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We concentrate here on decomposition of 2D objects into mean-
ingful parts of visual form, or visual parts. It is a simple observation
that convex parts of objects determine visual parts. However, the
problem is that many significant visual parts are not convex, since a
visual part may have concavities. We solve this problem by identify-
ing convex parts at different stages of a proposed contour evolution
method in which significant visual parts will become convex object
parts at higher stages of the evolution. We obtain a novel rule for de-
composition of 2D objects into visual parts, called the hierarchical
convexity rule, which states that visual parts are enclosed by max-
imal convex (with respect to the object) boundary arcs at different
stages of the contour evolution. This rule determines not only parts
of boundary curves but directly the visual parts of objects. Moreover,
the stages of the evolution hierarchy induce a hierarchical structure
of the visual parts. The more advanced the stage of contour evolu-
tion, the more significant is the shape contribution of the obtained
visual parts.  © 1999 Academic Press

Key Words: visual parts; discrete curve evolution; digital curves;
digital straight line segments; total curvature; shape hierarchy; dig-
ital geometry.

1. INTRODUCTION

We concentrate here on decomposition of 2D objects in

meaningful parts. According to Siddigt al.[26],

...the minima rule states in principle what these boundaries are, leaving
open how in practice they may be computed from images despite noise and
other resources.

One of the main motivations for our work was the questior
of how to robustly compute significant parts of boundaries from
real digitalimages. In particular, since negative minima of curva
ture as well as other extremal points are obtained by local con
putation, their computation is not robust in real digital images.

Since objects we deal with in computer vision are mostly
digital objects obtained by segmentation in digital images, ou
starting point was the discrete nature of digital objects. There
fore, we propose a multiscale shape decomposition rule whic
yields for many objects similar parts as in Hoffman and Richard
[12]. However, we do not use extremal points of contour curve:
to compute the parts.

The presented approach to multiscale shape decomposition
based on shape hierarchy obtained by a discrete curve evolutic
We present a novel approach to the evolution of digital plana
curves that is based on digital linearization. In contrary to con
tinuous curves, every digital curve is composed of digital line
segments, which implies that every curve in a digital image ca
be regarded as a polygonal curve with a possible large numb
of vertices. We decompose a digital curve into maximal digita
line segments.

The basic idea of the evolution is very simple: in every evo-
ItL?tion step, we replace two consecutive line segments with
single line segment joining their endpoints. The key property o

Part-based representations allow for recognition that is robust in the presthe evolution is the order of this substitution. If we do this in the
ence of occlusion, movement, deletion, or growth of portions of an object.“right” order, then we obtain an intuitive shape evolution of the
In the task of forming high-level object-centered models from low-level rye. The substitution is done according to arelevance order ¢

image-based features, parts serve as an intermediate representation.

digital arcs that measures the significance of their contributiol

There is also a strong evidence for part-based representationi®ithe shape of the curve, beginning with arcs that contribute i
human vision, see [26] for an overview. Hoffman and RichardBe least significant way. This method allows us first to elimi-
[12] provided strong evidence that contours are psychologicafite noise influence without changing the shape of objects. F
segmented at negative curvature minima. They stated the f@kample, compare the original curve (a) to curve (b) in Fig. 1.
lowing rule (cited from Hoffman and Singh [13]): If we continue to evolve the curve, we will linearize digital

arcs that are relevant to the curve shape, which will result in
successive simplification of the curve shape. We use this shay
simplification to derive a shape hierarchy for planar curves. Fc
example, we obtaira)) < (b) < --- < (f)asthe shape hierarchy

Minima rule for silhouettesfor any silhouette, all negative minima of
curvature of its bounding curve are boundaries between parts.

Hoffman and Singh write [13]:
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FIG. 1. A few stages of the proposed discrete curve evolution. Contour shown in (a) is a distorted version of the contour on the WWW page http://w
surrey.ac.uk/Research/VSSP/imagedb/demo.html.

in Fig. 1. Since in every evolution step, the number of digital lineurve into maximal supported arcs: the dashed arcs (inside 1
segments in the curve decomposition decreases by one, the @adygon) indicate the concave arcs with respect to the polygc
lution converges to a convex polygon, which defines the higheslile the dotted arcs (outside of the polygon) indicate the col
levelinthe shape hierarchy, e.g., Fig. 1f. The presented evolutiex arcs with respect to the polygon. In the following, the terr
method is translation, rotation, reflection, and scaling invariamhaximal convex ardenotes a supported arc that is convex witl
The obtained shape hierarchy is a base for object decompwesspect to the object.
tion into relevant visual parts. The parts obtained on the highesRecall that we work with digital arcs, which can be treate
levels of the hierarchy determine the most significant parts a$ polygonal arcs without loss of information. Thus, we us
the object. To decompose a digital curve into relevant parts palygonal definitions of the global curvature, which is equa
a given level of the shape hierarchy, we group the digital lirte the total turn of a polygonal arc. The definition of tjlebal
segments of its boundary curve into maximal convex arcs. curvature(ortotal turn) of a polygonal arcis illustrated in Fig. 3.
The fact that visual parts are somehow related to convexithis definition has been extended to digital arcs in Latecki ar
has been noticed in the literature; e.g., Basil. [1] state Rosenfeld [17].

