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complement. For example, in Fig. 1a a continuous analog
of the eight-point digital set is the union of the eight cubes.By a segmented image, we mean a digital image in which

each point is assigned a unique label that indicates the object In the graph interpretation of a digital image, a face in a
to which it belongs. By the foreground (objects) of a segmented surface of a continuous analog corresponds to a pair of 6-
image, we mean the objects whose properties we want to analyze adjacent points (p, q), where p belongs to the object and
and by the background, all the other objects of a digital image. q belongs to its complement [9]. A different approach is
If one adjacency relation is used for the foreground of a 3D taken in Kong and Roscoe [10], where, for example, a cube
segmented image (e.g., 6-adjacency) and a different relation belongs to a continuous analog of a (6, 26) binary digital
for the background (e.g., 26-adjacency), then interchanging picture if all of its eight corners belong to the digital object
the foreground and the background can change the connected

(set of black points), and a face of a cube belongs to thecomponents of the digital picture. Hence, the choice of fore-
surface of a continuous analog of a digital object if theground and background is critical for the results of the subse-
four corners of the face belong to the boundary of thequent analysis (like object grouping), especially in cases where
digital object. For example, in Fig. 1b such a continuousit is not clear at the beginning of the analysis what constitutes
analog of the eight-point digital set is the single cube thatthe foreground and what the background, since this choice
has the eight points as its corners. If we treat the cornersimmediately determines the connected components of the digi-
of faces as points of a (6, 26) digital picture, then thetal picture. A special class of segmented digital 3D pictures

called ‘‘well-composed pictures’’ will be defined. Well-com- corresponding digital surface is composed of picture points.
posed pictures have very nice topical and geometrical proper- Such surfaces are analyzed in Morgenthaler and Rosenfeld
ties; in particular, the boundary of every connected component [14], Kong and Roscoe [10], Francon [6], and Chen and
is a Jordan surface and there is only one type of connected Zhang [3, 4].
component in a well-composed picture, since 6-, 14-, 18-, and We will interpret Z3 as the set of points with integer
26-connected components are equal. This implies that for a coordinates in 3D space R3. We will denote the set of the
well-composed digital picture, the choice of the foreground and

closed unit upright cubes which are centered at points ofthe background is not critical for the results of the subsequent
Z3 by C, and the set of closed faces of cubes in C by F ,analysis. Moreover, a very natural definition of a continuous
i.e., each f [ F is a unit closed square in R3 parallel toanalog for well-composed digital pictures leads to regular prop-
one of the coordinate planes.erties of surfaces. This allows us to give a simple proof of a

A three-dimensional digital set (i.e., a finite subset ofdigital version of the 3D Jordan–Brouwer separation
theorem.  1997 Academic Press Z3) can be identified with a union of upright unit cubes

which are centered at its points. This gives us an intuitive
and simple correspondence between points in Z3 and cubes

1. INTRODUCTION in R3. Since this correspondence plays an important role
in this paper, we will describe it formally.

In this paper 3D well-composed pictures are defined and The continuous analog CA(p) of a point p [ Z3 is the
their properties are analyzed. Their definition is based on closed unit cube centered at this point with faces parallel
the concept of a continuous analog. There are actually two to the coordinate planes. The continuous analog of a digital
different approaches to define a continuous analog of a set X (i.e., X # Z3) is defined as CA(X) 5 <hCA(x) :
digital picture. In Artzy et al. [2], Herman [9], and Rosen- x [ X j (see Fig. 1a). Formally, CA is a function CA :
feld et al. [18], a point of a 3D digital image is interpreted P (Z3) R P (R3). In particular, we have C 5 hCA(p) :
as a unit cube in R3, digital objects are interpreted as p [ Z3j.
connected sets of cubes, and the surface of an object is the We also define a dual function Dig[ to CA which we
set of faces of the cubes that separate the object from its call subset (or element) digitization: Dig[ : P (R3) R P (Z3)

is given by Dig[(Y) 5 hp [ Z3 : p [ Y j. Clearly, we
have Dig[(CA(X)) 5 X for every X # Z3. The equation1 E-mail: latecki@informatik.uni-hamburg.de.
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3D WELL-COMPOSED PICTURES 165

k-adjacent to p and N *k (p) denotes N k(p) \hpj, where
k 5 6, 18, 26. N 26(p) is also referred to as N (p) and
is called the neighborhood of p, whereas N 26(p) \hpj is
referred to as N *(p).

