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Abstract

The Core Experiment CE-Shape-1 for shape descriptors
performed for the MPEG-7 standard gave a unigque oppor-
tunity to compare various shape descriptors for non-rigid
shapeswith a single closed contour. There are two main dif-
ferences with respect to other comparison results reported
in the literature: (1) For each shape descriptor, the exper-
iments were carried out by an institute that is in favor of
this descriptor. This implies that the parameters for each
system were optimally determined and the implementations
were throughly tested. (2) It was possible to compare the
performance of shape descriptors based on totally different
mathematical approaches. A more theoretical comparison
of these descriptors seems to be extremely hard. In this pa-
per we report on the MPEG-7 Core Experiment CE-Shape-
1

1. Intr oduction

Shapedescriptorsfor comparingsilhouettesof 2D ob-
jectsin orderto determinetheir similarity are important
andusefulfor applicationssuchasdatabaseetrieval. This
importanceis, for example, justified by the fact that the
MPEG-7groupwill incorporatesuchshapedescriptorgnto
the forthcomingMPEG-7 standard. Sincethe 2D objects
areprojectionsof 3D objectstheir silhouettesmay change
dueto:

e changeof aview pointwith respecto objects,

e non-rigid objectmotion (e.g., peoplewalking or fish
swimming),

e noise(e.g.,digitizationandsegmentatiomoise).

Thegoalof the CoreExperimentCE-Shape-1s to evaluate
theperformanceof 2D shapedescriptoraindersuchcondi-
tions. The shapesvererestrictedto simple pre-sgmented

shapesdefined by their outer closed contours. Some
examplesare given in Figure 1. The main requirement
was that the shapedescriptorsshould be robust to small
non-rigid deformationsgdueto (1), (2), or (3). In addition
thedescriptorshouldbe scaleandrotationinvariant.
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Figure 1. Some shapes used in part B of CE-
Shape-1. Shapes in each row belong to the
same class.

Now we list and shortly describethe shapedescriptors
whichweretestedn theCoreExperimeniCE-Shape-1The
shapealescriptorsanbedividedinto threemaincateyories:

1. contour based descriptors: the contourof a givenob-
ject is mappedto somerepresentatiorirom which a
shapedescriptoris derived,

2. image based descriptors: the computationof a shape
descriptoris basedon summingup pixel valuesin a
digital imagecontainingthe silhouetteof a given ob-
ject; the shapedescriptoris a vectorof a certainnum-
berof parameterslerivedthis way;,



3. skeleton based descriptors: after a skeletonis com-
puted,it is mappedto a tree structurethat forms the
shapedescriptor;the shapesimilarity is computedoy
sometree-matchinglgorithm.

To thefirst categgory belongthe following threedescrip-
tors:

P320 presentedby Mitsubishi Electric ITE-VIL, basedon
thecurvaturescale-spacfgl4, 15|.

P567 presentedy Heinrich Hertz Institutein Berlin, based
onawaveletrepresentationf objectcontourq3]. The
waveletrepresentationisedin [3] is shavn to outper
form the Fourierdescriptors.

P298 presentedy the authorsin cooperatiorwith Siemens
Munich, basedon the bestpossiblecorrespondencef
visualparts[10, 12].

Tothesecondtateyorybelongthefollowing two descrip-
tors:

P687 presentedby Harnyang University, basedon Zernike
moments.As it is theoreticallysupportecand experi-
mentallyverifiedin [8], Zernike momentssignificantly
outperformregularmomentsandmomentinvariants.

P517 presentedby Hyundai ElectronicsIndustries, based
on multilayer eigervectors. Pixel values (0’'s and
1's) from certainimageregionsform matriceswhose
eigervectorsdetermingheform descriptor Thisis the
only shapedescriptotto which theredo notexist refer
encedn theliterature.

To thethird category belongsonedescriptor:

DAG presentethy MitsubishiElectricandPrincetonJniver
sity’. It assignsa DAG (DirectedAcyclic Graph)or-
deredtreeto anobjectskeleton. The shapesimilarity
measuras thenbasedon the similarity of correspond-
ing treesthat is basedon the matchingalgorithm for
DAG orderedtreespresentedn [13]. Theideaof rep-
resentingshapedy theirskeletonan ComputeVision
goesbackto Blum [1]. Siddigietal. [17] alsocorvert
objectskeletongo atreerepresentatioanduseatree-
matchingalgorithmto determinethe shapesimilarity.

