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Abstract

The Core Experiment CE-Shape-1 for shape descriptors
performed for the MPEG-7 standard gave a unique oppor-
tunity to compare various shape descriptors for non-rigid
shapes with a single closed contour. There are two main dif-
ferences with respect to other comparison results reported
in the literature: (1) For each shape descriptor, the exper-
iments were carried out by an institute that is in favor of
this descriptor. This implies that the parameters for each
system were optimally determined and the implementations
were throughly tested. (2) It was possible to compare the
performance of shape descriptors based on totally different
mathematical approaches. A more theoretical comparison
of these descriptors seems to be extremely hard. In this pa-
per we report on the MPEG-7 Core Experiment CE-Shape-
1.

1. Intr oduction

Shapedescriptorsfor comparingsilhouettesof 2D ob-
jects in order to determinetheir similarity are important
andusefulfor applicationssuchasdatabaseretrieval. This
importanceis, for example, justified by the fact that the
MPEG-7groupwill incorporatesuchshapedescriptorsinto
the forthcomingMPEG-7 standard.Sincethe 2D objects
areprojectionsof 3D objectstheir silhouettesmay change
dueto:

� changeof a view point with respectto objects,

� non-rigid objectmotion (e.g.,peoplewalking or fish
swimming),

� noise(e.g.,digitizationandsegmentationnoise).

Thegoalof theCoreExperimentCE-Shape-1is to evaluate
theperformanceof 2D shapedescriptorsundersuchcondi-
tions. Theshapeswererestrictedto simplepre-segmented

shapesdefined by their outer closed contours. Some
examplesare given in Figure 1. The main requirement
was that the shapedescriptorsshouldbe robust to small
non-rigid deformationsdueto (1), (2), or (3). In addition
thedescriptorsshouldbescaleandrotationinvariant.

Figure 1. Some shapes used in par t B of CE-
Shape-1. Shapes in each row belong to the
same class.

Now we list andshortly describethe shapedescriptors
whichweretestedin theCoreExperimentCE-Shape-1.The
shapedescriptorscanbedividedinto threemaincategories:

1. contour based descriptors: thecontourof a givenob-
ject is mappedto somerepresentationfrom which a
shapedescriptoris derived,

2. image based descriptors: the computationof a shape
descriptoris basedon summingup pixel valuesin a
digital imagecontainingthe silhouetteof a given ob-
ject; theshapedescriptoris a vectorof a certainnum-
berof parametersderivedthis way,



3. skeleton based descriptors: after a skeleton is com-
puted,it is mappedto a treestructurethat forms the
shapedescriptor;the shapesimilarity is computedby
sometree-matchingalgorithm.

To thefirst category belongthefollowing threedescrip-
tors:

P320 presentedby Mitsubishi Electric ITE-VIL, basedon
thecurvaturescale-space[14, 15].

P567 presentedby HeinrichHertz Institutein Berlin, based
onawaveletrepresentationof objectcontours[3]. The
wavelet representationusedin [3] is shown to outper-
form theFourierdescriptors.

P298 presentedby theauthorsin cooperationwith Siemens
Munich,basedon thebestpossiblecorrespondenceof
visualparts[10, 12].

To thesecondcategorybelongthefollowingtwo descrip-
tors:

P687 presentedby Hanyang University, basedon Zernike
moments.As it is theoreticallysupportedandexperi-
mentallyverifiedin [8], Zernikemomentssignificantly
outperformregularmomentsandmomentinvariants.

P517 presentedby Hyundai ElectronicsIndustries,based
on multilayer eigenvectors. Pixel values (0’s and
1’s) from certainimageregionsform matriceswhose
eigenvectorsdeterminetheform descriptor. This is the
only shapedescriptorto which theredonotexist refer-
encesin theliterature.

To thethird categorybelongsonedescriptor:

DAG presentedbyMitsubishiElectricandPrincetonUniver-
sity1. It assignsa DAG (DirectedAcyclic Graph)or-
deredtreeto anobjectskeleton. Theshapesimilarity
measureis thenbasedon thesimilarity of correspond-
ing treesthat is basedon the matchingalgorithmfor
DAG orderedtreespresentedin [13]. Theideaof rep-
resentingshapesby theirskeletonsin ComputerVision
goesbackto Blum [1]. Siddiqi et al. [17] alsoconvert
objectskeletonsto atreerepresentationanduseatree-
matchingalgorithmto determinetheshapesimilarity.