A common face of two cubes centered at points p, q [
Z3 (i.e., a unit square parallel to one of the coordinate
planes) can be identified with the pair (p, q). Such pairs
are called ‘‘surface elements’’ in Herman [9], since they
are constituent parts of object surfaces. We can extend CA
to apply also to pairs of points by defining CA((p, q)) 5
CA(p) > CA(q) for p, q [ Z3 and CA(B) 5 <hCA(x) :

FIG. 1. There are actually two different approaches to define a contin-
x [ Bj, where B is a set of pairs of points in Z3. In particular,uous analog of a digital picture.
we have F 5 hCA((p, q)) : p, q [ Z3 and p is 6 adjacent
to qj.

The (face) boundary of a continuous analog CA(X) of
a digital set X # Z3 is defined as the union of the set ofCA(Dig[(Y)) 5 Y holds only if Y # R3 is a union of some

cubes in C. closed faces each of which is the common face of a cube
in CA(X) and a cube not in CA(X). Observe that theWe will define a 3D digital picture as well-composed if

the boundary surface of its continuous analog is a 2D face boundary of CA(X) is just the topological boundary
bdCA(X) in R3. The face boundary bdCA(X) can also bemanifold (i.e., it ‘‘looks’’ locally like a planar open set).

This definition implies a simple correspondence between a defined using only cubes of the set CA(X) as the union
of the set of closed faces each of which is a face of exactly3D digital image and the boundary surface of its continuous

analog when digital objects are identified with unions of one cube in CA(X). We have bdCA(X) 5 bdCA(X c),
where X c 5 Z3 \X is the complement of X. The (6-) bound-cubes centered at their points. Thus, we can use well-

known properties of continuous boundary surfaces, like the ary of a digital set X # Z3 can be defined as the set of pairs
Jordan–Brouwer separation theorem, to determine and
analyze properties of these digital images. Additionally, bd6X 5 h(p, q) : p [ X and q Ó X and p is 6 adjacent to qj.
since we will study boundary surfaces, some of our results
also apply to surfaces spanned on boundary points of digi- We have bdCA(X) 5 CA(bd6X) 5 CA(bd6(X c)).
tal pictures. For example, conditions given in Theorem 4.2 Two distinct faces f1 , f2 [ F are edge-adjacent if they
also apply to the simple closed surfaces in the Morgenthaler share an edge, i.e., if f1 > f2 is a line segment in R3. Two
and Rosenfeld sense. distinct faces f1 , f2 are corner-adjacent if they share a vertex

Since we identify cubes (voxels) with points in Z3 at but not an edge, i.e., if f1 > f2 is a single point in R3.
which they are centered, the following definitions apply as In Latecki et al. [12] a special class of subsets of 2D
well for cubes in R3 as for points in Z3. binary digital pictures called ‘‘well-composed pictures’’ is

Two distinct points p, q [ Z3 are said to be face-adjacent defined. The idea is not to allow the ‘‘critical configuration’’
if cubes CA(p) and CA(q) share a face, or equivalently, shown in Fig. 2 to occur in a digital picture. Note that this
if two of the coordinates of p, q are the same and the third critical configuration can be detected locally.
coordinates differ by 1. Two distinct points p, q [ Z3 are The 2D well-composed pictures have very nice topologi-
said to be edge-adjacent if cubes CA(p) and CA(q) share cal properties; for example, the Jordan curve theorem
an edge but not a face (i.e., CA(p) > CA(q) is a line holds for them, their Euler characteristic is locally comput-
segment), or equivalently, if one of the coordinates of p, q able, and they have only one connectedness relation, since
is the same and the other two coordinates differ by 1. Two 4-connectedness and 8-connectedness are equivalent.
distinct points p, q [ Z3 are said to be corner-adjacent if Therefore, when we restrict our attention to well-com-
cubes CA(p) and CA(q) share a vertex but not an edge posed pictures, a number of very difficult problems in digi-
(i.e., CA(p) > CA(q) is a single point), or equivalently, tal geometry, as well as complicated algorithms, become
if all three of the coordinates of p, q differ by 1.

Two points are said to be 6-adjacent (6-neighbors) if
they are face-adjacent, 18-adjacent (18-neighbors) if they
are face- or edge-adjacent, and 26-adjacent (26-neighbors)
if they are face-, edge-, or corner-adjacent. A set X , Z3

is k-adjacent to a point p [ Z3 if there exists q [ X such
that p and q are k-adjacent, where k 5 6, 18, 26.

