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We concentrate here on decomposition of 2D objects into mean-
ingful parts of visual form, or visual parts. It is a simple observation
that convex parts of objects determine visual parts. However, the
problem is that many significant visual parts are not convex, since a
visual part may have concavities. We solve this problem by identify-
ing convex parts at different stages of a proposed contour evolution
method in which significant visual parts will become convex object
parts at higher stages of the evolution. We obtain a novel rule for de-
composition of 2D objects into visual parts, called the hierarchical
convexity rule, which states that visual parts are enclosed by max-
imal convex (with respect to the object) boundary arcs at different
stages of the contour evolution. This rule determines not only parts
of boundary curves but directly the visual parts of objects. Moreover,
the stages of the evolution hierarchy induce a hierarchical structure
of the visual parts. The more advanced the stage of contour evolu-
tion, the more significant is the shape contribution of the obtained
visual parts. c© 1999 Academic Press

Key Words: visual parts; discrete curve evolution; digital curves;
digital straight line segments; total curvature; shape hierarchy; dig-
ital geometry.
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We concentrate here on decomposition of 2D objects
meaningful parts. According to Siddiqiet al. [26],

Part-based representations allow for recognition that is robust in the pr
ence of occlusion, movement, deletion, or growth of portions of an objec
In the task of forming high-level object-centered models from low-leve
image-based features, parts serve as an intermediate representation.

There is also a strong evidence for part-based representatio
human vision, see [26] for an overview. Hoffman and Richa
[12] provided strong evidence that contours are psychologic
segmented at negative curvature minima. They stated the
lowing rule (cited from Hoffman and Singh [13]):

Minima rule for silhouettes:For any silhouette, all negative minima of
curvature of its bounding curve are boundaries between parts.

Hoffman and Singh write [13]:
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One of the main motivations for our work was the quest
of how to robustly compute significant parts of boundaries fr
real digital images. In particular, since negative minima of cur
ture as well as other extremal points are obtained by local c
putation, their computation is not robust in real digital imag

Since objects we deal with in computer vision are mos
digital objects obtained by segmentation in digital images,
starting point was the discrete nature of digital objects. Th
fore, we propose a multiscale shape decomposition rule w
yields for many objects similar parts as in Hoffman and Richa
[12]. However, we do not use extremal points of contour cur
to compute the parts.

The presented approach to multiscale shape decomposit
based on shape hierarchy obtained by a discrete curve evolu
We present a novel approach to the evolution of digital pla
curves that is based on digital linearization. In contrary to c
tinuous curves, every digital curve is composed of digital l
segments, which implies that every curve in a digital image
be regarded as a polygonal curve with a possible large num
of vertices. We decompose a digital curve into maximal dig
line segments.

The basic idea of the evolution is very simple: in every e
lution step, we replace two consecutive line segments wi
single line segment joining their endpoints. The key propert
the evolution is the order of this substitution. If we do this in
“right” order, then we obtain an intuitive shape evolution of t
curve. The substitution is done according to a relevance ord
digital arcs that measures the significance of their contribu
to the shape of the curve, beginning with arcs that contribut
the least significant way. This method allows us first to eli
nate noise influence without changing the shape of objects
example, compare the original curve (a) to curve (b) in Fig.

If we continue to evolve the curve, we will linearize digit
arcs that are relevant to the curve shape, which will result
successive simplification of the curve shape. We use this s
simplification to derive a shape hierarchy for planar curves.
example, we obtain (a)< (b)< · · · < ( f ) as the shape hierarch
1077-3142/99 $30.00
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FIG. 1. A few stages of the proposed discrete curve evolution. Contour shown in (a) is a distorted version of the contour on the WWW page http://www.ee.
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in Fig. 1. Since in every evolution step, the number of digital l
segments in the curve decomposition decreases by one, th
lution converges to a convex polygon, which defines the hig
level in the shape hierarchy, e.g., Fig. 1f. The presented evol
method is translation, rotation, reflection, and scaling invari

The obtained shape hierarchy is a base for object decom
tion into relevant visual parts. The parts obtained on the hig
levels of the hierarchy determine the most significant part
the object. To decompose a digital curve into relevant part
a given level of the shape hierarchy, we group the digital
segments of its boundary curve into maximal convex arcs.

The fact that visual parts are somehow related to conve
has been noticed in the literature; e.g., Basriet al. [1] state

Parts generally are defined to be convex or nearly convex shapes separ
from the rest of the object at concavity extrema, as in Hoffman and Richar
[12], or at inflections, as in Koenderink and Doorn [15].

