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Abstract. Contour-based object detection can be formulated as a match-
ing problem between model contour parts and image edge fragments. We

propose a novel solution by treating this problem as the problem of find-

ing dominant sets in weighted graphs. The nodes of the graph are pairs

composed of model contour parts and image edge fragments, and the

weights between nodes are based on shape similarity. Because of high

consistency between correct correspondences, the correct matching cor-

responds to a dominant set of the graph. Consequently, when a dominant

set is determined, it provides a selection of correct correspondences. As

the proposed method is able to get all the dominant sets, we can detect

multiple objects in a image in one pass. Moreover, since our approach is

purely based on shape, we also determine an optimal scale of target ob-

ject without a common enumeration of all possible scales. Both theoretic

analysis and extensive experimental evaluation illustrate the benefits of
our approach.

1 Introduction

Object detection in cluttered images, with scale and intra-class variations, is one
of the most difficult problems in computer vision. Appearance based methods
have had remarkable success in recent years [1-5]. However, in many cases, the
appearance between intra-class objects varies a lot [6], which makes the appear-
ance features not reliable. Thus, recently we have observed a significant increase
in methods that utilize contour shape [7-11]. However, shape based methods
also face many challenges, such as pose variance, missing edges, and view point
changes. Among these challenges, a critical one seems to be missing contour frag-
ments in the cluttered edge images. The contour fragments may be missing due
to occlusion or due to missing edges, since important contours of target objects
are often hard or impossible to detect by state-of-the-art edge detectors [12].
Interestingly, our visual system can perform contour grouping, object detec-
tion, and recognition, even if only cluttered edge information is provided, e.g.,
Fig. 1. We can easily perform all these tasks even if the important contour infor-
mation is missing, and we may not be able to complete it, e.g., we can recognize
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the giraffes in Fig. 1, but we may not be able to draw or imagine the missing
outline of their heads. Thus, we can perform contour grouping, object detection,
and recognition while keeping at least part of missing information ambiguous,
and we do not attempt to disambiguate all missing information. In other words,
we do not attempt to completely reconstruct all contour parts of the object in
the image. This fact is one of the key motivations for the proposed inference
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Fig. 1. Parts of the object contours are missing due to missing edges.

We formulate object detection as a labeling or matching problem between
image segments and model parts. As we discussed, in order to achieve a human
like performance in recognizing objects, it requires computing partial assign-
ment between the image segments and model parts, which has been a critical
problem for traditional labeling methods [13-15]. To deal with this problem, we
propose to transform the matching problem into finding dominant sets in a cor-
respondence graph, in which each vertex represents a pair of image and model
segments and the affinities between vertices are obtained by shape similarity.
With this modification, missing parts of a true object contour in the image do
not negatively influence the selection of dominant sets. The concept of domi-
nant sets has been introduced in [16], where also a method for dominant set
computation is proposed. Each dominant set is a local solution of a constrained
quadratic function, and it is computed by a recursive procedure that depends
on the initialization. Recently [17] proposed a novel initialization strategy that
is guaranteed to yield all dominant sets under certain assumptions. Although
the assumptions in [17] are derived for the application of common visual pattern
discovery, they also apply to our application. Different from [16] and from [17],
where dominant sets are treated as final solutions, we view each dominant set as
a solution hypothesis that is evaluated with global shape similarity. The main
reason is that the value of the target quadratic function is based only on local
shape similarity, which may be insufficient for object detection. In other words,
the dominant set with the highest value of the target quadratic function does
not necessarily imply a correct object detection. This is also the reason why we
need to consider all dominant sets.

There are at least three key advantages of the proposed method. It is insensi-
tive to noise and outliers, thus, it can detect objects in cluttered images. The fact
that we consider all dominant sets provides another main advantage. It allows
us to detect multiple objects in one pass, which is also difficult for traditional la-
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beling methods. Each object instance is represented by a different dominant set.
Moreover, as the proposed method is purely based on shape similarity, we can
automatically detect objects in different scales without enumerating the scales,
which deals with the problem of resolution. It is an important benefit compared
to other methods, such as sliding window [18] and Hough voting [19]. Both meth-
ods have to explicitly enumerate various scales in a certain scale range to obtain
the best solution. They require a predetermined scale range, which is a hidden
parameter not mentioned in most papers.