FIG. 2. Critical configuration for non-well-composed 2D pictures.N k(p) denotes the set containing p [ Z3 and all points
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relatively simple. This is demonstrated in Latecki et al. [12]
on the example of thinning algorithms. There are practical
advantages in applying thinning algorithms to well-com-
posed pictures. The thinning process (sequential as well as
parallel) is greatly simplified. We proved that the skeletons
obtained are ‘‘one-point thick.’’ Thus, the problems with
irreducible ‘‘thick’’ skeletons disappear. On the other
hand, if a set lacks the property of being well-composed,
the digitization process that gave rise to it must not have
been topology preserving, since the results in Gross and
Latecki [8] show that if the resolution of a digitization FIG. 3. A digital picture (Z3, X) is well-composed iff the critical

configurations of cubes (1) and (2) (modulo reflections and rotations) doprocess is fine enough to ensure the topology preservation,
not occur in CA(Xk) for k 5 0, 1.then the segmented 2D image must be well-composed.

An important motivation for 2D well-composed pictures
were connectivity paradoxes which occur if only one adja-
cency relation (e.g., 4-adjacency) is used in the whole pic-

l(p) 5 l(q). Similarly, we can define a-paths and a-compo-ture. Such paradoxes are pointed out in Rosenfeld and
nents.Pfaltz [15] (see also Kong and Rosenfeld [11]). The most

Recall that a subset X of R3 is a 2D manifold if eachpopular solution was the idea of using different adjacency
point in X has a neighborhood homeomorphic to R2.relations for the foreground and the background: 8-adja-

cency for black points and 4-adjacency for white points, or DEFINITION. We will call a 3D digital picture (Z3, X)
vice versa (first recommended in Duda et al. [5]). Rosenfeld well-composed if bdCA(X) is a 2D manifold.
[16] developed the foundations of digital topology based
on this idea and showed that the Jordan curve theorem is Since bdCA(X) 5 bdCA(X c), (Z3, X) is well-composed

iff (Z3, X c) is well-composed. This definition can be visual-then satisfied. However, the solution with two different
adjacency relations does not work if one wants to distin- ized by Proposition 2.1, which shows the equivalence of

this definition to two simple local conditions on cubes inguish more than two colors, i.e., to distinguish among dif-
ferent objects in a segmented image, as shown in Latecki the continuous analog.
[13]. The same paradoxes appear in 3D segmented images.

PROPOSITION 2.1. A digital picture (Z3, X) is well-com-In the following we will define and analyze 3D segmented
posed iff the following critical configurations of cubes (1)‘‘well-composed pictures’’ in which the connectivity para-
and (2) (modulo reflections and rotations) do not occur indoxes do not occur.
CA(Xk) for k 5 0, 1 (see Fig. 3), where X1 5 X and X0 5 X c:

2. DEFINITION OF 3D WELL-COMPOSED PICTURES (1) Four cubes share an edge and exactly two of them
which do not share a face are contained in CA(Xk) and the

We will interpret Z3 as the set of points with integer other two are not contained in CA(Xk).
coordinates in 3D space R3. We denote by (Z3, X), where (2) Eight cubes share a corner point and exactly two of
x # Z3, a binary digital picture (Z3, l), where l : Z3 R h0, them which are corner-adjacent are contained in CA(Xk)
1j is given by l(p) 5 1 iff p [ X. We assume that either while the other six are not.
X or its complement X c is finite and nonempty.

A binary digital picture is obtained from a segmented Proof. ‘‘⇒’’ Evidently, if (Z3, X) is well-composed,
then configurations (1) and (2) do not occur in CA(Xk),picture if some set of points X is distinguished (e.g., points

of the same color), which is treated as the foreground, since any interior point of the common edge of the two
cubes in CA(Xk) in (1) and the common vertex of the twoand all the other points are lumped together to form the

background. Usually, each point in X is assigned value 1 cubes in (2) do not have neighborhoods homeomorphic to
R2 for k 5 0, 1 (see Fig. 3).(i.e., black) and each point in X c is assigned value 0 (i.e.,

white). Therefore, we will sometimes denote X by X1 and ‘‘⇐’’ Assume now that configurations (1) and (2) do not
occur in CA(X) where X 5 Xk for k 5 0, 1. We recall thatX c by X0 .