In Vaina and Zlateva [31] largest convex patches were use
part decomposition of 3D objects. Although the observation
visual parts are “nearly convex shapes” is very natural, the m
problem is to determine the meaning of “nearly” in this conte
We will present the details of our solution to this problem
Section 2. Now we state a few simple definitions.

We call maximal convex arcssupportedarcs following
Latecki and Rosenfeld [17]. We call finite unions of suppor
arcstamearcs. Maximal supported arcs determine alterna
and overlapping convex and concave parts of the object bo
ary. For example, Fig. 2 shows a decomposition of a polyg
FIG. 2. Decomposition of a polygonal arc into maximal supported arcs.
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curve into maximal supported arcs: the dashed arcs (inside
polygon) indicate the concave arcs with respect to the poly
while the dotted arcs (outside of the polygon) indicate the c
vex arcs with respect to the polygon. In the following, the te
maximal convex arcdenotes a supported arc that is convex w
respect to the object.

Recall that we work with digital arcs, which can be treat
as polygonal arcs without loss of information. Thus, we u
polygonal definitions of the global curvature, which is equ
to the total turn of a polygonal arc. The definition of theglobal
curvature(or total turn) of a polygonal arc is illustrated in Fig. 3
This definition has been extended to digital arcs in Latecki
Rosenfeld [17].

2. SHAPE DECOMPOSITION

It is a simple and natural observation that maximal con
parts of objects determine visual parts. However, the proble
that many significant visual parts are not convex, since a vi
part may have concavities. We solve this problem by identify
convex parts at different stages of the proposed contour evolu
in which significant visual parts will become convex object pa
at higher stages of the evolution: A significant visual part m
have concavities, whose boundary parts are supported con
arcs. Since these concave arcs contribute in a less relevan
to the shape of the object than the boundary arc enclosing
significant visual part, the concavities will disappear in an ear
stage of the boundary evolution. Thus, there exists an evolu
stage at which a significant visual part is a convex part. We b
our approach to shape decomposition into visual parts on
following rule:

• Hierarchical convexity rule.The maximal convex arcs
(w.r.t. the object) at various levels of the contour evolution
termine parts of object boundary that enclose visual parts o
object.
The visual parts are determined on the original shape, i.e., it
is not a maximal convex arc that is itself a visual part, but the
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FIG. 3. (a) Thetotal turnof a polygonal arc is the sum of turn angles at its vertices:τ (x1)+ · · · + τ (x4). (b) For a closed polygonal arc, the total turn isτ (x0)+

t
o
in

t

a

a

v

a
o
.
n
v
s
.

the
d on
rig-

arcs
This

s of
rder
two

the-
dary

ined

xi-
oints

e.g.,
ar in
· · · + τ (x5).

piece of the original contour determined by the convex arc
encloses a visual part of the object. In other words, the endp
of the maximal convex arc determine the piece of the orig
contour that encloses a visual part.

Figure 4 shows two examples of visual parts obtained by
proposed hierarchical convexity rule. On the highest level of
evolution hierarchy (a) in Fig. 4, the evolved silhouette
the “bear” is decomposed into three maximal convex arcs,
the evolved silhouette of the “fish” is decomposed into two ma
mal convex arcs. The visual parts enclosed by corresponding
on the original shape represent the most relevant object p
those are the fish body and the tail for the fish and the upper b
and legs together with hips for the bear. On one of the lower le
of the shape hierarchy (b) in Fig. 4, we obtain further visual pa
e.g., the head and the arms for the bear. The visual parts obt
by the hierarchical convexity rule on levels (a) and (b) are sh
on the original contours in (c). Another example is given in Fig
where the order of pictures follows the steps of the evolutio

The parts of boundaries obtained by the hierarchical con
ity rule correspond for many objects to the parts obtained u
points of minimal negative curvature. This is illustrated in Fig

which presents (after the arrows) all possible codon quadruples
scanned from

Also, for many objects, the obtained parts of objects corre-
i and Kimia [25].
Fig. 7 in Hoffman and Richards [12]. Shapes sim-spond to limbs and necks in the theory of Siddiq
FIG. 4. The object parts obtained at different l
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plified by our discrete curve evolution are presented before
arrows. The endpoints of maximal convex arcs determine
the simplified shapes are marked by small circles. For the o
inal shapes in Fig. 5, the endpoints of the maximal convex
are located near the points of minimal negative curvature.
is also the case for the shapes in Fig. 4.

In our approach, we do not need to decide which point
minimal negative curvature have to be joined together in o
to obtain object parts. The object parts obtained by joining
negative curvature minima are calledpart cuts(Beusmanset al.
[5]). As argumented in Hoffman and Singh [13], a separate
ory is necessary to determine the part cuts knowing the boun
points of minimal negative curvature.