Parts generally are defined to be convex or nearly convex shapes separated
from the rest of the object at concavity extrema, as in Hoffman and Richards 2. SHAPE DECOMPOSITION
[12], or at inflections, as in Koenderink and Doorn [15]. '

In Vaina and Zlateva [31] largest convex patches were used foilt is a simple and natural observation that maximal conve
part decomposition of 3D objects. Although the observation thaarts of objects determine visual parts. However, the problem
visual parts are “nearly convex shapes” is very natural, the mairat many significant visual parts are not convex, since a visu
problem is to determine the meaning of “nearly” in this contexpart may have concavities. We solve this problem by identifyin
We will present the details of our solution to this problem igonvex parts at different stages of the proposed contour evoluti
Section 2. Now we state a few simple definitions. in which significant visual parts will become convex object part

We call maximal convex arcsupportedarcs following at higher stages of the evolution: A significant visual part ma
Latecki and Rosenfeld [17]. We call finite unions of supporteldiave concavities, whose boundary parts are supported conc
arcstamearcs. Maximal supported arcs determine alternatir@gjcs. Since these concave arcs contribute in a less relevant v
and overlapping convex and concave parts of the object bouitelthe shape of the object than the boundary arc enclosing t
ary. For example, Fig. 2 shows a decomposition of a polygorgignificant visual part, the concavities will disappear in an earlie
stage of the boundary evolution. Thus, there exists an evolutit
stage at which a significant visual part is a convex part. We ba
our approach to shape decomposition into visual parts on tl
following rule:

e Hierarchical convexity rule.The maximal convex arcs
(w.r.t. the object) at various levels of the contour evolution de
termine parts of object boundary that enclose visual parts of tl
object.

The visual parts are determined on the original shape, i.e.,
FIG.2. Decomposition of a polygonal arc into maximal supported arcs. IS Not a maximal convex arc that is itself a visual part, but th
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FIG. 3. (a) Thetotal turnof a polygonal arc is the sum of turn angles at its vertie€si) + - - - + 7(Xa). (b) For a closed polygonal arc, the total turr (%o) +
-+ 7(Xs).

piece of the original contour determined by the convex arc thalffied by our discrete curve evolution are presented before th

encloses a visual part of the object. In other words, the endpoiatsows. The endpoints of maximal convex arcs determined o

of the maximal convex arc determine the piece of the originiie simplified shapes are marked by small circles. For the oric

contour that encloses a visual part. inal shapes in Fig. 5, the endpoints of the maximal convex arc
Figure 4 shows two examples of visual parts obtained by thee located near the points of minimal negative curvature. Thi

proposed hierarchical convexity rule. On the highest level of tigalso the case for the shapes in Fig. 4.

evolution hierarchy (a) in Fig. 4, the evolved silhouette of In our approach, we do not need to decide which points o

the “bear” is decomposed into three maximal convex arcs, aminimal negative curvature have to be joined together in orde

the evolved silhouette of the “fish” is decomposed into two maxie obtain object parts. The object parts obtained by joining twe

mal convex arcs. The visual parts enclosed by corresponding aregative curvature minima are callpdrt cuts(Beusmanegt al.

on the original shape represent the most relevant object pafg). As argumented in Hoffman and Singh [13], a separate the

those are the fish body and the tail for the fish and the upper baaty is necessary to determine the part cuts knowing the bounda

and legs together with hips for the bear. On one of the lower levgsints of minimal negative curvature.

of the shape hierarchy (b) in Fig. 4, we obtain further visual parts, | In our approach, the part cuts are automatically determine

e.g., the head and the arms for the bear. The visual parts obtaiBe(%ln aximal convex aylrcs

by the hierarchical convexity rule on levels (a) and (b) are show '

onthe original contoursin (c). Another exampleis givenin Fig. 8, We simply obtain part cuts by joining the endpoints of maxi-

where the order of pictures follows the steps of the evolutionmal convex arcs on the original shape. Observe that the endpoir
The parts of boundaries obtained by the hierarchical convade not have to be direct neighbors on the original contour; e.g

ity rule correspond for many objects to the parts obtained usiege the part cut that determines the upper body of the bear

points of minimal negative curvature. Thisis illustrated in Fig. Fig. 4c.

which presents (after the arrows) all possible codon quadruple®ilso, for many objects, the obtained parts of objects corre

scanned from Fig. 7 in Hoffman and Richards [12]. Shapes sispond to limbs and necks in the theory of Siddigi and Kimia [25].

a b ¢

FIG. 4. The object parts obtained at different levels of the discrete evolution of the boundary curve.
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FIG.5. The endpoints of maximal convex arcs correspond to points of minimal negative curvature. The shapes after the arrows are scanned from Hoff
Richards [12].

