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Many classes of scenes contain objects that are (approximately) two-dimensional
polygons—for example, buildings in an aerial photograph, or flat mechanical parts
on a tabletop. This paper deals with the problem of recovering (an approximation
to) an unknown polygon from noisy digital data, obtained by digitizing either an
image of the (solid) polygon or a sequence of points on its boundary. Note that our
goal is to obtain an approximation to the original polygon, not an approximation to
the noisy data. We derive constraints on the polygon and on the noisy digitization
process under which (approximate) recovery of the polygon is possible. We show
that if these constraints are satisfied, the desired approximation can be recovered
by selecting a subset of the data points as vertices. We define a vertex elimination
process that accomplishes this recovery and give examples of successful recovery of
both synthetic and real noisy polygons. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

This paper deals with the problem of recovering an unknown polygon from noisy digital
data, obtained by digitizing either an image of the (solid) polygon or a sequence of points
on its boundary.

Many classes of scenes contain objects that are (approximately) two-dimensional
polygons—for example, buildings in an aerial photograph, or flat mechanical parts on a
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tabletop. Given an image of such an object, we can obtain a digital polygon from the image
in either of two ways:

(a) Selecting (e.g., by hand) a sequence of points on the boundary of the object, and
digitizing the coordinates of these points.

(b) Digitizing the image and thresholding it to segment the object from its background.

In either case, the digital polygon will generally have many more vertices than the original
polygonal object. In case (b), the thresholded digital image will contain a simply connected
region corresponding to the object, and unless the sides of the object are parallel to the
coordinate axes, they will give rise to “staircases” on the border of the region. In case (a),
it will usually be desirable to select several points along each side of the object in order
to locate the side accurately. Thus in both cases, the digital polygon can be regarded as a
“noisy” version of the original polygon. Note that in both cases, the vertices of the digital
polygon, like those of the original polygon, are cyclically ordered.

Let P be the original polygon, and let Q be a digital polygon obtained from P by
either of the two methods described in the preceding paragraph. Evidently, Q does not
determine P , since many different P’s could have given rise to Q; thus we cannot expect
to be able to unambiguously “recover” P from Q. We can, however, attempt to recover
an approximate version of P . Specifically, let us call P ′ an ε-recovery of P if there is
a one-to-one correspondence between the vertices of P and the vertices of P ′ such that
corresponding vertices are at most ε apart. Figure 1 shows an example of an ε-recovery of
a polygon P from a noisy “hand” digitization of P .

A possible approach to obtaining P ′ from Q might be to construct P ′ by fitting lines to
the vertices of Q. There is an extensive literature on methods of fitting polygons to given
sets of points; for reviews see [1–3]. In most or all of this literature, however, it is not

FIG. 1. An ε-recovery of a polygon P . Heavy line: The original polygon P . Dots: Points obtained by noisy
“hand” digitization of P . Light line: an ε-recovery of P; note that it has one vertex within ε of each vertex of P .
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FIG. 2. When lines are fitted to a set of points that lie close to a polygon P , the vertices of the resulting fitted
polygon can be arbitrarily far from the vertices of P . Heavy line: The original polygon P . Dots: Points, all of
which lie close to two sides of P (within the zone bounded by the dotted lines). The light lines are a good fit to
the dots, but their intersection is far from the vertex of P where the two sides meet.

assumed that the given points arise from a (noisy) digitization of an original polygon; the
goal is to fit a polygon to the given points, not to recover an (unknown) original polygon.
In any case, even if the vertices of Q all lie within ε of P , fitting a polygon to these vertices
may not yield an ε-recovery of P; in fact, the vertices of the fitted polygon can be arbitrarily
far away from the vertices of P , as illustrated in Fig. 2. On the other hand, if at least one
vertex of Q lies within ε of each vertex of P , an ε-recovery of P can be obtained if we can
somehow select the correct subset of the vertices of Q (as shown in Fig. 1, for example).

In Sections 2.1 and 2.2 (Theorems 1 and 2) we give constraints on the polygon P and
the noisy digitization process (for both “hand digitization” and image digitization) that
guarantee that the process preserves important geometric features of P; if these constraints
are satisfied, ε-recovery of P is possible in principle by selecting a subset of the noisy
digital data. In Section 3.1 we discuss methods of selecting vertices of a noisy polygon. In
Section 3.2 we show (Theorem 3) that if Q is a noisy hand digitization of P , we can always
construct an ε-recovery P ′ of P by selecting vertices from Q, provided P and the noise
process satisfy appropriate constraints. We have not been able to find a corresponding con-
struction for a noisy image digitization, but our experimental results (Section 3.3) indicate
that ε-recovery by vertex selection is also possible for such digitizations.