In Section? dealswith the CE-Shape-1ln Section3, we
derive someimportantconclusionsform the experimental
results.

1This descriptohasnotbeenassignedry identificationnumberby the
MPEG-7group.

2. Resultsof the MPEG-7 Core
Experiment CE-Shape-1

In this sectionwe shortly describethe Core Experiment
CE-Shape-Jndpresenthe experimentalresults. The ex-
perimentwas performedas specifiedin the MPEG-7 doc-
ument[7]. The presentedesultsarebasedon [2] andon
[4].

The core experimentwas divided into three partswith
thefollowing mainobjectives:

A: robustnesdo scaling(Al) androtation(A2)
B: performancef the similarity-basedetrieval
C: robustnesgo changesausedy no-rigid motion

Part A canberegardedasa necessargonditionthat every
shapedescriptorshould satisfy The main partis part B,
wherea setof semanticallyclassifiedmageswith aground
truth is used. Part C canbe viewed as a specialcaseof
part B. Here alsothe performanceof the similarity-based
retrieval is tested but only the deformationdueto no-rigid
motionis consideredOnly onequeryis usedfor partC.
The recall retrieval performances tested,whererecall
is the ratio of the numberof the retrieved relevant shapes
to the numberof therelevantshapesn the databaseThere
weretogether3450shapesisedin thethreeparts.

2.1 Part A: Robustnessto Scalingand Rotation

A-1 Robustnessto Scaling The databaséncludes420
shapes;70 basicshapesand 5 derived shapesrom each
basicshapeby scalingdigital imageswith factors2, 0.3,
0.25,0.2,and0.1. Eachof the 420imageswasusedasa
gueryimage. A numberof correctmatchesvascomputed
in thetop 6 retrievedimages.Thus,the bestpossibleresult
is 2520matches.

A-2 Robustnessto Rotation  The databaséncludes420
shapes:the 70 basic shapesare the sameasin part A-1
and5 derived shapedrom eachbasicshapeby rotation(in
digital domain)with angles:9, 36, 45 (composedf 9 and
36 degreerotations),90 and 150 degrees.Eachof the 420
imageswas usedasa queryimage. A numberof correct
matchesvascomputedn thetop 6 retrievedimages.Thus,
thebestresultis 2520matches.

In Figure2, atablewith resultsfor Part A is presented.
Sincethebestpossibleperformancdor A-1 wasabout93%
as showvn below, all shapedescriptorsexcept DAG per
formednearlyoptimal.

About 17 shapesbtainedby scaling0.1 aretoo small.
For example,Figure3 showsfor eachobjectin thefirst row



P298 | P320

pP517

P567 | P687 | DAG

Al 88.65 | 89.76

92.42

88.04 | 92.54 | noresults

A2 100.00| 99.37

100.00

97.46 | 99.60 | noresults

PartA | 94.33 | 94.57

96.21

92.75| 96.07 | 85

P298 | P320

P517

P567 | P687 | DAG

PartB | 76.45| 75.44

70.33

67.76 | 70.22| 60

P298| P320

P517

P567 | P687| DAG

PartC | 92.0 | 96.0

88.0

93.0 | 945 | 83.0

Figure 2. Results for Parts A, B, and C.

its scaledversionin thesecondow obtainedoy scalingwith
factor0.1. The scaledobjectsin the secondrow are more
similarto thebasicshapesn thethird row thanto theshapes
they originatefrom (first row). Therefore,it is impossible
to obtaincorrectmatchesn about

170 cases= 17 too small shapesx (5 errorsfor eachtoo
smallshapeusedasa query+ 5 errorsfor 5 derivedshapes
usedasaquery).

Thus,the bestpossibleresultin A-1 is about93%.
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Figure 3. Example shapes used in part A
of CE-Shape-1. Below each object in the
first row, its scaled version with factor 0.1 is
shown, second row. For each column, the
shapes in the third row seem to be more sim-
ilar to the scaled objects in the middle row
than the ones in the first row.

2.2 Part B: Similarity-based Retrieval

Thisis themainpartof the CoreExperimentCE-Shape-
1. Thetotal numberof imagesin the databases 1400: 70

classef variousshapeseachclasswith 20 images.Each
imagewasusedasa query andthe numberof similarim-

ages(which belongto the sameclass)was countedin the
top 40 matchegqbulls-eye test). Sincethe maximumnum-
ber of correctmatchedor a single queryimageis 20, the
total numberof correctmatchess 28000. Someexample
shapeareshowvn in Figurel, wheretheshapesn thesame
row belongto thesameclass.In Figure2 atablewith results
for partB is presented.