For example, the parts obtained by the hierarchical convexitye The parts obtained on a higher level of the shape hierarcl
rule include mostly limbs and necks in the theory of Siddigire inherited to the lower levels.

and Kimia for the shapes in Fig. 6, which presents some of the_ | . )

shapes used in Siddit al.[27] for psychological experiments . 11iS means that on a lower level only the inherited parts a
to justify limbs and necks. For every shape, three stages of [itéther divided. For example, on the level (b) in Fig. 4, only the
evolution together with the parts obtained at these stages Bfs(S obtained on level (a) are further divided; e.g., the upp
shown. The parts obtained by the hierarchical convexity rule 4t@dY Of the bear is divided into the head and arms. For the rabl
marked on the original shape by different gray-level values. THLFIg- 8, we have the following shape hierarchy of visual parts
darker the gray-level value, the higher is the level of the evol{f) > (€)>(d).

tion atwhich a partis determined. A part contains all regions that OUr Shape hierarchy corresponds to the hierarchy of pai
have darker gray-level values, e.g., the part “fish tail” (mark sed on the evolution of shocks in the entropy scale space

light gray) contains the two black “fish tail tip” regions. Kimia etal.[14]. As argumented in [14], the evolution of shocks

Observe that the parts obtained by our rule include all paf&Auires not only boundary, but also region information. How

with a high degree of intersubject consistency obtained by p&Xe" observe that our part decomposition requires only bounde

chological experiments in [27] (Fig. 17); e.g., these are the frofiformation. This means that our approach to shape decompa
leg and the ear for the donkey, the tail and the fins for the fistlL[?n allows usto obtain the region |nf9rmat|onfrom the evolutior
and the front leg for the rabbit. For the kangaroo, no such pafi€rarchy of the boundary curve. This is the case for a large cla
were determined in [27]. Most of the remaining parts in Fig. 8f Shapes, e.g., the tail of the fish in Fig. 6, but there exist shap
determined by our rule correspond also to the parts determirf@gwhich our boundaf}’ mfprmaﬂon and evolution hierarchy d
by the subjects in experiments in [27] (which have a low degr8@! determine the region information, e.g., the two ears of tf
of intersubject consistency). This is, for example, the front pd2Pit in Fig. 6 are not identified as a visual part; surprisingly
of the donkey determined by the vertical part-line. This visudfiS Part is also not identified as a visual part in psychologic
part illustrates an additional strength of our approach, sinceSj{Periments in [27]. However, for the worm shape in Fig. 5 ir
seems to be plausible and has been identified by the experimeafd OUr algorithm might give parts that are not intuitive due tc
in [27]. However, this visual part can be obtained neither by e lack of exp!|C|t reglonllnformatlc.m. .

codon theory in [12] nor by the theory in [25]. For boundaries of continuous objects, the endpoints of ma»

The hierarchy obtained by the evolution of a boundary cur\yﬁ"ﬁ‘l convex arcs correspond to _inf_Iect_ion points (e.g., inflectio
induces a hierarchical structure of the visual parts, which vRQiNts are used for shape description in Freeman [6]). The con
will call shape hierarchy spondence of the endpoints of maximal convex arcs to differe

kinds of critical points (in the sense of differential geometry,
e The more advanced is the process of the evolution, the maggpossible, since we work in a discrete space which does r
significant for the object shape are the parts determined.  exactly follow the rules of differential geometry.
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FIG.6. Forthese shapes, the parts obtained by the hierarchical convexity rule include most of the limbs and necks in the theory of Siddigi and Kimi&. The
are scanned from [27].