In Section2 dealswith theCE-Shape-1.In Section3, we
derive someimportantconclusionsform the experimental
results.

1Thisdescriptorhasnotbeenassignedany identificationnumberby the
MPEG-7group.

2. Resultsof the MPEG-7 Core
Experiment CE-Shape-1

In this sectionwe shortlydescribetheCoreExperiment
CE-Shape-1andpresentthe experimentalresults. The ex-
perimentwasperformedasspecifiedin the MPEG-7doc-
ument[7]. The presentedresultsarebasedon [2] andon
[4].

The core experimentwas divided into threepartswith
thefollowing mainobjectives:

A: robustnessto scaling(A1) androtation(A2)

B: performanceof thesimilarity-basedretrieval

C: robustnessto changescausedby no-rigid motion

Part A canberegardedasa necessaryconditionthatevery
shapedescriptorshouldsatisfy. The main part is part B,
whereasetof semanticallyclassifiedimageswith aground
truth is used. Part C can be viewed as a specialcaseof
part B. Herealso the performanceof the similarity-based
retrieval is tested,but only thedeformationdueto no-rigid
motionis considered.Only onequeryis usedfor partC.

The recall retrieval performanceis tested,whererecall
is the ratio of the numberof the retrieved relevant shapes
to thenumberof therelevantshapesin thedatabase.There
weretogether3450shapesusedin thethreeparts.

2.1. Part A: Robustnessto Scalingand Rotation

A-1 Robustnessto Scaling The databaseincludes420
shapes;70 basicshapesand 5 derived shapesfrom each
basicshapeby scalingdigital imageswith factors2, 0.3,
0.25,0.2, and0.1. Eachof the 420 imageswasusedasa
queryimage. A numberof correctmatcheswascomputed
in thetop 6 retrievedimages.Thus,thebestpossibleresult
is 2520matches.

A-2 Robustnessto Rotation Thedatabaseincludes420
shapes:the 70 basicshapesare the sameas in part A-1
and5 derivedshapesfrom eachbasicshapeby rotation(in
digital domain)with angles:9, 36, 45 (composedof 9 and
36 degreerotations),90 and150degrees.Eachof the420
imageswasusedasa query image. A numberof correct
matcheswascomputedin thetop 6 retrievedimages.Thus,
thebestresultis 2520matches.

In Figure2, a tablewith resultsfor Part A is presented.
Sincethebestpossibleperformancefor A-1 wasabout93%
as shown below, all shapedescriptorsexcept DAG per-
formednearlyoptimal.

About 17 shapesobtainedby scaling0.1 aretoo small.
For example,Figure3 showsfor eachobjectin thefirst row



P298 P320 P517 P567 P687 DAG
A1 88.65 89.76 92.42 88.04 92.54 no results
A2 100.00 99.37 100.00 97.46 99.60 no results
PartA 94.33 94.57 96.21 92.75 96.07 85

P298 P320 P517 P567 P687 DAG
Part B 76.45 75.44 70.33 67.76 70.22 60

P298 P320 P517 P567 P687 DAG
PartC 92.0 96.0 88.0 93.0 94.5 83.0

Figure 2. Results for Parts A, B, and C.

its scaledversionin thesecondrow obtainedbyscalingwith
factor0.1. The scaledobjectsin the secondrow aremore
similarto thebasicshapesin thethird row thanto theshapes
they originatefrom (first row). Therefore,it is impossible
to obtaincorrectmatchesin about
170 cases= 17 too small shapes� (5 errorsfor eachtoo
smallshapeusedasa query+ 5 errorsfor 5 derivedshapes
usedasa query).
Thus,thebestpossibleresultin A-1 is about93%.

Figure 3. Example shapes used in par t A
of CE-Shape-1. Belo w each object in the
fir st row, its scaled version with factor 0.1 is
sho wn, second row. For each column, the
shapes in the thir d row seem to be more sim-
ilar to the scaled objects in the mid dle row
than the ones in the fir st row.

2.2. Part B: Similarity-based Retrieval

This is themainpartof theCoreExperimentCE-Shape-
1. The total numberof imagesin thedatabaseis 1400: 70

classesof variousshapes,eachclasswith 20 images.Each
imagewasusedasa query, andthe numberof similar im-
ages(which belongto the sameclass)wascountedin the
top 40 matches(bulls-eye test). Sincethe maximumnum-
ber of correctmatchesfor a singlequery imageis 20, the
total numberof correctmatchesis 28000. Someexample
shapesareshown in Figure1, wheretheshapesin thesame
row belongto thesameclass.In Figure2 atablewith results
for partB is presented.