Let a-adjacency denote the ordinary adjacency relation, the face boundary bdCA(X) is the union of the set of
closed faces each of which is the common face of a cubewhere a [ h6, 18, 26j. We could also use other adjacency

relations, e.g., 14-adjacency, which is defined for 3D binary in CA(X) and a cube in CA(X c). Clearly, if a point x [
bdCA(X) lies in the interior of some square containedpictures in Gordon and Udupa [7]. We say that two points

p, q [ Z3 are a-adjacent in digital picture (Z3, l) if p and in the boundary bdCA(X), than x has a neighborhood
homeomorphic to R2.q are a-adjacent and p and q have the same color, i.e.,
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Adding a fifth cube will transform the configurations 5d,
5e, or 5f of boundary faces to configuration 5c, which is
now viewed as having five cubes in CA(X). Adding a sixth
cube will transform configuration 5c of boundary faces (of
five cubes) to configuration 5b, which is now viewed as
having six cubes in CA(X). Adding a seventh cube willFIG. 4. In the continuous analog of a 3D well-composed picture,
yield configuration 5a of boundary faces of seven cubes inexactly two boundary faces can have a common edge.

CA(X). Thus, we have shown that boundary faces of
CA(X) that contain point x can only have the six configu-
rations in Fig. 5 (modulo rotations and reflections). nNow we consider the case in which x [ bdCA(X) lies

in the interior of some line segment that is an edge con- Observe that the six face neighborhoods of a corner
tained in the boundary bdCA(X). Since configuration (1) point shown in Fig. 5 are exactly the same as shown in
does not occur in CA(X), boundary faces of CA(X) that Chen and Zhang [4] and in Francon [6]. In Artzy et al. [2]
contain point x can have only one of the two configurations the digital 3D sets that do not contain configuration (1) in
shown in Fig. 4 (modulo rotations and reflections). Thus, Fig. 3 (modulo reflections and rotations) are defined as
x has a neighborhood homeomorphic to R2. solid. However, configuration (2) can occur in a solid set.

It remains to consider the case in which x [ bdCA(X) As a simple consequence of Proposition 2.1, we obtain the
is a corner point of bdCA(X). In this case eight cubes following equivalent definition of well-composedness:
share x as their common corner point; some of them are

PROPOSITION 2.2. A digital picture (Z3, X) is well-com-contained in CA(X) and some are not. By simple analysis
posed iff for any corner point x [ bdCA(X), the boundaryof all possible configurations of the eight cubes, we will
faces of CA(X) that contain x have one of the six configura-obtain that boundary faces of CA(X) that contain point
tions shown in Fig. 5 (modulo reflections and rotations).x can have only the configurations shown in Fig. 5 (modulo

rotations and reflections). This implies that x has a neigh- Proof. ‘‘⇒’’ If (Z3, X) is well-composed, the configu-
borhood homeomorphic to R2. rations (1) and (2) (modulo reflections and rotations) do

We start this analysis with one cube q , R3 whose corner not occur in CA(Xk) for k 5 0, 1, by Proposition 2.1. By
point is x such that q 5 CA(p) for some point p [ X , the second part of the proof of Proposition 2.1, we obtain
Z3. If all other cubes whose corner point is x are contained that if configurations (1) and (2) do not occur in CA(Xk),
in CA(X c), then boundary faces of q that contain x form then the boundary faces of CA(X) that contain point x
the configuration in Fig. 5a. If there is one more cube r can have only the configurations shown in Fig. 5.
contained in CA(X) that shares x with q, r must share a ‘‘⇐’’ Since every point y [ bdCA(Xk) is an interior
face with q, since configurations (1) and (2) are not allowed. point (in the 2D sense) of one of the configurations of
Thus, boundary faces of q < r that contain x form configu- faces shown in Fig. 5, y has a neighborhood homeomorphic
ration in Fig. 5b. By similar arguments, if we add a third to R2. Thus, (Z3, X) is well-composed. n
cube, we only obtain configuration 5c of boundary faces.

Observe that there is only one connectedness relation onIf we add a forth cube, we obtain one of the configurations
faces contained in the boundary of the continuous analog5d, 5e, or 5f.
CA(X) of a well-composed picture (Z3, X): A set of bound-
ary faces S is a corner-connected component of bdCA(X)
iff S is an edge-connected component of bdCA(X).

Since every boundary bdCA(X) is a finite union of some
set of closed faces S, i.e., bdCA(X) 5 < S, the statement
that bdCA(X) is a simple closed surface means here that
bdCA(X) is a connected 2D manifold in R3. Hence, we
obtain the following proposition as a direct consequence
of the definition of a well-composed picture.

PROPOSITION 2.3. A digital picture (Z3, X) is well-com-
posed iff every component of bdCA(X) is a simple
closed surface.