The 100% retrieval rate was again not possible,since
someclassescontain objectswhoseshapeis significantly
different so that it is not possibleto group theminto the
sameclassusingonly shapeknowledge. For example,see
thethird row in Figure1 andthefirst andthe secondrows
in Figure6. In thethird row in Figure6, we give examples
of two spoonshapesthat are more similar to shapesin
differentclasseghanto themseles.
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device9-5 device9-2 device9-6 device9-15
X - N
fly-13 fly-1 fly-14 fly-5
guitar-1 spoon-17 spoon-12 key-16

Figure 6. Example shapes used in part B of
CE-Shape-1. The shapes with the same name
prefix belong to the same class.



P298 | P320

P517 | P567 | P687 | DAG

Total Score; | 87.59| 88.67

84.85| 84.50| 86.93| 76

Figure 4. Total Score; = average over the three parts of the experiment.

P298 | P320

P517 | P567 | P687 | DAG

Total Score, | 83.16 | 82.62

80.04 | 77.14| 79.92| 69.38

Figure 5. Total Score; = average over the number of queries.

2.3 Part C: Motion and non-rigid deformations

Part C addsa singleretrieval experimentto partB. The
databasdor part C is composedff 200 framesof a short
video clip with a breamfish swimming plus a databasef
marineanimalswith 1100shapesFishbream-00@vasused
asaquery(seeFigure7), andthenumberof breamshapedn
thetop 200shapesvascounted.Thus,themaximalnumber
of possiblematchesvas200. In Figure2 atablewith results
for PartC is presented.

Since about 14 breamfish do not have similar shape
to bream-000,i.e., someof the 1100 marineanimalsare
moresimilar to bream-00Qhanthe 14 breamfish, the best
possibleresultis 93% (186/200). For example,in Figure
7 the four kk shapeqin the secondrow) taken from the
1100 marineanimalsare more similar to bream-000than
thebreamshaped13,119,and121(in thefirst row).
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bream-000 bream-113 bream-119 bream-121
kk-417 kk-380 kk-1078 kk-372

Figure 7. Example shapes used in part C of
CE-Shape-1. The shapes with kk prefix (in
the second row) are more similar to bream-
000 than the bream shapes.

2.4. AveragePerformancein the Core
Experiment CE-Shape-1

Averageperformancewith the averageover the three
parts,i.e., Total Score; = + A+ 1 B+1C, isgivenin Figure

4. Averageperformancewith the averageover the number
of queriesj.e.,

840 1400 1
2241A + 224lB + 22410’
where2241is thetotal numberof queriesn partsA, B, and

C,isgivenin Figure5.

TotalScore, =

3. Inter pretation

As canbeseenin Figure2, all shapedescriptorsexcept
DAG passedhe necessaryestin partA, i.e., they aresuf-
ficiently robust to scalingand rotation. Keepingin mind
thatthe bestpossibleperformancdor A-1 wasabout93%,
thefive shapelescriptorperformedearlyoptimalwith re-
spectto scaling. The descriptorsP298,P320,P517,and
P687 correctly retrieved over 99% rotatedimagesin A-2.
The performancef P567(waveletrepresentationf object
contours)wasslightly lessrobustto rotation.

The low averageresultin partA of the DAG descriptor
indicatesthatit is neitherrobustto scalingnor to rotation.
This resultseemdo give a clearexperimentalverification
of the known factthatthe computationof skeletonsin dig-
ital imagesis notrobust. It seemghatnoneof the existing
approacheso computeskeletonsin digital imageswould
provide betterresultson the givendataset.

We discusgheresultsof themainpartof the CoreExper
imentCE-Shape-how. As canbeseenin partB of Figure
2 two shapedescriptorsP298and P320significantly out-
performthe otherfour, andare,therefore the mostuseful
to searchfor similar objectsobtainedby non-rigid transfor
mations.Both descriptorshave alsothe besttotal scoresn
Figures4 and>5.