• In our approach, the part cuts are automatically determ
by maximal convex arcs.

We simply obtain part cuts by joining the endpoints of ma
mal convex arcs on the original shape. Observe that the endp
do not have to be direct neighbors on the original contour;
see the part cut that determines the upper body of the be
Fig. 4c.
evels of the discrete evolution of the boundary curve.
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FIG. 5. The endpoints of maximal convex arcs correspond to points of minimal negative curvature. The shapes after the arrows are scanned from Hoffman and
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Richards [12].

For example, the parts obtained by the hierarchical conve
rule include mostly limbs and necks in the theory of Sidd
and Kimia for the shapes in Fig. 6, which presents some o
shapes used in Siddiqiet al. [27] for psychological experimen
to justify limbs and necks. For every shape, three stages
evolution together with the parts obtained at these stage
shown. The parts obtained by the hierarchical convexity rule
marked on the original shape by different gray-level values.
darker the gray-level value, the higher is the level of the ev
tion at which a part is determined. A part contains all regions
have darker gray-level values, e.g., the part “fish tail” (mar
light gray) contains the two black “fish tail tip” regions.

Observe that the parts obtained by our rule include all p
with a high degree of intersubject consistency obtained by
chological experiments in [27] (Fig. 17); e.g., these are the f
leg and the ear for the donkey, the tail and the fins for the
and the front leg for the rabbit. For the kangaroo, no such p
were determined in [27]. Most of the remaining parts in Fig
determined by our rule correspond also to the parts determ
by the subjects in experiments in [27] (which have a low de
of intersubject consistency). This is, for example, the front
of the donkey determined by the vertical part-line. This vis
part illustrates an additional strength of our approach, sin
seems to be plausible and has been identified by the experi
in [27]. However, this visual part can be obtained neither by
codon theory in [12] nor by the theory in [25].

The hierarchy obtained by the evolution of a boundary cu
induces a hierarchical structure of the visual parts, which
will call shape hierarchy:
• The more advanced is the process of the evolution, the m
significant for the object shape are the parts determined.
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• The parts obtained on a higher level of the shape hierar
are inherited to the lower levels.

This means that on a lower level only the inherited parts
further divided. For example, on the level (b) in Fig. 4, only t
parts obtained on level (a) are further divided; e.g., the up
body of the bear is divided into the head and arms. For the ra
in Fig. 8, we have the following shape hierarchy of visual pa
(f) > (e) > (d).

Our shape hierarchy corresponds to the hierarchy of p
based on the evolution of shocks in the entropy scale spac
Kimia et al.[14]. As argumented in [14], the evolution of shoc
requires not only boundary, but also region information. Ho
ever, observe that our part decomposition requires only boun
information. This means that our approach to shape decomp
tion allows us to obtain the region information from the evoluti
hierarchy of the boundary curve. This is the case for a large c
of shapes, e.g., the tail of the fish in Fig. 6, but there exist sha
for which our boundary information and evolution hierarchy
not determine the region information, e.g., the two ears of
rabbit in Fig. 6 are not identified as a visual part; surprising
this part is also not identified as a visual part in psycholog
experiments in [27]. However, for the worm shape in Fig. 5
[27], our algorithm might give parts that are not intuitive due
the lack of explicit region information.

For boundaries of continuous objects, the endpoints of m
mal convex arcs correspond to inflection points (e.g., inflec
points are used for shape description in Freeman [6]). The co
spondence of the endpoints of maximal convex arcs to diffe
kinds of critical points (in the sense of differential geomet

oreis possible, since we work in a discrete space which does not
exactly follow the rules of differential geometry.
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FIG. 6. For these shapes, the parts obtained by the hierarchical convexity
are scanned from [27].

Our approach allows us additionally

• to obtain a shape decomposition stable with respec
noise, due to properties of our discrete curve evolution and
to the fact that the convex arcs represent global propertie
object boundaries,
• to give a relevance measure for obtained parts that is b

on the level of the shape hierarchy and on relevance of the m
imal convex arcs.