The 100% retrieval rate was againnot possible,since
someclassescontainobjectswhoseshapeis significantly
different so that it is not possibleto group them into the
sameclassusingonly shapeknowledge. For example,see
the third row in Figure1 andthe first andthe secondrows
in Figure6. In thethird row in Figure6, we give examples
of two spoonshapesthat are more similar to shapesin
differentclassesthanto themselves.

device9-5 device9-2

fly-13 fly-1 fly-14

guitar-1 spoon-12 key-16spoon-17

fly-5

device9-6 device9-15

Figure 6. Example shapes used in par t B of
CE-Shape-1. The shapes with the same name
prefix belong to the same class.



P298 P320 P517 P567 P687 DAG
Total Score� 87.59 88.67 84.85 84.50 86.93 76

Figure 4. Total Score� = average over the three par ts of the experiment.

P298 P320 P517 P567 P687 DAG
Total Score� 83.16 82.62 80.04 77.14 79.92 69.38

Figure 5. Total Score� = average over the number of queries.

2.3. Part C: Motion and non-rigid deformations

Part C addsa singleretrieval experimentto partB. The
databasefor part C is composedoff 200 framesof a short
video clip with a breamfish swimmingplus a databaseof
marineanimalswith 1100shapes.Fishbream-000wasused
asaquery(seeFigure7),andthenumberof breamshapesin
thetop200shapeswascounted.Thus,themaximalnumber
of possiblematcheswas200.In Figure2 atablewith results
for PartC is presented.

Since about 14 breamfish do not have similar shape
to bream-000,i.e., someof the 1100 marineanimalsare
moresimilar to bream-000thanthe14 breamfish, thebest
possibleresult is 93% (186/200). For example,in Figure
7 the four kk shapes(in the secondrow) taken from the
1100marineanimalsare more similar to bream-000than
thebreamshapes113,119,and121(in thefirst row).

bream-000 bream-119 bream-121bream-113

kk-417 kk-380 kk-1078 kk-372

Figure 7. Example shapes used in par t C of
CE-Shape-1. The shapes with kk prefix (in
the second row) are more similar to bream-
000 than the bream shapes.

2.4. AveragePerformancein the Core
Experiment CE-Shape-1

Averageperformancewith the averageover the three
parts,i.e.,Total Score� = ����
	 ����
	 ���� , is givenin Figure

4. Averageperformancewith theaverageover thenumber
of queries,i.e.,
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where2241is thetotalnumberof queriesin partsA, B, and
C, is givenin Figure5.

3. Inter pretation

As canbeseenin Figure2, all shapedescriptorsexcept
DAG passedthenecessarytestin partA, i.e., they aresuf-
ficiently robust to scalingand rotation. Keepingin mind
that thebestpossibleperformancefor A-1 wasabout93%,
thefiveshapedescriptorsperformednearlyoptimalwith re-
spectto scaling. The descriptorsP298,P320,P517,and
P687correctly retrieved over 99% rotatedimagesin A-2.
Theperformanceof P567(waveletrepresentationof object
contours)wasslightly lessrobustto rotation.

The low averageresultin partA of the DAG descriptor
indicatesthat it is neitherrobust to scalingnor to rotation.
This resultseemsto give a clearexperimentalverification
of theknown fact that thecomputationof skeletonsin dig-
ital imagesis not robust. It seemsthatnoneof theexisting
approachesto computeskeletonsin digital imageswould
providebetterresultson thegivendataset.

Wediscusstheresultsof themainpartof theCoreExper-
imentCE-Shape-1now. As canbeseenin partB of Figure
2 two shapedescriptorsP298andP320significantly out-
performthe otherfour, andare,therefore,the mostuseful
to searchfor similar objectsobtainedby non-rigidtransfor-
mations.Both descriptorshave alsothebesttotal scoresin
Figures4 and5.

For bothsimilarity measuresusedwith descriptorsP298
and P320,while computingthe similarity valuesfor two
objects, a best possiblecorrespondenceof the maximal
convex/concave arcscontainedin objectcontoursis estab-
lished. The maximal convex/concave arcs are not taken
from the original contours,but from their simplified ver-
sions. Significantmaximalconvex arcson simplified con-
tours correspondto significant parts of visual form [9],



whoseimportanceand relevancefor object recognitionis
verifiedby numerouscognitiveexperiments[5, 6, 16, 18].