For bothsimilarity measuresisedwith descriptord?298
and P320, while computingthe similarity valuesfor two
objects, a best possible correspondencef the maximal
corvex/concae arcscontainedn objectcontoursis estab-
lished. The maximal corvex/concae arcsare not taken
from the original contours,but from their simplified ver-
sions. Significantmaximal corvex arcson simplified con-
tours correspondto significant parts of visual form [9],



whoseimportanceand relevancefor object recognitionis
verifiedby numerousognitive experimentd5, 6, 16, 18].

For P298a single simplified contouris usedasa shape
descriptor This contouris optimally determinecby a novel
procesf contoursimplificationcalleddiscretecurve evo-
lution in [11]. This processallows to reducethe influence
of noisewithoutchangingheoverallappearancef objects.
To computethe similarity measurdetweertwo shapesthe
bestpossiblecorrespondencef maximal corvex/concae
contourarcsis established Finally the similarity between
correspondingpartsis computedusing their tangentfunc-
tionsandaggreyatedo a singleoutputsimilarity value[12].

For P320simplified contoursareobtainedby a classical
scale-spaceurve evolution basedn contoursmoothingoy
corvolution with a Gaussfunction. The arclengthposition
of inflection points (x-axis) on contourson every scale
(y-axis)formssocalledCurvatureScaleSpacgCCS)[15],
seeFigure 8. The positionsof the maximaof CSSyield
the shapedescriptorP320. Thesepositionsprojectedon
the simplified objectcontoursgive the positionsof the mid
pointsof the maximalcorvex/concaearcsobtainedduring
the curve evolution. The shapesimilarity measuréetween
two shapesis computedby relating the positionsof the
maximaof thecorrespondin@SSs.

T
CSS for Aand B

Figure 8. Both shapes A and B have the same
positions of the maxima of CSS.

Obsene that both shapesA andB in Figure 8 are as-
signedvery similar shapedescriptordy P320.Both shapes
A andB containtwo copiesof the samepieceT (shown at
the bottom). Sinceonly pieceT containsinflection points,
the CSSfunctionsof both shapesarenonzeroonly for the
T partsof their boundariesTherefore their CSSrepresen-
tations(maximaof the CSSfunctions)arevery similar.

This cannothappenfor P298,sincethe mappingto the
representatiospace(the tangentspace)s one-to-onej.e.,
the original polygon can be uniquely reconstructedyiven
thelengthandthe tangentirectionsof its line segments.

Obsene that all corvex objects are identical for the

shapedescripto?320,sinceit is basedninflectionpoints,
andtherearenoinflectionpointsonthe contourof a convex
object. Thisimpliesthatatriangle,squarepr circle cannot
bedistinguishedusingthis descriptor

4. Conclusions

We report here on performanceof six shapedescrip-
torsthataccomplishedhe CoreExperimentShape-Xor the
MPEG-7standardTwo shapedescriptor$298(correspon-
denceof visual parts)andP320(curvaturescale-spacejig-
nificantly outperformthe otherfour, andare, therefore the
mostusefulto searchfor similar objectsobtainedby non-
rigid transformations.Both descriptorshasethe computa-
tion of their similarity measure®n the bestpossiblecor-
respondencef maximalcorvex/concae arcscontainedn
the simplified versionsof boundarycontours. The simpli-
fied boundarycontoursare obtainedby two differentpro-
cesse®f curve evolutions. Both shapedescriptorsarecog-
nitively motivated,sincethemaximalconvex arcsrepresent
visual partsof objects,whoseimportantrole in the human
visualperceptions verifiedby numerousexperiments.

Sincetheresultsof theexperimentsareverifiedusingthe
humanvisualperceptior{thegroundtruthwasmanuallyde-
terminedby humans)a cognitively motivatedcomputation
of the similarity valuesseemdo be essential.In this con-
text, a cognitive motivationseemgo be far moreimportant
thana motivationin physicsfor P687(Zernike moments),
or in signaltheoryfor P567(waveletcontourdescriptor).

Clearly, the cognitve motivation is not the only cri-
terium. Therobustnes®f thecomputatioris alsoextremely
important. Sincethe computatiorof the similarity measure
for theshapedescriptorDAG (DAG orderedrees)is based
onobjectskeletonsjt hasanicecognitve motivation. How-
ever, until now theredoesnot exist any computatiorof ob-
jectskeletongthatis robustto scaling,rotation,andnoisein
thedigital domain.

On the otherhand, a careful attentionto the robustness
is paid by the extractionof descriptord2298andP320,and
duringthe computatiorof their similarity measures.
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