The stability of the shape decomposition with respect to no
results from the fact that our evolution process is guided by
relevance order (described in more details in Section 3) and
to the fact that recognition of supported arcs is based on gl
features that are significantly less influenced by noise than
cally defined points of minimal negative curvature. The stabi
is demonstrated in Fig. 7. Although the original contour of t
fish is distorted by two different levels of noise, the obtain
parts are the same as for the original fish in Fig. 4.
In our approach, we can derive a relevance measure of
sual parts from the relevance measure of supported arcs;
rule include most of the limbs and necks in the theory of Siddiqi and Kimia.s

to
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the relevance measure of visual parts is based on the relev
of the contribution of the maximal convex arcs by which th
are determined to the object shape, which depends on th
tal turn (i.e., global curvature) and the length that is norm
ized with respect to the total length of the boundary curve (
Section 4). Additionally, the relevance measure of visual p
is based on the levels of the shape hierarchy on which they
determined, similarly to the case in Kimiaet al. [14] (see also
[25]). Thus, we can obtain a relevance measure together
object parts. In contrast, part decomposition based on po
of minimal negative curvature is binary; i.e., the obtained p
cannot be distinguished according to their salience.

3. DISCRETE CURVE EVOLUTION
BY LINEARIZATION

The presented discrete curve evolution method by linear
tion has been applied to digital simple closed 8-curves. We h

vi-
i.e.,
used a watershed segmentation algorithm that automatically pro-
duces such curves as boundary curves of digital objects in real
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FIG. 7. The proposed decomposition into vis

images.1 Therefore, our discrete curve evolution as well as
shape decomposition algorithms can be applied to real ima
This is demonstrated in Fig. 8.

First the original image (Fig. 8a) is segmented using co
and texture segmentation as in Pauwelset al. [24]. The water-
shed algorithm produces the object contour (Fig. 8c) that
simple closed 8-curve. In Figs. 8d–8f, we see a few stage
the discrete curve evolution. The obtained evolution hierar
(8f) > (8e) > (8d) yields the illustrated decomposition into visu
parts.

In the first step of our discrete curve evolution method, a d
ital curve is divided into maximal digital line segments. T
decomposition of a digital curve into maximal line segments
based on the observation that every digital curve can be dec
posed into digital line segments, even if the curve is stron
distorted by noise. We use a linear algorithm (with respect to
number of points in the curve) from Debled and Reveilles
to obtain a decomposition of a digital curve into maximal di
tal line segments. The decomposition in linear time belong
newer achievements of digital geometry; a first linear algorit
was given 1991 by Smeulders and Dorst [28].

The process ofdiscrete curve evolution by digital lineariza
tion is very simple:

• The minimum of the cost functionK (defined in Section 4)
determines the pair of line segments that is substituted b
single line segment joining their endpoints. The substitution
termines a single step of the discrete curve evolution. We re
this process for the new curve; i.e., we determine again the
of line segments that minimizes the cost function, and so on

LetDm= s0, . . . , sm−1 be a decomposition of a digital curv
C into consecutive digital line segments. The algorithm t
decompositionsDk for each stage of the discrete
nk> 3 untilDk−1 is convex is the following:

ed algorithm was successfully applied in image segmenta
data representation of video sequences, see Lak¨amper and

isual
al parts is stable with respect to contour distortions.
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Discrete Curve Evolution Procedure(Dm)
k=m;
Do

Find inDk a pairsi , si+1 (modk) such thatK (si , si+1)
is minimal;
Dk−1=Dk with segmentssi , si+1 replaced by line seg-
ment s′ that joints the endpoints of arcsi ∪ si+1;
k= k− 1;

until Dk−1 is convex.

This algorithm is guaranteed to terminate, since in every e
lution step, the number of digital line segments in the cu
decomposition decreases by one (one line segment replace

FIG. 8. From an image to a simplified shape representation and to v

tionparts. (a)→ (b), color and texture segmentation (Pauwelset al.); (b) → (c),
watershed segmentation; (c)–(f), discrete curve evolution and obtained visual
parts.
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CONVEXITY RULE FOR

FIG. 9. The unchanged planar position of the points marked with the s
symbols demonstrates that there is no displacement of the remaining f
points.

adjacent segments). It is also obvious that this evolution
verges to a convex polygon, since the evolution will reac
state where there are exactly three line segments in the
decomposition, which clearly form a triangle. Of course,
many curves, a convex polygon with more then three sides
be obtained in an earlier stage of the evolution. Thus, we o

PROPOSITION1. Discrete curve evolution by digital lineariz
tion converges to a convex polygon.

This proposition demonstrates the mathematical simpl
of the relation between our evolution approach and the
metric properties of the obtained digital curves. Observe
we did not assume that the digital curve is simple (i.e.,
no self-intersections). An analog theorem for the evolutio
continuous planar curves by diffusion equations is a deep
highly nontrivial result of differential geometry (Grayson [7])
holds only for simple closed smooth curves evolved by diffus
equations.