Our approach allows us additionally the relevance measure of visual parts is based on the relevar

e 10 obtai h d i table with tof the contribution of the maximal convex arcs by which they
» 10 obtain a shape decomposition stable With TESPECt 4, yatarmined to the object shape, which depends on the t
noise, due to properties of our discrete curve evolution and

o the fact that th t alopal . § turn (i.e., global curvature) and the length that is normal:
0 the Tact that tne convex arcs represent global proper Iesi%d with respect to the total length of the boundary curve (se

object bgundanes, . . Section 4). Additionally, the relevance measure of visual part
e to give a relevance measure for obtained parts that is ba§ {f

; ased on the levels of the shape hierarchy on which they a
on the level of the shape hierarchy and on relevance of the M&ermined similarly to the case in Kim al. [14] (see also
imal convex arcs. ’

[25]). Thus, we can obtain a relevance measure together wit
The stability of the shape decomposition with respect to noiggject parts. In contrast, part decomposition based on poin

results from the fact that our evolution process is guided by tRéminimal negative curvature is binary; i.e., the obtained part:

relevance order (described in more details in Section 3) and di@not be distinguished according to their salience.

to the fact that recognition of supported arcs is based on global

features that are significantly less influenced by noise than lo- 3. DISCRETE CURVE EVOLUTION

cally defined points of minimal negative curvature. The stability BY LINEARIZATION

is demonstrated in Fig. 7. Although the original contour of the

fish is distorted by two different levels of noise, the obtained The presented discrete curve evolution method by linearize

parts are the same as for the original fish in Fig. 4. tion has been applied to digital simple closed 8-curves. We hax
In our approach, we can derive a relevance measure of used a watershed segmentation algorithm that automatically pr

sual parts from the relevance measure of supported arcs; ideices such curves as boundary curves of digital objects in re
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FIG. 7. The proposed decomposition into visual parts is stable with respect to contour distortions.

images! Therefore, our discrete curve evolution as well as the Discrete Curve Evolution ProceduréDy,)
shape decomposition algorithms can be applied to real images. k =m;

This is demonstrated in Fig. 8. Do
First the original image (Fig. 8a) is segmented using color Find in Dy a pairs, 5.1 (modk) such that (s, §+1)
and texture segmentation as in Pauvetlsl. [24]. The water- is minimal,

shed algorithm produces the object contour (Fig. 8c) that isa  Dy_; = Dy with segments;, 51 replaced by line seg-
simple closed 8-curve. In Figs. 8d-8f, we see a few stages of = ment s’ that joints the endpoints of agcU § 1

the discrete curve evolution. The obtained evolution hierarchy k=k—-1;

(8f) > (8e) > (8d) yields the illustrated decomposition into visual  until Dy_; is convex.

parts. This algorithm is guaranteed to terminate, since in every ev

In the first step of our discrete curve evolution method, adiﬂjtion step, the number of digital line segments in the curv

ital curve 'S divided |'nt.o maX|m§1I d|g|tal'l|ne §egments. T ecomposition decreases by one (one line segment replaces
decomposition of a digital curve into maximal line segments Is

based on the observation that every digital curve can be decom-
posed into digital line segments, even if the curve is strongly
distorted by noise. We use a linear algorithm (with respect to the
number of points in the curve) from Debled and Reveilles [8]
to obtain a decomposition of a digital curve into maximal digi-
tal line segments. The decomposition in linear time belongs to
newer achievements of digital geometry; a first linear algorithm
was given 1991 by Smeulders and Dorst [28].

The process dfliscrete curve evolution by digital lineariza-
tion is very simple:

e The minimum of the cost functiol (defined in Section 4)
determines the pair of line segments that is substituted by a
single line segment joining their endpoints. The substitution de-
termines a single step of the discrete curve evolution. We repeal
this process for the new curve; i.e., we determine again the pai
of line segments that minimizes the cost function, and so on.

LetDn=9, ..., Sn_1 be a decomposition of a digital curve
C into consecutive digital line segments. The algorithm that
computes the decompositiof for each stage of the discrete
curve evolutiork > 3 until Dx_; is convex is the following:

FIG. 8. From an image to a simplified shape representation and to visu
1 This watershed algorithm was successfully applied in image segmentatjmarts. (a)— (b), color and texture segmentation (Pauvedial); (b) — (c),
for object based data representation of video sequences, seenpek’and watershed segmentation; (c)—(f), discrete curve evolution and obtained vis
Seytter [16]. parts.
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Nl NN ™ AN ™. analogy to evolutions guided by diffusion equations, with

» J e J 3 o . .

1./1') P /.—/" L3 e — 4/-7 s — (_Pz) no blurring (i.e., shape rounding) effects and no dislo-
i ’ O v cation of relevant features,

e § ST L due to the fact that the remaining vertices do not change the
Lg\.‘- } ;\T \/\) ™~ \\> positions. Two more important properties of our discrete curve
W 1 a E’JH‘ »/”ﬁ Y a L/T o evolution are based on the relevance meastr&efined in

b sV "V Section 6):

FIG. 9. The unchanged planar position of the points marked with the same (P3) It is stable with respect to noisy deformations, since
symbols demonstrates that there is no displacement of the remaining feayfise elimination takes place in the early stages of the evolutior
points. (Ps) Itallows us to find digital line segments in noisy images,