Observe also that a set of X # Z3 is well-composed iff
CA(X) is a bordered 3D manifold, where a closed setFIG. 5. In the continuous analog of a 3D well-composed picture, only
A # R3 is a bordered 3D manifold if every point in A has athese configurations of boundary faces can occur around a corner point

of the object boundary. neighborhood homeomorphic to a relatively open subset of
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Finally, we assume the negation of condition (C2). Let
x, y in X be two 26-adjacent points such that there is no
6-path joining x to y in N (x) > N (y) > X. This implies
that configuration (2) or configuration (1) occurs in
CA(X). n

The following proposition implies that there is only one
kind of connected components in a well-composed picture,
since 26-, 18-, and 6-connected components are equal.

PROPOSITION 2.5. Let (Z3, X) be a well-composed pic-
ture. Then each 26-component of Xk is a 6-component of

FIG. 6. The slightly larger black balls illustrate in (a) the intersection Xk and each 18-component of Xk is a 6-component of Xk ,
N 18(x) > N 18(y) of two 18- but not 6-adjacent points x and y, and in

where k 5 0, 1.(b) the intersection N (x) > N (y) of two 26- but not 18-adjacent points
x and y.

Proof. Let x 5 x1 , x2 , . . . , xn 5 y be a 26-path joining
x to y in Xk . By condition (C2) in Proposition 2.4, for any
two 26-neighbors xi , xi11 , i 5 1, . . . , n 2 1, there is a 6-

a closed half-space in R3. Now we give a ‘‘digital character- path joining xi to xi11 in Xk . Thus, there exists a 6-path
ization’’ (using only points in Z3) of well-composed pictures. joining x to y in Xk . The argument for 18-components

is similar. nPROPOSITION 2.4. A 3D digital picture (Z3, X) is well-
composed iff the following conditions hold for k 5 0, 1
(where X1 5 X and X0 5 X c):

3. JORDAN–BROUWER SEPARATION THEOREM
(C1) for every two 18-adjacent points x, y in Xk , there

is a 6-path joining x to y in N 18(x) > N 18(y) > Xk and An important motivation for introducing 3D well-com-
posed pictures is the following digital version of the(C2) for every two 26-adjacent points x, y in Xk , there
Jordan–Brouwer separation theorem. We recall that in ais a 6-path joining x to y in N (x) > N (y) > Xk .
digital picture (Z3, X) either X1 5 X or its complement

Proof. Let X 5 Xk , where k 5 0, 1. We show first that X0 5 X c is finite and nonempty.
the negation of condition (C1) is equivalent to the fact

THEOREM 3.1. If a 3D digital picture (Z3, X) is well-that configuration (1) (Fig. 3) occurs in CA(X).
composed, then for every connected component S ofIf configuration (1) occurs in CA(X), then there exists
bdCA(X), R3 \S has precisely two connected componentsfour distinct points x, y [ X and a, b Ó X such that CA(x),
of which S is the common boundary.CA(y), CA(a), CA(b) share an edge. Then x, y [ X are 18-

but not 6-adjacent in X. Figure 6a shows the intersection
Proof. The proof of this theorem folllows directly from

N 18(x) > N 18(y) of two 18- but not 6-adjacent points x Theorem 3.2, which is stated at the end of this section. It
and y. It is easily seen that there is no 6-path joining x to is sufficient to observe that by Proposition 2.2, a connected
y in N 18(x) > N 18(y) > X. component of bdCA(X) is a strongly connected polyhedral

Conversely, if there exists two 18-adjacent points x, y in surface without boundary, which we define below. n
X such that there is no 6-path joining x to y in N18(x) >
N 18( y) > X, then x and y are 18- but not 6-adjacent. Note that if a digital picture is not well-composed, Theo-
Hence cubes CA(x) and CA(y) share an edge, and the rem 3.1 does not hold, for example, if X is a two-point
other two cubes that share the same edge are not contained digital set such that CA(X) is as shown in Fig. 3.
in CA(X). Therefore, the configuration (1) (Fig. 3) occurs Now we define polyhedral surfaces in R3. They were
in CA(X), and, by Proposition 2.1, (Z3, X) is not well-com- used in Kong and Roscoe [10] to prove 3D digital analogs
posed. of the Jordan Curve Theorem. Let n $ 0 and let hTi : 0 #

Now we show that if configuration (2) (Fig. 3) occurs in i # nj be a set of closed triangles in R3. The set <hTi :
CA(X), then condition (C2) does not hold. Let x, y [ X 0 # i # nj is called a polyhedral surface if the following
be such that CA(x) and CA(y) form configuration (2). conditions both hold:
Then x, y [ X are 26- but not 18-adjacent in X. Figure 6b

(i) If i ? j, then Ti > Tj is either a side of both Ti andshows the intersection N (x) > N (y) of two 26- but not
Tj or a corner of both Ti and Tj or the empty set.18-adjacent points x and y. It is easily seen that the other

six points in N (x) > N (y) do not belong to X. Therefore, (ii) Each side of a triangle Ti is a side of at most one
other triangle.there is no 6-path joining x to y in N (x) > N ( y) > Xk .
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The (1D) boundary of a polyhedral surface S 5 <hTi : precisely two components X1 and X2 , <S is the common
boundary of X1 and X2 , and the binary digital picture (Z3,0 # i # nj is defined as <hs : s is a side of exactly one Tij.