Polygonal analogs of the evolution by diffusion equati
are presented in Brucksteinet al. [3]. The experiments in [3
indicate that an arbitrary initial polygon converges to a con
polygon (polygonal circle). However, the proof of this fact in
Euclidean case is an open question. In [3] as well as in evolu
by numerical solutions of differential equations, each verte
the polygon is mapped to some point in the plane at a s
evolution step, whereas in our approach one vertex is rem
and the remaining vertices do not change their positions. Th
an important difference in favor of our approach.
Now we list some important properties of our discrete curve
evolution:

pairs of arcs that contribute in the least significant way to the
atively small length
shape of a given curve, which are arcs of rel
FIG. 10. (a)→ (b), noise elimination; (b)→
HAPE DECOMPOSITION 447
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(P1) It leads to the simplification of shape complexity,
analogy to evolutions guided by diffusion equations, with

(P2) no blurring (i.e., shape rounding) effects and no dis
cation of relevant features,

due to the fact that the remaining vertices do not change t
positions. Two more important properties of our discrete cu
evolution are based on the relevance measureK (defined in
Section 6):

(P3) It is stable with respect to noisy deformations, sin
noise elimination takes place in the early stages of the evolu

(P4) It allows us to find digital line segments in noisy image
due to the relevance order of the repeated process of di
linearization (e.g., Fig. 10).

We begin with some examples to illustrate the properties
our evolution method. A few stages of the proposed disc
curve evolution in Fig. 1 illustrate the shape complexity red
tion (P1) of the original curve (a). Our discrete curve evoluti
does not introduce any blurring effects (P2), which result in
shape rounding for curves. For a comparison see the dis
curve evolution on the WWW page http://www.ee.surrey.ac.
Research/VSSP/imagedb/demo.html, based on [22]. Obs
also that there is no dislocation of the remaining relevant sh
features (P2), since the planar position of the remaining points
the digital polygon is unchanged. The stability of relevant sh
feature points is demonstrated by marking the correspon
points with the same symbols in Fig. 9. Observe also the sta
ity of feature points with respect to noise deformations sho
in the second row in Fig. 9.

By comparison of the curves (a) and (b) in Fig. 10, it c
be seen that our evolution method allows us first to elimin
noise influence without changing the shape of objects (P3). If
we continue to evolve the curve (b), we obtain line segme
that are relevant to the curve shape (P4) in (c); cf. Brunnet al.
[4], Fig. 4.

Our evolution method allows us to eliminate noise influen
without changing the shape of objects (P3), since distortions
caused by noise mostly result in pairs of digital line segments
have relatively low values of the relevance measureK (presented
in Section 4): The relevance order induced byK begins with
(c), extraction of relevant line segments.
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448 LATECKI AND

and total curvature. Such arcs are most likely to result from n
distortions. Since they are removed in the early stages of
discrete curve evolution, the results of the presented evolu
are very stable with respect to noise. For example, although
boundary curves (2a) and (3a) in Fig. 16 are distorted by n
to a large extent in various ways, the results of the evolution
curves in (1a), (2a), and (3a) are very similar. The robustnes
our discrete curve evolution method with respect to noise is
due to the fact that we are using global curvature information
more formal justification of the above properties can be fou
in [18].

4. RELEVANCE ORDER

Our evolution process is guided by a relevance order.
assign to every pair of two adjacent line segmentss1, s2 in a
decomposition of a given digital curveC a costK (s1, s2) which
represents the significance of the contribution of arcs1∪ s2 to the
shape ofC. We order pairs of adjacent line segments with resp
to this significance cost. We will call this order arelevance order.
The exact value of the cost function we used in our experime
is given by the formula (1) in Section 6 and can be interpre
as a linearization cost of arcs1∪ s2. To motivate and derive this
formula, we use a tangent space representation of digital cu
in Sections 5 and 6. In this section, we state basic requirem
for the relevance order.

The linearization costK (a) of any supported arca depends
on its relative length (with respect to the curve) and its glo
curvature. (In particular, a pair of two adjacent line segme
s1, s2 forms a supported arcs1∪ s2.)