For P298a singlesimplified contouris usedasa shape
descriptor. This contouris optimallydeterminedby anovel
processof contoursimplificationcalleddiscretecurve evo-
lution in [11]. This processallows to reducethe influence
of noisewithoutchangingtheoverallappearanceof objects.
To computethesimilarity measurebetweentwo shapes,the
bestpossiblecorrespondenceof maximal convex/concave
contourarcsis established.Finally the similarity between
correspondingpartsis computedusingtheir tangentfunc-
tionsandaggregatedto asingleoutputsimilarity value[12].

For P320simplifiedcontoursareobtainedby a classical
scale-spacecurveevolutionbasedoncontoursmoothingby
convolution with a Gaussfunction. Thearclengthposition
of inflection points (x-axis) on contourson every scale
(y-axis)formssocalledCurvatureScaleSpace(CCS)[15],
seeFigure 8. The positionsof the maximaof CSSyield
the shapedescriptorP320. Thesepositionsprojectedon
thesimplifiedobjectcontoursgive thepositionsof themid
pointsof themaximalconvex/concavearcsobtainedduring
thecurve evolution. Theshapesimilarity measurebetween
two shapesis computedby relating the positionsof the
maximaof thecorrespondingCSSs.

A

B

T
CSS for A and B

Figure 8. Both shapes A and B have the same
positions of the maxima of CSS.

Observe that both shapesA and B in Figure 8 are as-
signedverysimilar shapedescriptorsby P320.Bothshapes
A andB containtwo copiesof thesamepieceT (shown at
thebottom). Sinceonly pieceT containsinflectionpoints,
the CSSfunctionsof bothshapesarenonzeroonly for the
T partsof their boundaries.Therefore,their CSSrepresen-
tations(maximaof theCSSfunctions)areverysimilar.

This cannothappenfor P298,sincethe mappingto the
representationspace(the tangentspace)is one-to-one,i.e.,
the original polygon can be uniquely reconstructedgiven
thelengthandthetangentdirectionsof its line segments.

Observe that all convex objects are identical for the

shapedescriptorP320,sinceit is basedon inflectionpoints,
andtherearenoinflectionpointsonthecontourof aconvex
object.This impliesthata triangle,square,or circle cannot
bedistinguishedusingthis descriptor.

4. Conclusions

We report here on performanceof six shapedescrip-
torsthataccomplishedtheCoreExperimentShape-1for the
MPEG-7standard.Two shapedescriptorsP298(correspon-
denceof visualparts)andP320(curvaturescale-space)sig-
nificantly outperformtheotherfour, andare,therefore,the
mostuseful to searchfor similar objectsobtainedby non-
rigid transformations.Both descriptorsbasethe computa-
tion of their similarity measureson the bestpossiblecor-
respondenceof maximalconvex/concavearcscontainedin
the simplified versionsof boundarycontours.The simpli-
fied boundarycontoursareobtainedby two differentpro-
cessesof curveevolutions.Both shapedescriptorsarecog-
nitively motivated,sincethemaximalconvex arcsrepresent
visualpartsof objects,whoseimportantrole in the human
visualperceptionis verifiedby numerousexperiments.

Sincetheresultsof theexperimentsareverifiedusingthe
humanvisualperception(thegroundtruthwasmanuallyde-
terminedby humans),a cognitively motivatedcomputation
of the similarity valuesseemsto be essential.In this con-
text, a cognitivemotivationseemsto befar moreimportant
thana motivation in physicsfor P687(Zernike moments),
or in signaltheoryfor P567(waveletcontourdescriptor).

Clearly, the cognitive motivation is not the only cri-
terium.Therobustnessof thecomputationis alsoextremely
important.Sincethecomputationof thesimilarity measure
for theshapedescriptorDAG (DAG orderedtrees)is based
onobjectskeletons,it hasanicecognitivemotivation.How-
ever, until now theredoesnot exist any computationof ob-
jectskeletonsthatis robustto scaling,rotation,andnoisein
thedigital domain.

On the otherhand,a carefulattentionto the robustness
is paidby theextractionof descriptorsP298andP320,and
duringthecomputationof their similarity measures.
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