. . . . . due to the relevance order of the repeated process of digit
adjacent segments). It is also obvious that this evolution Clsearization (e.g., Fig. 10). P P g

verges to a convex polygon, since the evolution will reach a
state where there are exactly three line segments in the curviéVe begin with some examples to illustrate the properties o
decomposition, which clearly form a triangle. Of course, fasur evolution method. A few stages of the proposed discret
many curves, a convex polygon with more then three sides aaurve evolution in Fig. 1 illustrate the shape complexity reduc:
be obtained in an earlier stage of the evolution. Thus, we obtaion (P;) of the original curve (a). Our discrete curve evolution
does not introduce any blurring effect®,§, which result in
shape rounding for curves. For a comparison see the discre
curve evolution on the WWW page http://www.ee.surrey.ac.uk
This proposition demonstrates the mathematical simpliciesearch/VSSP/imagedb/demo.html, based on [22]. Obser
of the relation between our evolution approach and the geaso that there is no dislocation of the remaining relevant shag
metric properties of the obtained digital curves. Observe tHagatures P,), since the planar position of the remaining points of
we did not assume that the digital curve is simple (i.e., h#ge digital polygon is unchanged. The stability of relevant shap
no self-intersections). An analog theorem for the evolution éfature points is demonstrated by marking the correspondin
continuous planar curves by diffusion equations is a deep aprints with the same symbols in Fig. 9. Observe also the stabi
highly nontrivial result of differential geometry (Grayson [7]). Itity of feature points with respect to noise deformations showr
holds only for simple closed smooth curves evolved by diffusian the second row in Fig. 9.
equations. By comparison of the curves (a) and (b) in Fig. 10, it can
Polygonal analogs of the evolution by diffusion equationde seen that our evolution method allows us first to eliminat
are presented in Brucksteat al. [3]. The experiments in [3] noise influence without changing the shape of objeB3. (If
indicate that an arbitrary initial polygon converges to a convexe continue to evolve the curve (b), we obtain line segment
polygon (polygonal circle). However, the proof of this fact in thé¢hat are relevant to the curve shag)(in (c); cf. Brunnet al.
Euclidean case is an open question. In [3] as well as in evolutidd$, Fig. 4.
by numerical solutions of differential equations, each vertex of Our evolution method allows us to eliminate noise influence
the polygon is mapped to some point in the plane at a singléthout changing the shape of object;), since distortions
evolution step, whereas in our approach one vertex is removilised by noise mostly resultin pairs of digital line segments ths
and the remaining vertices do not change their positions. Thidigve relatively low values of the relevance meastpresented
an important difference in favor of our approach. in Section 4): The relevance order induced Kybegins with
Now we list some important properties of our discrete curygairs of arcs that contribute in the least significant way to the
evolution: shape of a given curve, which are arcs of relatively small lengtl

ProrosiTionl. Discrete curve evolution by digital lineariza-
tion converges to a convex polygon.

a _~"\ b~ "\\ c

\R\t/ \\ \\\Lﬁ\\\ \\\/\

N
\ O W \
\\\"'n.ﬂ 7 o U~ \ & \7
\/_,/" \//Ld} ,/

FIG.10. (a)— (b), noise elimination; (b)}> (c), extraction of relevant line segments.
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and total curvature. Such arcs are most likely to result from nois

distortions. Since they are removed in the early stages of tt

discrete curve evolution, the results of the presented evolutic

are very stable with respect to noise. For example, although t

boundary curves (2a) and (3a) in Fig. 16 are distorted by nois

to a large extent in various ways, the results of the evolution c

curvesin (1a), (2a), and (3a) are very similar. The robustness

our discrete curve evolution method with respect to noise is als ®
due to the fac.t th‘.”‘f[ We. are using global curvatqre mformat'on'ﬁe. 12.  Although the two bold arcs have the same total length, the signif
m?re ]formal justification of the above properties can be foungnce of their contribution to the shape of the curves is different.

in [18].

described below. The bold arc in Fig. 11b has the same turn
the bold arc in Fig. 11a but is longer, and the bold arc in Fig. 11

Our evolution process is guided by a relevance order. &S the same length as the bold arc in Fig. 11a but its tumn
assign to every pair of two adjacent line segmesats, in a greater. While the_ bold_ arc in Fig. 11a can t_)e interpreted as
decomposition of a given digital cun@a costK (s, s,) which wrelevz_antshape distortion, the bold arcs in Flgs._llb andllce
represents the significance of the contribution ofates, tothe MOre likely to represent relevant shape properties of the whc
shape of. We order pairs of adjacent line segments with respepi€Ct: As can be easily observed, the contribution of the bo
to this significance cost. We will call this orderaievance order ¢ in Fig. 11d to the shape of the displayed object is the mo
The exact value of the cost function we used in our experimeﬂgn'f'cant' Th|s_ arc has the largest turn and its Ime segmer
is given by the formula (1) in Section 6 and can be interpret@j€ I0nger thanin Figs. 11aand 11c. Although the line segmer
as a linearization cost of agg U s,. To motivate and derive this ©f Pold arcs in Figs. 11b and 11d have the same length,
formula, we use a tangent space representation of digital curv@@Pe contribution of the bold arc in Fig. 11d is clearly mor
in Sections 5 and 6. In this section, we state basic requiremepi@ificant than the contribution of the bold arc in Fig. 11b du:
for the relevance order. to the difference in turn angle.