Observe that this definition produces the same boundary Dig[(X1)) is well-composed.
of S for every dissection of S into triangles fulfilling (i)

The proof of this theorem will be given below. Observeand (ii). We say that S is a polyhedral surface without
that the implication ‘‘⇐’’ in Theorem 4.1 would not beboundary if the boundary of S is the empty set. A polyhe-
true if the set Dig[(X1) were not well-composed. Let S 5dral surface S is strongly connected if for any finite set of
bdCA(D), where D is a digital set of 1’s in the followingpoints F # S, the set S \F is polygonally connected, where
2 3 2 3 2 configuration (on a background of 0’s).the definition of a polygonally connected set is the fol-

lowing:
If u and v are two distinct points in R3, then uv denotes 1 0 1 1

1 1 0 1the straight line segment joining u to v. Suppose n $ 0
and hxi : 0 # i # nj is a set of distinct points in R3 such
that whenever i ? j, xixi11 > xjxj11 5 hxi , xi11j > hxj , xj11j,

Then R3 \S has precisely two components, but S is not athen arc(x0 , xn) 5 hxixi11 : 0 # i , nj is a simple polygonal
simple closed surface, since the common corner of thearc joining x0 to xn . We call a subset S of R3 polygonally
six black (i.e., 1-) voxels does not have a neighborhoodconnected if any two points in S can be joined by a simple
homeomorphic to R2.polygonal arc contained in S.

To better understand the equivalence in Theorem 4.1,Now we can state the Jordan–Brouwer separation theo-
we consider again the six simple local configuration of facesrem for a strongly connected polyhedral surface without
shown in Fig. 5.boundary. This theorem is a very important result of com-

binatorial topology (e.g., see Aleksandrov [1]). It was ap- THEOREM 4.2. If S , F is a finite and nonempty set of
plied in Kong and Roscoe [10] to establish separation theo- faces in R3, then the following conditions are equivalent:
rems for digital surfaces:

(i) <S is a simple closed surface (i.e., <S is a connected
THEOREM 3.2. If S is a strongly connected polyhedral and compact 2D manifold in R3);

surface without boundary then R3 \S has precisely two com-
(ii) S is corner-connected and for every corner point

ponents, and one of the components is bounded. S is the
x [ <S, the boundary faces of S that contain x as their

boundary of each component.
corner point have one of the six configurations shown in
Fig. 5 (modulo reflections and rotations).Our proof is Theorem 3.1 is based on the Jordan–

Brouwer separation theorem stated in Theorem 3.2, which Proof. ‘‘(i) ⇒ (ii)’’ Since <S is a simple closed surface,
is a powerful tool of combinatorial topology. Therefore, each point x [ <S has a neighborhood homeomorphic to
it seems to be an interesting question whether it is possible R2. Thus, in particular, each corner point x of a face in S
to derive a simple proof of Theorem 3.1 directly in dis- has a neighborhood homeomorphic to R2. By simple case
crete topology. checking (similar to one in the second part of the proof

of Proposition 2.1), it can be shown that Fig. 5 shows all
possible configurations (modulo rotations and reflections)

4. PROPERTIES OF BOUNDARY FACES of faces in F that share a common corner point x such
that x has a neighborhood homeomorphic to R2. Now sinceRecall that we interpret Z3 as a set of points with integer
<S is connected, the set of faces S must be corner-con-coordinates in the space R3, C is a set of closed unit upright
nected. Thus, we obtain (i) ⇒ (ii).cubes which are centered at points of Z3, and F is a set