Example images in Fig. 2 demonstrate the benefit of the proposed method.
The white lines are edge segments after edge linking (see Section 3) and the
red lines are the detected segments. In these images, parts of the objects are
missing due to occlusion, and some of them contain multiple objects like the
four apple logos in the top left. Our approach can detect multiple objects at
the same time, i.e., in one pass, and allow partial assignment between image
segments and model parts, which makes the system robust to missing edges and
occlusion. For example, the two mugs are partially occluded, and many bottles
are missing some edges.

Fig. 2. Example detections on ETHZ dataset and, in the last row, on two Caltech-101
classes: car-side and cups.

The paper is organized as follow. Related methods are discussed in Section
2. The pre-processing step is described in Section 3. We introduce our approach
based on dominant sets in Section 4. The optimization method for finding the
dominant sets is described in Section 5. We view the dominant sets as object
detection hypotheses, which are then evaluated with global shape similarity in
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Section 6. In Section 7, we evaluate the performance of the proposed approach
on the challenging ETHZ shape dataset[20, 7], which features large variations
in scale and cluttered background. Besides, we also evaluate our approach on a
subset of Caltech 101 dataset [21].

2 Related Work

As there exists a lot of papers on shape based object detection and recognition,
we only review the most related ones. Ferrari et al. [20] propose to use kAS,
the k connected roughly straight contour segments, with Hough voting to detect
objects. Later, Ferrari et al. [7] extend their work to learn the model from the
image. To improve [7], Jiang et al. [10] propose to learn a shape prior model
for each object class. Boundary fragments combined with classifier have also
been investigated in [22]. Instead of object’s contour, Trinh and Kimia [23] use
skeleton-based generative shape model with modified dynamic programming to
detect objects. Bai. et al. [24] also utilize skeleton to constrain the detection pro-
cess. All the above methods require multiple initializations and they enumerate
all possible object sizes (scales) to get the optimal results. Different from them,
the proposed method is able to detect multiple objects at different scales in one
pass without enumerating scales.

Ravishankar et al. [25] introduce a multi-stage contour based detection ap-
proach with dynamic programming, which is also scale independent. Different
from them, we solve the matching problem by finding dominant sets in the corre-
spondence graph. Zhu et al. [8] utilize Shape Context [26] to evaluate the distance
between model and image segments. They formulate the shape matching of con-
tours as a set-set matching problem and solve it by linear programming, which is
fundamentally different from us. Similar to our method, Lu et al. [11] formulate
object detection as a segment correspondence problem. However, their inference
framework is very different, where they utilize particle filter to solve the label
assignment problem. Furthermore, they cannot detect multiple objects.

Gu et al. [27] utilize region segmentation to detect target objects. An appear-
ance based approach was recently used by Maji and Malik [28] by integrating
Hough transform based features of codebooks into kernel classifiers. To solve the
problem of scales in Hough voting, Ommer and Malik [29] propose a weighted,
pairwise clustering of voting lines to obtain globally consistent hypotheses. Then,
a verification stage is use to re-rank the hypotheses. Unlike [29, 28, 27], we use a
purely shape based method and do not utilize any classifiers like SVM to rank
the hypotheses.

3 Preprocessing

As we formulate the object detection as a correspondence problem between image
segments and model segments, we need to construct image segments from image
edge maps as well as define shape models composed of contour segments. We
utilize shape similarity of these segments to perform object detection. Given an
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image I and the edge map, we use an open source edge linking method provided
by Peter Kovesi [30] to group edge pixels into edge fragments. If a junction point
exists on the edge fragment, the corresponding edge fragments are split at the
junction point. We obtain a set of image edge segments E = {eq, ..., e,} for the
image I. An example is shown in Fig. 3(a), where each edge segment is shown
in a different color.