It seems that an adequate measure of the relevance o
s1∪ s2 for the shape of a given object can be based on turn a
β(s1, s2) and on the relative lengths of the segmentsl (s1), l (s2).
We assume that the larger both relative lengths and the
turn of the arc, the greater is its contribution to the shape
curve. Thus, the cost functionK is monotonically increasing
with respect to the relative lengths and the total curvature. T
assumption can be justified by the rules on the salience
limb in Siddiqi and Kimia [25]. It can be also motivated b
the example objects in Fig. 11 and by the experimental res
FIG. 11. The influence of the bold arcs on the shape of the curve depends
their turn and length of their segments.
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FIG. 12. Although the two bold arcs have the same total length, the sig
cance of their contribution to the shape of the curves is different.

described below. The bold arc in Fig. 11b has the same tu
the bold arc in Fig. 11a but is longer, and the bold arc in Fig.
has the same length as the bold arc in Fig. 11a but its tu
greater. While the bold arc in Fig. 11a can be interpreted a
irrelevant shape distortion, the bold arcs in Figs. 11b and 11
more likely to represent relevant shape properties of the w
object. As can be easily observed, the contribution of the
arc in Fig. 11d to the shape of the displayed object is the m
significant. This arc has the largest turn and its line segm
are longer than in Figs. 11a and 11c. Although the line segm
of bold arcs in Figs. 11b and 11d have the same length
shape contribution of the bold arc in Fig. 11d is clearly m
significant than the contribution of the bold arc in Fig. 11b d
to the difference in turn angle.

Observe that the total relative length of the line segm
(l (s1) + l (s2)) is not appropriate as a parameter for the c
function K . The total length of the bold arcs in Fig. 12 is t
same, but it can be easily seen that the contribution to the s
of the whole curve of the arc in Fig. 12b is more significant th
the contribution of the arc in Fig. 12d.

The example in Fig. 12 may suggest that the cost func
K (s1, s2) should be directly proportional to the area of the
gion enclosed bys1∪ s2, since the area is greater for the bold
in Fig. 12b. However, this is not the case, as can be seen by
paring the two bold arcs in Figs. 11b and 11d. It can be cle
seen that the significance of the contribution of the bold ar
the shape of the contour in Fig. 11d is larger than in Fig. 1
but the area of the triangular region enclosed by the bold a
Fig. 11d is smaller than that in Fig. 11b (the line segment
the two bold arcs have the same length).

5. TANGENT SPACE REPRESENTATION

To derive the formula for the relevance measure, we u
tangent spacein which a step function is associated with eve
digital curve.

Any digital curveC can be interpreted as a polygonal cu
with a possibly large number of vertices. For example, all po
on the digital curve can be the vertices or the vertices ca
chosen to be the endpoints of the maximal digital line segm
contained inC. Thus, we assume that digital curveC is a polyg-

ononal curve with verticesv0, . . . , vm−1. HenceC is composed
of digital line segmentsDm(C)= s0, . . . , sm−1, wheresi is the
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FIG. 13. A polygonal curve (a) and its step function representation in th

(continuous) line segment joiningvi tovi+1 for i = 0, . . . ,m− 1
modulom− 1. We denoteangle(s) to be the angular directio
of line segments in the standard coordinate system of the pl
and we denotel (s) to be the length ofs normalized by the lengt
of C.

A polygonal curve is represented in the tangent space b
graph of a step function, where thex-axis represents the a
clength coordinates of points inC and they-axis represents th
direction of the line segments in the decomposition ofC. For
example, Fig. 13 shows a digital curve (a) and its step func
representation (b) in the tangent space. Formally, thetangent
spaceis a torusS1× S2, whereS1 is a circle of length one tha
represents the length of a digital curve andS2 is a circle that rep
resents the angular direction of digital line segments. We
display the tangent space as a rectangle with the parallel
identified in the standard way to obtain a topological torus.
y-difference between two adjacent steps in the tangent spac
resents the turn angle of the corresponding pair of line segm
The significance of the contribution of a pair of consecutive
segments to the shape depends on their length and the turn
in the direction of traverse. Exactly these two parameters
represented in the tangent space.

We define a transformationT mapping a digital 8-curve t
the tangent space. For illustration, see Figs. 13(a) and 13(b
each digital line segments ∈ Dm(C), a line segmentT(s) in the
tangent space is assigned such that
πy(T(s))= angle(s),

the length ofπx(T(s
termine the circu-
F must be rotated
)) is equal tol (s), andπx(T(si )) is adjacent

angular direction of line segments). We de
lar arclength by which the endpointsB and
FIG. 14. Scale transform
tangent space (b). The similarity of (c) and (d) shows that the curve (a) is s

ne

the
-

ion

ill
ides
he
rep-
nts.
ne
ngle
are

. To

to πx(T(si+1)), whereπx andπy denote the projections onx-
and y-axes in the tangent space, correspondingly. This me
that they-values of all points inT(s) are equal toangle(s) and
the projection ofT(s) on thex-axis has the same (normalize
arclength coordinates ass in C.

