, and (d) 10th top matches of the methods with respect to increasing noise levels on Kimia’s 99 data set (Sebastian et al., 2004).

Fig. 5. The changes in retrieval rate of the proposed method (DPmin) on MPEG-7
data set when the parameter k changes.

142 J. Wang et al. / Pattern Recognition Letters 33 (2012) 134–143
4.6. Analysis of time complexity

The calculation of the shape descriptor and shape matching are
two independent stages for the proposed method, and the com-
plexity of height functions and matching are evaluated separately
here. Assume there are N uniform sample points for every shape
contour, k consecutive sample points when we smooth the original
height functions, and M is the dimension number of the height
vector.

To compute height functions, the signed distances from all sam-
ple points to every axis need to be calculated. According to Eq. (1), for
the height vector of every sample point, there are N � 1 distances to
be calculated (the only exception is the distance of the sample point
itself, as h1

i ¼ hi;i ¼ 0 for every i = 1, . . . ,N), thus the time complexity
of obtaining the original height vectors is O(N(N � 1)) = O(N2). Then,
the height vectors are smoothed according to Eq. (2), and there are M
values to be calculated for every height vector. This process takes a
complexity of OðMNÞ ¼ 1

k OðN2Þ. Finally, the row wise normalization
according to Eq. (5) for the M � N matrix defined by Eq. (3) takes a
complexity of OðMNÞ ¼ 1

k OðN2Þ. Thus the total computational com-
plexity for calculating the height functions for every shape contour
is OðN2Þ þ 1
k OðN2Þ þ 1

k OðN2Þ ¼ 1þ 2
k

� �
OðN2Þ. This complexity is com-

parable to that of SC (Belongie et al., 2002) and TAR (Alajlan et al.,
2007, 2008), and is significantly less than that of IDSC, which is
O(N3) (Ling and Jacobs, 2007).

In the matching stage, to match a pair of shapes, the time com-
plexity of calculating feature distances according to Eq. (6) is
O(N2), and then the DP algorithm takes a complexity of O(N3). The to-
tal computational complexity for the matching stage is
O(N2) + O(N3) = O(N3), which equals the complexity of many ap-
proaches (such as MCC (Adamek and OĆonnor, 2004) and IDSC (Ling
and Jacobs, 2007)).
5. Conclusions and future works

We presented a new shape representation and matching meth-
od based on the height functions of each sample contour point. The
height function for one sample point includes the distances of all
the other sample points to its tangent line. Height functions consist
of not only the height value of every sample point, but also the or-
der of the sample points along the shape contour. The smoothing
process for the original height sequences makes the proposed
descriptor more compact and insensitive to local deformations.
Although the proposed descriptor is very simple, it achieves excel-
lent retrieval results, which makes it attractive for adoption in dif-
ferent applications. The experiments on three popular benchmarks
proved that the proposed method is effective under both geometric
transformations and nonlinear deformations. In a word, the height
functions is easy to implement, computationally efficient, and with
an excellent performance in shape matching and retrieval tasks.

Several extensions of the proposed approach are possible. In
this paper, height functions is only used for binary images to ana-
lyze the outer closed contour of objects. It is possible to include the
inner contours in addition to the outer contour, which would re-
quire an order definition of the sample points. One simple way
would be to order the sample points according to their projections
on the tangent line of the reference point. Moreover, it is possible
to apply height functions into the hierarchical matching
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frameworks such as (Felzenszwalb and Schwartz, 2007; Payet and
Todorovic, 2009) to obtain a more confident shape similarity mea-
sure due to its compact and discriminative description.
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