The model segments S = {s1,...,$m,} are manually designed so that they
represent meaningful contour parts. As junction points normally exist at high
curvature points in the edge maps, we also decompose the model template at
high curvature points. Moreover, since the image segments are noisy and some
part of object boundary may be missing, we need to add shorter model segments
in addition to longer ones. Then, the segments are grouped into different part
bundles B = {Bk}zzl, where each part bundle represents the same visual part
of the modeled contour. The main constraint for the bundle design is to ensure a
rough shape sketch constructed by selecting one part from each bundle can still
resemble the model contour. An example is shown in Fig. 3(b).
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Fig. 3. (a) The edge segments in one image. Different colors represent different seg-
ments; (b) Model segments for category bottle, which is shown in the middle. Each
segment is shown in a different color and the segments in one box form a part bundle.
Thus, there are three part bundles for the bottle.
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4 Problem Formulation

With preprocessing introduced in Section 3, we can obtain a set of image seg-
ments £ = {ey,...,e,} for the image I and a set of model segments S =
{s1,...,8m} for a model contour template. We formulate the object detection
as a labeling problem, labeling the model segments with the image segments.
Our goal is to find the segment correspondence so that the image segment cor-
responding to the model segments maximize the global shape similarity of all
selected model segments to all selected image segment.

To reach this goal, we first build a graph G whose nodes are {c1,...,cn},
where ¢; = (s;,ei) € S x E,and i = 1,...,m. A tangent distance T'D(s;, e;/)
between two segments s; and e;s is computed by matching sequences of their
tangent directions with dynamic programming. Since we resample all the seg-
ments to the same number of sample points, T'D is scale invariant. For each
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model segment s;, we use T'D to find K most similar image segments. Hence
graph G has M = m x K nodes and each node represents a correspondence cy,
for k=1,..., M. The weight of an edge connecting nodes 7 and j is defined as:

Wi; = N(SC(SIL Usj, ey U 6]‘/)) (1)

where ¢; = (s;,¢e;) and ¢; = (sj,e;) are two correspondences, N is a Gaussian,
and SC is the Shape Context [26] distance. The mean of Gaussian A is defined
as 0 and the standard deviation is defined as a quarter of the average distance
between all pairs of correspondences.

Hence w;; represents shape similarity between shape constructed of two
model segments s; U s; and two image edge segments e; U ej. The adoption
of Shape Context have several advantages. First, it is a descriptive shape sim-
ilarity method and it can be easily used for discrete points sets. Second, SC
performs automatic scale normalization. Consequently, w;; is scale invariant.

However, not all correspondences in graph G are compatible. For example,
two edge segments that are far away from each other in a given image cannot
both belong to the contour of a target object whose diameter is smaller than
their distance. Therefore, we will define now a binary relation that allows us to
efficiently remove such correspondences from G. We observe that when comput-
ing the shape distance T'D(s;, e;), we also obtain the correspondence of sample
points of s; to sample points of e;/. It allows us to determine the scale factor
so that the model bounding box can be properly re-scaled. Then the re-scaled
bounding box is placed on the image; since we know the position of the model
bounding box relative to segment s;, the position of the bounding box in the
image is determined by the position of e;.

Let us denote two re-scaled and relocated model bounding boxes in the image
with bbx(i) and bbx(j), which are based on ¢; = (s;,ev) and ¢; = (s5,€e5),
respectively. Of course, if both correspondences are correct the two bounding
boxes in the image should coincide. In the left image of Fig. 4, the color segments
are the image segments being considered and the numbers show the indices of the
corresponding model segments, which are 1 and 3. The two estimated bounding
boxes are shown in red and green. Although the bounding box estimation is
not perfect, it can roughly determine that the two image edge segments can
belong to the same contour. On the other hand, the right image shows a wrong
correspondence that leads to two disjoint bounding boxes. Therefore, if the area
of the intersection of both bounding boxes in the image is small, then e;; and
e; cannot be both parts of the contour of the target object. To capture this
property, we define a binary relation

area(bbx(i)Nbbx(j))
1’ area(bbx (i) |J bbz(j)) >C (2)
0, otherwise,

RI(Za.]) - {

where C' is the area intersection threshold that is set to 0.1 in all our experiments.
We also define another binary relation that relates model segments of two
correspondences. Since the shape constructed by two segments s;Us; that belong
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Fig. 4. Left: The estimated bounding boxes of two correct correspondences; Right: The
estimated bounding boxes of two wrong correspondences. Middle: The shape model
with corresponding segments marked in colors.

to the same part bundle By for k = 1,...,b is not particularly informative,
because they represent the same model part, we do not allow correspondences
that involve such model segments. We define R (4, j) = 0 if s;, s; € By, for some
k=1,...,band Ry (i,7) = 1 otherwise.