An analytical description of the transformation to the tang
space for continuous curves can be found in Zahn and Ros
[33]. They call the step function in the tangent space acumulative
angular bend function. Zahn and Roskies use this transform
tion only as an intermediate step to obtain Fourier descript
of planar curves. They use the tangent space neither for an
ing the underlying planar curves nor for scale transformatio
which we will describe below. Uesaka [30] uses the trans
mation of polygonal arcs to the tangent space to determi
circular approximation of polygonal arcs.

6. RELEVANCE MEASURE

For each two adjacent line segmentss1, s2 in the decomposi-
tion of a digital curveC, we determine the relevance meas
K (s1, s2), which represents the significance of the contribut
of arc s1 ∪ s2 to the shape ofC. The valueK (s1, s2) can be
interpreted as the cost required for linearization of arcs1 ∪ s2.

Let s1=AB ands2=EF be two consecutive line segmen
in the decomposition of curveC, so thatB= E is their com-
mon endpoint (see Fig. 14) andβ =β(s1, s2) is the turn angle,
i.e.,angle(EF)− angle(AB)=β (whereangle(s) represents the
ation in the tangent space.
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around pointsA andE, correspondingly, so that the rotated li
segments have the same direction, i.e., untilAB′ andEF′ are par-
allel, whereB′ andF ′ are the images ofB andF by the rotations
The circular arclength must be equal for both line segments.
cost functionK assigns to pairs1, s2 this circular arclength. We
will show below that it is given by the equation

K (s1, s2) = β(s1, s2)l (s1)l (s2)

l (s1)+ l (s2)
, (1)

wherel is the length function normalized with respect toC.
Without loss of generality, we can assume thatangle(EF)−

angle(AB)=β >0. We seek an anglex, 0≤ x≤β such that

angle(s1)+ x = angle(s1)− (β − x) (2)

and

l (s1)x = l (s2)(β − x). (3)

Equation (2) expresses that line segmentss1 ands2 have the sam
angular direction after the rotations. Equation (3) expresses
their endpoints must be rotated by the same circular arclen
The pair of equations (2) and (3) can be interpreted in the tan
space (see Fig. 14 (right)) as translation of stepsT(s1) andT(s2)
parallel to they-axis until they have the same (angular)y-value
and the rectangles obtained by their moves have the same
By simple calculation, we obtainx=βl (s2)/[l (s1)+ l (s2)], and
consequently, by (3), the circular arclength is equal to (1).

The cost function in (1) is our measure of how signific
is the contribution of a pair of consecutive line segment to
shape of the curve. The minimum of the cost function determ
the pair that is substituted by a single line segment joining t
endpoints, which results in a single step of discrete curve
lution, e.g., ifK obtains the minimum for line segmentsABand
EF, then they are deleted fromC and the new line segmentAF
is added toC. The result of substituting the segmentsAB and
EF with segmentAF is shown in Fig. 14 (left).

The tangent space representation is transformed in the c
sponding way (see Fig. 14 (right)): the stepsT(AB) andT(EF) are
deleted and a new stepT(AF) is added. Since it is not sufficien
to represent the length of the new stepT(AF) by l (s1)+ l (s2),
we take the length of digital segmentAF as the length of ste
T(AF), i.e., the length ofT(AF) is equal to

lAF =
√

l (s1)2+ l (s2)2+ 2l (s1)l (s2) cosβ.

Examples of the discrete curve evolutions together with the
responding transformations of the tangent spaces are sho
Figs. 17 and 18.

The value (1) of the cost function determines the rotation
line segmentss1 ands2 until they are parallel. In the process

discrete curve evolution, the segmentss1 ands2 are substituted
by a line segments′ joining the endpoints ofs1∪ s2. In the fol-
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FIG. 15. The rotated segmentsAB′ andFE′ must be contained ins′ =AF if
the rotations angles aresmall.

lowing, we show that the rotations yield an equivalent cha
of curve C as substitution of segmentss1 and s2 by s′ if the
rotations angles aresmall. This also justifies the interpretatio
of K (s1, s2) as the cost required for linearization of arcs1 ∪ s2.

We recall thats1=AB ands2=EF are two consecutive line
segments in the decomposition of curveC, such thatB= E is
their common endpoint (see Fig. 14). We rotated segmenEF
around pointE so that the length of circular arcFF′ is given by
Eq. (1). Now we change the interpretation of this rotation (
Fig. 15): we rotateEF around pointF so that the length of ar
drawn byE is given by Eq. (1), i.e., circular arcEE′ is given
by Eq. (1). We will show below that the rotated segmentsAB′

andFE′ must be contained ins′ =AF if the rotations angles ar
small.