The linearization cosk (a) of any supported ara depends Observe thgt the total relgtive length of the line segmen
on its relative length (with respect to the curve) and its globd((St) + 1(s2)) is not appropriate as a parameter for the cos
curvature. (In particular, a pair of two adjacent line segmenfidnction K. The total length of the bold arcs in Fig. 12 is the
s1, s, forms a supported as Uss,.) same, but it can be easily seen that the _contnbuqon_t_o the she

It seems that an adequate measure of the relevance of g€ whole curve of the arcin Fig. 12b is more significant tha
5 Us, for the shape of a given object can be based on turn anHP@ contribution (_)f th_e arcin Fig. 12d. .
B(s1, ;) and on the relative lengths of the segméiss), |(sy). The example in Flg. 12 may suggest that the cost functic
We assume that the larger both relative lengths and the tofg§SL: S2) should be directly proportional to the area of the re
turn of the arc, the greater is its contribution to the shape of¥" enclosed bs, Us,, since the area is greater for the bold ar¢
curve. Thus, the cost functiok is monotonically increasing I F19- 12b. However, this is not the case, as can be seen by co
with respect to the relative lengths and the total curvature. TH&M9 the two bolq_arcs in Figs. 11b a_nd _11d' It can be clear
assumption can be justified by the rules on the salience ofeen that the S|gn|f|cance_ of t_he cont_rlbutlon of the_ bolq arc
limb in Siddigi and Kimia [25]. It can be also motivated b);he shape of the contour in Fig. 11d is larger than in Fig. 11l

the example objects in Fig. 11 and by the experimental resyfid! the area of the triangular region enclosed by the bold arc
Fig. 11d is smaller than that in Fig. 11b (the line segments «

the two bold arcs have the same length).

a@ ° 5. TANGENT SPACE REPRESENTATION

To derive the formula for the relevance measure, we use
tangent spacé which a step function is associated with every
digital curve.

Any digital curveC can be interpreted as a polygonal curve
with a possibly large number of vertices. For example, all poini
on the digital curve can be the vertices or the vertices can |
chosen to be the endpoints of the maximal digital line segmer
contained irC. Thus, we assume that digital cur@ds a polyg-

FIG.11. The influence of the bold arcs on the shape of the curve depends@f@l curve with verticesy, . .., vm—1. HenceC is composed
their turn and length of their segments. of digital line segment®(C) =%, . .., Sn_1, Wheres is the

4. RELEVANCE ORDER
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FIG. 13. A polygonal curve (a) and its step function representation in the tangent space (b). The similarity of (c) and (d) shows that the curve (a) is sym

(continuous) line segmentjoiningto v fori =0, ..., m—1 to 7« (T(S+1)), wheremr, andxy denote the projections ax-
modulom — 1. We denotenglg(s) to be the angular direction and y-axes in the tangent space, correspondingly. This mear
of line segmens in the standard coordinate system of the plartbat they-values of all points irT (s) are equal tanglds) and
and we denothk(s) to be the length of normalized by the length the projection ofT (s) on thex-axis has the same (normalized)
of C. arclength coordinates asn C.

A polygonal curve is represented in the tangent space by théAn analytical description of the transformation to the tangen
graph of a step function, where theaxis represents the ar-space for continuous curves can be found in Zahn and Roski
clength coordinates of points (& and they-axis represents the [33]. They call the step function in the tangent spaceraulative
direction of the line segments in the decompositiorCofFor angular bend functionZahn and Roskies use this transforma-
example, Fig. 13 shows a digital curve (a) and its step functition only as an intermediate step to obtain Fourier description
representation (b) in the tangent space. Formallytéingent of planar curves. They use the tangent space neither for analy
spaceis a torusS; x S, where§ is a circle of length one that ing the underlying planar curves nor for scale transformations
represents the length of a digital curve &adks a circle that rep- which we will describe below. Uesaka [30] uses the transfor
resents the angular direction of digital line segments. We withation of polygonal arcs to the tangent space to determine
display the tangent space as a rectangle with the parallel sid&sular approximation of polygonal arcs.
identified in the standard way to obtain a topological torus. The
y-difference between two adjacent stepsin the tangent space rep- 6. RELEVANCE MEASURE
resents the turn angle of the corresponding pair of line segments.