‘‘(ii) ⇒ (i)’’ We assume (ii). Then every point in theof closed faces of cubes in C ; i.e., each f [ F is a unit
2D interior of a face in S, clearly has a neighborhoodclosed square in R3 parallel to one of the coordinate planes.
homeomorphic to R2. Since every edge belongs to exactlyNote that C 5 hCA(p) : p [ Z3j and F 5 hCA((p, q)) :
two faces in S, every point of an edge (except the twop, q [ Z3 and p is 6 adjacent to qj. We also recall that
corner points) has a neighborhood homeomorphic to R2.the function Dig[ : P (R3) R P (Z3) is defined by Dig[(Y)
Since for every corner point x of a face in S, the set of5 hp [ Z3 : p [ Y j. We begin this section with a theorem
faces sharing x has one of the six configurations of facesrelating well-composed pictures to simple closed surfaces
shown in Fig. 5, x has a neighborhood homeomorphic tocomposed of faces in F .
R2. Thus, <S is a 2D manifold. <S is a connected subset
of R3, since S is corner-connected. Since <S is a finiteTHEOREM 4.1. Let S , F be a finite and nonempty set

of faces in R3. <S is a simple closed surface i.e., <S is a union of closed squares in R3, <S is compact. Therefore,
<S is a simple closed surface. nconnected and compact 2D manifold in R3) iff R3 \<S has
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Now we are ready to prove Theorem 4.1. 3. If q [ S and q is 6-adjacent to p, then q is 26-adjacent
to both C1(p) and C2(p).

Proof of Theorem 4.1. ‘‘⇒’’ Let <S be a simple closed
We will interpret the points of a digital picture (Z3, X,surface. Then S satisfies condition (ii) of Theorem 4.2.

6, 26) as points of the following subset of the space R3:Consequently, <S is a strongly connected polyhedral sur-
face without boundary. By Theorem 3.2, R3 \<S has pre-
cisely two components X1 and X2 , and <S is the common Z3 1 As 5 h(k 1 As, l 1 As, m 1 As) : k, l, m [ Zj.
boundary of X1 and X2 . It remains to show that the digital
picture (Z3, Dig[(X1)) is well-composed. To avoid confusions, we will denote (Z3, X, 6, 26) by

Note that Dig[(X1) is the set of black points and (Z3 1 (1/2), X, 6, 26) in the subsequent considerations. In
Dig[(X2) is the set of white points in (Z3, Dig[(X1)). Since this way, the points of the digital picture (Z3 1 (1/2), X,
Xi < <S 5 CA(Dig[(Xi)), we have, for i 5 1, 2 <S 5 6, 26) are the corner points of cubes in C (that are centered
bd(CA(Dig[(Xi))). Thus, the boundaries of the sets of at points of Z3) and also the corner points of faces in F .
black and white points are 2D manifolds. We obtain that Hence the boundary faces of pictures (Z3 1 (1/2), X, 6,
(Z3, Dig[(X1)) is well-composed. 26) and pictures (Z3, X) are the same. The continuous

‘‘⇐’’ Since (Z3, Dig[(X1)) is a well-composed picture, analog of surfaces made of image points is defined in Kong
bd(CA(Dig[(X1))) is a 2D manifold. Since the closed set and Roscoe [10]. Based on this definition, a Kong’s continu-
X1 < <S is a union of some cubes in C, we obtain X1 < ous analog KA(S) of a M–R surface S # Z3 (treated as a
<S 5 CA(Dig[(X1)). Hence <S 5 bd(CA(Dig[(X1))), digital picture (Z3 1 (1/2), S, 6, 26)) is the union of all
which means that <S is a 2D manifold in R3. faces f [ F such that all four corner points of f are in S.

Since <S is a finite union of closed squares in R3, it is By the results in Chen and Zhang [4] (Theorems 2.1 and
compact. It remains to show that <S is connected. If <S 4.1), for every point x in a M–R surface S # Z3 1 (1/2),
were not connected, then there would be more than two the faces in KA(S) that contain x (as their corner point)
components of R3 \<S, since every connected component have one of the six configurations shown in Fig. 5 (modulo
of <S would be a strongly connected polyhedral surface reflections and rotations). By Theorem 4.2 ((ii) ⇒ (i)), we
without boundary, and, therefore, it would satisfy Theo- obtain that KA(S) of a M–R surface S is a simple closed
rem 3.2. n surface in R3.