The weighted adjacency matrix A of graph G is an M x M matrix defined
as

(3)

The binary relations R; and Rj; help us to make the graph G sparse, which
significantly reduces the computation cost. It is obvious that A is symmetric
and nonnegative, since this is the case for w;;, Ry and Rj;.

We are interested in finding subgraphs H of G that are local maxima of the
average affinity score S, defined as

o 0, i=j or Ri(i,j)=0 or Rp(i,j)=0
S wiy, otherwise.

1
[H|?

Sa(H): Z Aij = :IZTA:B, (4)

i€H,j€eH

where |H| is the number of nodes of H and @ is a column vector such that
x; =1/|H|if i € H and z; = 0 otherwise for i =1,..., M.

For unweighted graphs, the Motzkin-Straus theorem [31] has established
a connection between the maximal cliques and the local maximizers of the
quadratic function:

maximize f(x)=zTAx subject to x € A, (5)

where A = { € R™ : & > 0 and |x|; = 1} is the standard simplex in R™.
Eq. 5 means that a subgraph H of G is a maximal clique if and only if its
characteristic vector &% is a local maximizer of this equation, where z/7 = 1/|H|
if i € H, and 21 = 0 otherwise. Recently, Pavan and Pelillo [16] generalized the
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Motzkin-Straus theorem to weighted graphs. They also introduced the notation
of dominant sets of vertices as a generalization to weighted graphs of the concept
of a maximal cliques in unweighted graphs. In unweighted graphs dominant sets
are equivalent to (strictly) maximal cliques. They showed that each (strict local)
solution of the quadratic program Eq. 5 determines a dominant set, which we
take as a definition of the dominant set in this paper.

As has been observed in [16, 17], Eq. 5 maximizes the same quadratic function
as the spectral methods in [32,33]. The only difference is the constraints on «:
the spectral methods require || = 1 while Eq. 5 requires |z|; = 1. This minor
difference changes dramatically the properties of obtained solutions. Instead of
partitioning all data, as is the case for spectral methods, Eq. 5 only selects highly
correlated data and ignores outliers. Consequently, the proposed object detection
system can automatically select contours of the target object in an edge image
and at the same time ignore the vast majority of the background segments.

5 Optimization

The main challenge we face now is to determine all local maxima of the quadratic
program Eq. 5. Following [16], once an initialization (1) is given at discrete time
step 1, the discrete replicator equation [34] can be used to obtain a local solution

*

4

(A x(t));
it+1)=x;(t) —7""— 6
zi(t+1) m()a:(t)TAa:(t) (6)
for i =1,..., M indexing the coordinates of vector . As is proven in [16], each

strict local solution of (Eq. 5) determines a dominant set.

A key question for our approach is how to enumerate the initialization vectors
(1) so that we can obtain all local maxima {a*}. To solve this problem, Pavan
and Pelillo [16] propose to detect dominant sets iteratively, i.e., after finding
a dominant set, they remove its vertices from the graph G, and then rerun the
algorithm on the remaining vertices. However, their method may miss some local
maxima due to the fact that some dominant sets have nonempty intersection.

Recently [17] proposed a novel initialization strategy, which we follow in
our approach. They suggest initializing (1) in the neighborhood N(v)|J{v}
of every vertex v € G, where N(v), the neighborhood of v is determined by
thresholding the row v of matrix A. This strategy is based on the assumption
that each dominant set that contains v must be a subset of N(v)|J{v}. This
assumption is satisfied in our setting for dominant sets that correctly determine
a target shape composed of edge segments in the image, since all correspondences
that extend the correspondence v to form the target shape have relatively large
affinity with v. Consequently, this initialization strategy does not eliminate any
correct solution in our setting.

However, this initialization strategy produces many duplicate solutions. There-
fore, [17] proposed merging two dominant sets if their indicator vectors x* and
y* have large correlation defined as (*)y*. This reflects the fact that although
different dominant sets may have nonempty intersection, their overlap is usually



Contour-Based Object Detection as Dominant Set Computation 9

small. This merging strategy significantly reduces the set of solution hypotheses
that we need to examine with global shape similarity as described in the next
section.

6 Final Evaluation

All different dominant sets obtained as solutions to Eq. 5 are potential object de-
tection hypotheses in our system. Our final step is to use global shape similarity
to evaluate these hypotheses. Although computing the global shape similarity is
computationally expensive, it is tractable in our application. Usually the graph
of correspondences G may have several hundred vertices, but we obtain less than
20 different dominant sets as solutions to Eq. 5.