The significance of the contribution of a pair of consecutive line FOr each two adjacent line segmesitss; in the decomposi-
segments to the shape depends on their length and the turn afgieof a digital curveC, we determine the relevance measure
in the direction of traverse. Exactly these two parameters dfdSt. S2), which represents the significance of the contributior
represented in the tangent space. of arcs; U s, to the shape o€. The valueK (s, ) can be

We define a transformatioii mapping a digital 8-curve to interpreted as the cost required for linearization ofsarng s;.
the tangent space. For illustration, see Figs. 13(a) and 13(b). T&-€t St =AB ands, =EF be two consecutive line segments
each digital line segmeste Dn(C), a line segmerit (s) in the in the decomposition of curv€, so thatB = E is their com-

tangent space is assigned such that mon endpoint (see Fig. 14) art= B(s1, ) is the turn angle,
T()) = andl i.e.,anglgEF) — anglg/AB) = 8 (whereanglg(s) represents the
7y(T(s)) =angie(s). angular direction of line segmes}. We determine the circu-

the length ofz, (T (s)) is equal td (s), andmy (T (s)) is adjacent lar arclength by which the endpoinBand F must be rotated

F .. E=B
— 225
F B A

7

150 T(AB)

T
/2&/
F A

FIG. 14. Scale transformation in the tangent space.
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around pointsA andE, correspondingly, so that the rotated line F_ar- E=B
segments have the same direction, i.e., iiilandEF are par- ~_
allel, whereB’ andF’ are the images d andF by the rotations. Y B E .

The circular arclength must be equal for both line segments. The
cost functionK assigns to paig,, s, this circular arclength. We FIG. 15. The rotated segmentsB’ andFE’ must be contained ig' = AF if

will show below that it is given by the equation the rotations angles asenall
K(sy. ) = B(s1, )l (1)l (S) 1) lowing, we show that the rotations yield an equivalent chan
' I(s1) + () of curve C as substitution of segmenss ands, by s’ if the
rotations angles aremall This also justifies the interpretation
wherel is the length function normalized with respeciGo of K(s1, ) as the cost required for linearization of &cJ s,.
Without loss of generality, we can assume thaglgEF) — We recall thats; = AB ands, = EF are two consecutive line

anglgAB) = 8 > 0. We seek an angbe 0<x < B suchthat  segments in the decomposition of cu®@gsuch thaB = E is
their common endpoint (see Fig. 14). We rotated segr&ént

angle(s;) + x = anglegsy) — (8 — x) (2) around poinE so that the length of circular af~ is given by
Eqg. (1). Now we change the interpretation of this rotation (se
and Fig. 15): we rotatdeF around pointF so that the length of arc
drawn byE is given by Eq. (1), i.e., circular arf€E is given
I(s1)x = 1(s2)(B — X). (3) by Eq. (1). We will show below that the rotated segmekis

andFE’ must be contained is' = AF if the rotations angles are
Equation (2) expresses that line segmen#ds, have the same gmall
angular direction after the rotations. Equation (3) expresses thaprecisely, we will show that the segments obtained by tr
their endpoints must be rotated by the same circular arclengitation ofAB andEF around pointsA andF, correspondingly,
The pair of equations (2) and (3) can be interpreted in the tanggpé |ocatedrery closeto AF if anglesa; = BAF anda, = EFA
space (see Fig. 14 (right)) as translation of ste(ss) andT(s;)  aresmall(see Fig. 15).
parallel to they-axis untillthey have t_he same (angulgryalue Smallmeans here that sim{) ~ a1 and sinéy) ~ o, which
and the rectangles obtained by their moves have the same ake@sually assumed for angles less than sonie the interval
By simple calculation, we obtain= I (s)/[l(s1) +1(2)], and [ 11 depending on the required accuracy.
consequently, by (3), the circular arclength is equal to (1). Since the rotation angle of a line segment around one of |
~ The cost function in (1) is our measure of how significaréndpoints is the ratio of the circular arc length drawn by th
is the contribution of a pair of consecutive line segment to thgher endpoint during the rotation to the length of the segmer

shape of the curve. The minimum of the cost function determing& obtain from Eq. (1) that the rotation angles for segmARs
the pair that is substituted by a single line segment joining theyAdEF are

endpoints, which results in a single step of discrete curve evo-
lution, e.g., ifK obtains the minimum for line segmef8 and X =w; = M > = M
EF, then they are deleted frof@ and the new line segmeAF I(s1) + 1 (s2) I(s1) + I (s2)
is adQed taC. The rgsult of sybs@ituting the segmeAB and By the sinus formula

EF with segmenfAF is shown in Fig. 14 (left).