Precisely, we will show that the segments obtained by
rotation ofABandEF around pointsA andF , correspondingly,
are locatedvery closeto AF if anglesα1=BAF andα2=EFA
aresmall(see Fig. 15).

Smallmeans here that sin(α1)≈α1 and sin(α2)≈α2, which
is usually assumed for angles less than someγ in the interval
[ π12,

π
9 ], depending on the required accuracy.

Since the rotation angle of a line segment around one o
endpoints is the ratio of the circular arc length drawn by
other endpoint during the rotation to the length of the segm
we obtain from Eq. (1) that the rotation angles for segmentsAB
andEF are

x = w1 = βl (s2)

l (s1)+ l (s2)
and w2 = βl (s1)

l (s1)+ l (s2)
.

By the sinus formula

l (s1)

sinα2
= l (s2)

sinα1
, we have

l (s1)

α2
≈ l (s2)

α1
.

Sinceβ =α1+α2, it can be easily calculated that

βl (s2)

l (s1)+ l (s2)
≈ α1 and

βl (s1)

l (s1)+ l (s2)
≈ α2,

which implies that

w1 ≈ α1 and w2 ≈ α2.

This means that segmentsAB andEF after rotation by angles
w1 andw2 around pointsA and F , correspondingly, will be
nearly contained in the segmentAF. Since we deal with digita
segments, the approximation accuracy can be calculated
respect to resolution of the square grid. We will not discuss

subject here; it is related to the sufficient digitization resolution
(see Gross and Latecki [10]).



CONVEXITY RULE FOR SHAPE DECOMPOSITION 451
di [22].

t
t
th
os
v

due
esir-
ving
FIG. 16. Shape evolution by repetitive linearization. Compare to the

Since the values of the cost function can be defined in
tangent space, which is a torus, the presented evolution me
is rotation invariant. Since the curve length is normalized,
evolution is scaling invariant. Since the minimum of the c
function does not depend on the direction and order of the tra

sal of line segments, the evolution is reflection invariant. It ca
be easily seen that it is also translation invariant.
ffusion based evolution of similar contours in Mokhtarian and Mackworth

he
hod
e
t

er-

7. CONCLUSIONS AND FUTURE WORK

Since contours of objects in digital images are distorted
to digitization noise and due to segmentation errors, it is d
able to neglect the distortions while at the same time preser

nthe perceptual appearance at a level sufficient for object recog-
nition. An obvious way to neglect the distortions is to eliminate
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FIG. 17. Shape evolution by repetitive linearizat

them by approximating the original contour with one that ha
similar perceptual appearance. To achieve this, an approp
approximation (or discrete curve evolution) method is ne
sary. This is achieved in our approach through a novel me
for evolution of polygonal curves (which can also be interpre
ximation method). For this method, we can de
rsal stage of the discrete curve evolution (that d
on a given shape and on the amount of the dis

exist
n. Next to each curve is its tangent space representation.

a
iate
s-
od

ed
ter-

tions) at which the distortions are eliminated and the percep
appearance is sufficient for robust object recognition. This i
important feature of our discrete curve evolution method, sin
implies that neglecting the distortions is achieved automatic
which is a necessary requirement for shape representations
in image databases. Observe that no universal solutions
oes
tor-
to determine such a stage for many established methods, e.g.,
to determine the approximation distance for a popular contour
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FIG. 18. Shape evolution by repetitive lineariza

approximation method [23] by Ramer, for multiscale cont
approximation [2] by Bengtsson and Eklundh, and for curva
scale filtering, e.g. [32], where a few multiscale parameters
necessary.

The presented tangent space allows us to reduce the com
ity of symmetry detection in the presence of noise and oc
h is a complicated task (see, e.g., Teket al. [29]).
try of some boundary parts of a given object can
n. Next to each curve is its tangent space representation.

r
re
re

lex-
lu-

detected given the step function representations of the boun
curve: If boundary partA is a symmetric image of partB, then
the step function ofA is equal to the point reflection of the ste
function of B. For example, the point reflection of part 8–15
the step function in Fig. 13(b), shown in (d), is equal to part 0
shown in (c).
be
The hierarchical shape decomposition into visual parts and

shape simplification by discrete curve evolution make it possible
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to define a similarity measure for planar objects. This measu
defined and applied for automatic object indexing and sear
image databases in [19]; see also our web side [20]. The fac
the performance of our similarity measure is in accord with
visual perception justifies perceptual adequacy and usefu
of the presented discrete curve evolution and the shape de
position methods.

These topics as well as a 3D version of our results wil
treated in forthcoming papers. While our 2D evolution by d
ital linearization is length-minimizing, the 3D analog is are
minimizing.
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