Since each coordinate «} of ©* represents the probability that correspondence
1 has been selected, we simply select the correspondences with probability bigger
than 0 as the elements of the dominant set L determined by x*. We obtain
L ={ci,...,c;} for some | << M, where ¢;, = (si,,e; ). The global shape
distance is computed with shape context as

l l
SC(L) = SC(| si. | ex). (7)
k=1 k=1

Thus, we simply compare the shape formed by combining all selected image edge
segments U§g=1 ey to the corresponding model segments U2:1 S -

Although in Eq. 3, we have removed the connection between the model seg-
ments from the same part bundle, L can still contain different model segments
from the same part bundle. Since each part bundle can only provide at most
one part for one detection, we need to repeat the final evaluation Eq. 7 for each
model segment from the same part bundle separately, and then select the best
score. Moreover, the more different part bundles appear in the correspondences
in L, the more reliable is the global shape similarity. Thus, we only consider
dominant sets L that contain correspondences from a certain minimal number
of part bundles, which is set to 3 in all our experimental results. The global shape
distance in Eq. 7 is used to rank the object detection hypotheses. We stress that
our method is purely based on shape similarity without using any training or
classifier.

7 Experimental Results

To evaluate our approach, we choose the challenging ETHZ Shape Dataset [7, 20]
containing five different categories with 255 images in total. Each image contains
one or more instances with significant background clutter. All categories have
significant scale difference and intra-class variation. Similar to Zhu et al. [8] and
Lu et al. [11], we use a single manually constructed, contour model for each shape
class. The detection performance is measured based on the standard PASCAL
VOC criterion [35].



10 Xingwei Yang, Hairong Liu, Longin Jan Latecki

Furthermore, we also selected two classes from Caltech-101 dataset [21] to
evaluate our approach: cups and car-sides. They contain substantial intra-class
variations and missing edge segments. Similar to [20] an equal number of negative
images is selected from the Caltech-101 background set. Then, the test set for
each class consists of all positive images and the equal number of negative images.
The contour model for cups is the same as the model for ETHZ mugs, and we
manually created a contour model for car-sides.

7.1 ETHZ Dataset

In Fig. 2, some example detections on ETHZ dataset are shown. These examples
demonstrate the proposed method can handle multiple detections and scale vari-
ation in one pass. Moreover, our method is robust to missing segments, even if
a whole meaningful object part is missing, which cannot be solved by relaxation
labeling and many other methods.

We also demonstrate the benefit of our algorithm by comparing to other
methods. A large number of methods have been tested on ETHZ dataset [27, 28,
11,7,8,20,29]. It is difficult to compare to all of them, thus, we only compare
to some shape based methods. We first compare to [20,7,29] by plotting the
detection rate (DR) against false positive per image (FPPI), see Fig. 5. Besides
the curves, the detection rates at 0.3 and 0.4 FPPI are also shown in Table 1.
We stress that only the method by [29] and the proposed method are truly scale
independent. The other two methods [20, 7] enumerate scales in a certain scale
range.

Table 1. Detection rates at 0.3/0.4 FPPI for ETHZ dataset. The best results are
highlighted in bold.

Category|Clustering Lines [29]| KAS [20] |Full system [7]| Our method
Apples 95.0/95.0 50.0/60.0| 77.7/83.2 80.0/80.0
Bottles 89.3/89.3 92.9/92.9] 79.8/81.6 | 92.9/95.9
Giraffes 70.5/75.4 49.0/51.1 39.9/44.5 |76.92/79.21

Mugs 87.3/90.3 67.8/77.4| 75.1/80.0 | 83.3/34.85
Swans 94.1/94.1 A7.1/52.4| 63.2/705 | 90.9/94.1
Average 87.2/88.8 61.4/66.8| 67.2/72.0 | 84.8/36.79

Ferrari et al. [20,7] train their detector for each category on half of the
positive examples on that class. In [20], they also use the negative images for
training. In comparison to [7], it turns out that our algorithm can obtain better
results on the whole ETHZ dataset except the class applelogos, where we perform
equally well. Our method improves the average detection rate by 17.7% and
14.9% at 0.3 and 0.4 FPPI, respectively. Similarly, we are comparable to [20] on
the class bottle and better on all the other classes. The average detection rate
has increased by 23.5% and 20.1% at 0.3 and 0.4 FPPI respectively.