The tangent space representation is transformed in the corre- &) _ &) ehave (&) (&)
sponding way (see Fig. 14 (right)): the st&jpaB) andT(EF) are sinay  sinay” o ar
deleted and a new st8§AF) is added. Since it is not sufficient
to represent the length of the new stB@\F) by | (s1) +1(s),
we take the length of digital segmeAF as the length of step Bl(s2) q
T(AF), i.e., the length o (AF) is equal to ()t v &

SinceB = a1 + ap, it can be easily calculated that

L CVEE
s+ 1) °

which implies that

laF = VI(51)2 4 1(s2)? + 2 (1)l (s2) cOSB.
wi~a; and wr ~ ay.
Examples of the discrete curve evolutions together with the cdihis means that segmemd and EF after rotation by angles
responding transformations of the tangent spaces are showminand w, around pointsA and F, correspondingly, will be
Figs. 17 and 18. nearly contained in the segmehi. Since we deal with digital
The value (1) of the cost function determines the rotations ségments, the approximation accuracy can be calculated w
line segments; ands, until they are parallel. In the process ofrespect to resolution of the square grid. We will not discuss th
discrete curve evolution, the segmestands, are substituted subject here; it is related to the sufficient digitization resolutiol
by a line segmend’ joining the endpoints o, U s,. In the fol-  (see Gross and Latecki [10]).
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FIG. 16. Shape evolution by repetitive linearization. Compare to the diffusion based evolution of similar contours in Mokhtarian and Mackworth [22].

Since the values of the cost function can be defined in the 7. CONCLUSIONS AND FUTURE WORK
tangent space, which is a torus, the presented evolution method
is rotation invariant. Since the curve length is normalized, the Since contours of objects in digital images are distorted du
evolution is scaling invariant. Since the minimum of the cosb digitization noise and due to segmentation errors, it is desi
function does not depend on the direction and order of the travable to neglect the distortions while at the same time preservir
sal of line segments, the evolution is reflection invariant. It cahe perceptual appearance at a level sufficient for object reco
be easily seen that it is also translation invariant. nition. An obvious way to neglect the distortions is to eliminate
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TAMGENT _SPMAcCE
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FIG. 17. Shape evolution by repetitive linearization. Next to each curve is its tangent space representation.

them by approximating the original contour with one that hastens) at which the distortions are eliminated and the perceptu
similar perceptual appearance. To achieve this, an appropriappearance is sufficient for robust object recognition. This is ¢
approximation (or discrete curve evolution) method is necesaportant feature of our discrete curve evolution method, since
sary. This is achieved in our approach through a novel methimdplies that neglecting the distortions is achieved automaticall
for evolution of polygonal curves (which can also be interpreteghich is a necessary requirement for shape representations u
as an approximation method). For this method, we can detar-image databases. Observe that no universal solutions e»
mine a universal stage of the discrete curve evolution (that ddesdetermine such a stage for many established methods, e
not depend on a given shape and on the amount of the distordetermine the approximation distance for a popular contol
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FIG. 18. Shape evolution by repetitive linearization. Next to each curve is its tangent space representation.

approximation method [23] by Ramer, for multiscale contoutetected given the step function representations of the bounda
approximation [2] by Bengtsson and Eklundh, and for curvatuoairve: If boundary parfl is a symmetric image of paB, then
scale filtering, e.g. [32], where a few multiscale parameters aree step function of\ is equal to the point reflection of the step
necessary. function of B. For example, the point reflection of part 8-15 of
The presented tangent space allows us to reduce the compthagr-step function in Fig. 13(b), shown in (d), is equal to part 0—7
ity of symmetry detection in the presence of noise and occlshown in (c).
sions, which is a complicated task (see, e.g., &ekl. [29]). The hierarchical shape decomposition into visual parts an
The symmetry of some boundary parts of a given object can sleape simplification by discrete curve evolution make it possibl
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to define a similarity measure for planar objects. This measura$s D. D. Hoffman and M. Singh, Salience of visual pa@egnition63, 1997,
defined and applied for automatic object indexing and search in 29-78.

image databases in [19]; see also our web side [20]. The fact thht B. B. Kimia, A. R. Tannenbaum, and S. W. Zucker, Shapes, shocks, a
the performance of our similarity measure is in accord with our

visual perception justifies perceptual adequacy and usefulness
of the presented discrete curve evolution and the shape decom
position methods.

These topics as well as a 3D version of our results will be

15,

16.

treated in forthcoming papers. While our 2D evolution by dig-
ital linearization is length-minimizing, the 3D analog is area-

minimizing.
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