From Theorem 4.1, it follows that R3 \KA(S) has pre-
cisely two components X1 and X2 , KA(S) is the common5. SURFACES IN THE SENSE OF MORGENTHALER
boundary of X1 and X2 , and the binary digital pictureAND ROSENFELD
(Z3, Dig[(X1)) is well-composed. Consequently, we obtain
KA(S) 5 bdCA(Dig[(X1)). Thus, every M–R surfaceIn our approach we treat the surface of a digital object
(Z3, 1 (1/2), S, 6, 26) can be interpreted as the boundaryX # Z3 as described in Herman [9], i.e., as the set of pairs
surface of the well-composed digital picture (Z3, Dig[(X1)).of 6-adjacent points (p, q), where p [ X and q [ X c. In

However, it is not the case that for every boundarythis way, these pairs correspond to faces of cubes in CA(X)
surface S 5 bdCA(X) in a binary well-composed digitalthat are contained in bdCA(X). In computer vision litera-
picture (Z3, X), the digital set (Z3 1 (1/2), Dig[(S), 6, 26)ture, a surface of a 3D digital object is also interpreted as
is a M–R surface. The reason is that although S , R3 isbeing composed of image points. This approach is taken
simple closed surface, the region surrounded by Dig[(S)in Morgenthaler and Rosenfeld [14], where digital simple
can contain none of the points in Z3 1 (1/2). For example,closed surfaces are defined with a goal that they have the
the digital image (Z3, p) with a single black point p is well-Jordan separability property; i.e., if S # Z3 is a simple
composed and S 5 bdCA(p) is the boundary of a unitclosed surface, then Z3 \S has precisely two components.
cube centered at p. However, the digital set Dig[(S) ,We will call a digital simple closed surface in the sense of
Z3 1 (1/2), which consists of the eight corner points of theMorgenthaler and Rosenfeld [14] a M–R surface, where
cube CA(p), does not surround any point in Z3 1 (1/2).a 6-connected digital set S # Z3 in a digital picture (Z3, S,

6, 26) is defined to be a M–R surface if the following three
conditions hold for every point p [ S (recall that in a 6. CONNECTED COMPONENTS IN 3D
digital picture (Z3, S, 6, 26), 6-adjacency is considered for WELL-COMPOSED PICTURES
points in X and 26-adjacency for points in X c):

For a 2D digital binary picture (Z2, X), a set of black
1. S > N (p) has exactly one 6-component 6-adjacent points X can be identified with the union of closed unit

to p; squares centered at points of X, which we denote CA(X).
We assume that either X or its complement X c is finite2. Sc > N (p) has exactly two 26-components C1(p),

C2(p) 26-adjacent to p; and nonempty. The boundary bdCA(X) of a 2D set X is
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X c are both 6-connected. Since a simple closed surface is
in particular a 2D manifold, we obtain that (Z3, X) is
well-composed.

‘‘⇐:’’ Since X and X c are 6-connected, CA(X) and
CA(X c) are connected subsets of R3 and bdCA(X) is theirFIG. 7. The continuous analog of a 2D well-composed picture does
common boundary. Therefore, bdCA(X) is also a con-not contain this critical configuration and its 908 rotation.
nected subset of R3. Since X , Z3 is finite, bdCA(X) is
compact. By definition, the fact that (Z3, X) is well-com-

the union of the set of unit line segments each of which is
posed implies that bdCA(X) is a 2D manifold. Conse-

the common edge of a square in CA(X) and a square in
quently, bdCA(X) is a simple closed surface. n

CA(X c). Observe that there is only one kind of adjacency
for line segments contained in bdCA(X): two segments

7. CONCLUSIONSare adjacent if they have an endpoint in common. Hence,
there is only one kind of connectedness for bdCA(X). The We showed that a number of difficult problems in 3D
unit line segments contained in bdCA(X) correspond to digital geometry become relatively simple when we restrict
pairs of 4-adjacent points (p, q) such that p [ X and q Ó X. our attention to 3D well-composed images. If a digital

A 2D binary digital picture (Z2, X) is well-composed iff picture lacks the property of being well-composed, it seems
the critical configuration shown in Fig. 7 (and its 908 rota- to be possible to locally ‘‘repair’’ the picture by adding (or
tion) does not occur in CA(X) and CA(X c) (Latecki et subtracting) single points. Since well-composedness is a
al. [12]). For 2D well-composed pictures, the following local property, it can be decided very efficiently, in parallel,
theorem can be easily proven: whether a given digital picture has this property or not.

We designed a parallel algorithm that locally ‘‘repairs’’ 2DTHEOREM 6.1. A digital picture (Z2, X) is well-com-
pictures in one step and proved its correctness, but the 3Dposed iff bdCA(X) is a compact 1D manifold (each point
result is not yet established. The other possibility, whichin bdX has a neighborhood homeomorphic to R).
is more promising for applications, would be to impose

Rosenfeld and Kong [17] proved the following theorem local conditions on the segmentation process which guar-
for 2D digital pictures: antee that the obtained 3D image is well-composed.

THEOREM 6.2. For every finite and nonempty set X ,
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