Furthermore, we also compared to the recent work by [29], which also uses
half of the positive examples as training. Our method performs better on classes
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giraffes and bottles and is comparable on class swans. However, we perform worse
on mugs and apples. The average detection rates at 0.3 and 0.4 FPPI are about
2% lower compared to [29].

We stress that our algorithm is purely shape based and we do not have
any postprocessing phase to refine the results. In [29], the SVM classifier is run
in sliding window mode over a grid of locations around each initial detection,
which boosts the results a lot. To make the comparison to [29] complete, we also
compare the precision/recall curves in Fig. 6. Unlike the previous comparison in
DR/FPPI, the actual values for precision/recall are not reported in [29]. Thus,
we can only compare the curves visually. Our results on swans and bottles are
better than [29] and the precision of giraffes is better with a little lower recall
value. The precision of apple logos is comparable, but the recall is worse. Our
results of mugs are worse than [29]. We also compared to methods in [8, 11] using

Apple logos Bottles Giraffes

0
GO 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14
False-positives per image False-positives per image False-positives per image
Mugs Swans

— Our method

== == = Ferrarietal. [JCV 2009

Ferrari et al. PAMI 2008

Ommer and Malik ICCV 2009

00 02 04 06 08 1 12 14 G0 02 04 06 08 1 12 14
False-positives per image False-positives per image

Fig.5. DR/FPPI curves on ETHZ dataset with comparison to methods in [29, 20, 7].

precision and recall. Similar to [29], both of them do not report actual values
and we can only compare by visual estimation. With comparison to [8], it is
apparent that our method performs better on swans and equally well on apple
logos, mugs and giraffes, but it is outperformed on bottles. Compared to [11], we
perform better on giraffes and bottles and we are comparable on classes mugs
and swans. The only class we are worse is apple logos.

7.2 Subset of Caltech-101

We also test on two classes of Caltech-101 dataset: cups and car-sides. Since
there are no given edge maps like for ETHZ [20], we use Canny Edge detector
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Fig. 6. Precision/Recall curves on ETHZ dataset with comparison to [29, 8, 11].

to obtain edges. Four examples for each class are shown in the last row in Fig.

2.

The blue DR/FPPI curves in Fig 7 illustrate the performance of our algo-
rithm. We obtain detection rate 76.5% and 51.2% at 0.4 FPPI on class cups and
car-sides respectively. The high false positive rates for class car-side is due to the
low resolution of the images, which makes edge maps not reliable. Consequently,
the image segments may be messy making the obtained edge segments different
from the model, so that the final global shape similarity may not be able to dis-
tinguish the false positives. However, the reasonable detection rate, about 75%,
shows that even when the edges are not reliable, the proposed method can still
accurately localize the objects.

car side

—— Our method
——— Our method with scale restriction
1

—— Our method
——— Our method with scale restriction

FPPI

15

FPPI

Fig. 7. DR/FPPI curves on class car-side and cups of Caltech-101 dataset.
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In order to show the influence of predetermined scale range, we use the scale
range as a constraint for our detection results on the two classes. If the scale of
a detection hypothesis (which is automatically determined by shape similarly) is
not within the scale range, we discard the hypothesis. As shown by red curves in
Fig. 7, it is obvious that the restriction of scale range improves the performance.
It is mainly due to removing the false positives. With the scale restriction, the
detection rate at 0.4 FPPI on class cups and car-sides increases to 82.3% and
73.2% respectively. The increase in detection rate on car-sides is by 22%. We ob-
serve that the detection rate of 82.3% on cups is better than the 78.6% reported
in [20]. This is particularly impressive, since our contour model for cups is the
ETHZ mug model without any modification, while [20] trained a cup classifier
on half of cup images.

8 Conclusion

In this paper, we presented a simple yet effective purely shape based approach for
object detection. We formulate object detection as a matching problem between
image and model segments. To solve the problem of missing segments, we trans-
form the matching problem into finding dominant sets in the correspondence
graph. With this transformation, the algorithm is also robust to outlier and
noise (background clutter) in the image. Besides, the proposed method can de-
tect multiple objects at multiple scales in one pass, which reduces the complexity
a lot compared to standard sliding window and Hough voting approaches.
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