2. CONSTRAINTS ON NOISY POLYGONS THAT PERMIT RECOVERY

A digitization process may fail to preserve important geometric features of a polygon,
including its topology. For example, in the case of image digitization, if a side of the polygon
P is shorter than the digitization grid length, it will not be detectable in the digitized polygon
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Q; if two consecutive sides of P are nearly collinear, they may be indistinguisable from a
single side in Q; and if two nonconsecutive sides of P are closer together than the digitization
grid length (i.e., P is not “self-avoiding”), they may become adjacent, creating a hole in Q.
Similar remarks apply to a noisy “hand digitization,” if it displaces the boundary path of P
by amounts that are too large relative to the sizes of geometric features of P . In this section
we discuss constraints on P and on the digitization process that ensure that digitization
preserves the important geometric features of P .

In Section 2.1 we define a noisy “hand-digitization” process that randomly displaces
selected points of a closed contour (in particular, a polygonal contour), thus yielding a
noisy version of the contour. In Section 2.2 we define a noisy image-digitization process
that, when applied to a simply connected region (in particular, a solid polygon), randomly
assigns border pixels to the region or to the background, thus yielding a noisy version of
the region border. If the given contour or border is a polygon, we show how to ensure that
the noisy version preserves both the topology and the geometry of the original polygon, by
imposing constraints on the original polygon and the noise process, and “editing” the noisy
polygon after it has been generated. As we shall see in Section 3, if these constraints are
satisfied, the original polygon P can be recovered from the noisy polygon Q by selecting
a subset of the vertices of Q.

2.1. “Hand Digitization”

Let P be a simple closed polygonal contour. To create a noisy version of P , we first choose
a set of points p1, . . . , pn on P . We then randomly displace each of the pi ’s by a bounded
amount. For example, let δ be a vector whose length is unformly distributed in some interval
[0, d] and whose direction is uniformly distributed in the interval [0, 2π ). For each pi , we
randomly choose a vector δi from this distribution and replace pi by qi = pi + δi . We join
the successive qi ’s (modulo n); this defines a polygon Q which can be regarded as a noisy
version of P . (The pi ’s themselves may be randomly chosen points of P . If we allow their
positions along P to vary by ±d, we need use only displacements perpendicular to P to
define the qi ’s. However, complications arise with this definition if pi is close to a vertex of
P . Also, as we shall see below, it is useful to require that the pi ’s be a minimum distance
apart on P , which may limit our ability to displace them along P .)

Unfortunately, there can be two problems with the Q’s that are generated from a given
P in this way:

(a) Since Q is constructed by displacing points of P by small amounts (at most d),
we would expect that Q should be everywhere close to P . Indeed, the vertices of Q must
evidently lie within d of P , but as Fig. 3 shows, the sides of Q can get quite far from P .

(b) Q may not be a simple polygon; its sides may cross each other.

In the following paragraphs we discuss how these problems can be prevented or corrected.
Evidently, if we want to ensure that all of Q lies close to P , we must impose some

constraint on how far apart the pi ’s can get; as we saw in Fig. 3a, if two consecutive pi ’s
could be arbitrarily far apart along P , the side qi qi+1 of Q (indeed, the line segment pi pi+1)
could get arbitrarily far away from P . On the other hand, if pi and pi+1 lie on the same side
s of P , they can be arbitrarily far apart, because qi and qi+1 must be in the d-neighborhood
of s, and since this neighborhood is convex, all of qi qi+1 must be in it. Thus our constraint
should deal with consecutive pi ’s that lie on different sides of P . As we saw in Fig. 3b,
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FIG. 3. The sides of Q can be arbitrarily far from P .

if two consecutive pi ’s can be arbitrarily far from a vertex v and on different sides of it,
pi pi+1 (and qi qi+1) can get arbitrarily far away from v. Thus we shall require that for every
vertex v of P, there must be a sample point within some distance D of it (where distance is
measured along P).

As we shall now see, this implies that every side of Q must lie within distance D + d of
some side of P (where distance is measured in the plane). Indeed, let pi and pi+1 be two
consecutive sample points. If they are both on the same side s of P , we have already seen
that qi qi+1 lies within distance d of s.

Let them be on two consecutive sides r, s of P , and let v be the vertex at which r and s
meet. Suppose neither pi nor pi+1 were in the D-neighborhood of v; then their distances
from v along P would both be greater than D. But since pi and pi+1 are consecutive, there is
no sample point between them along P; hence there is no sample point within distance D of
v along P , contradiction. Hence either pi or pi+1, say the former, is in the D-neighborhood
of v; hence both pi and pi+1 are in the D-neighborhood of s, so that both qi and qi+1 are in
the (D + d)-neighborhood of s, and since this neighborhood is convex it follows that qi qi+1

is in it.
Finally, suppose they are on nonconsecutive sides of P; let t be a side between these two

sides, and let u, v be the endpoints of t . Since pi and pi+1 are consecutive sample points, pi

must be the last sample point preceding u, and pi+1 must be the first sample point following
v. Since there must be sample points within D of u and v along P , and there are no sample
points on t , pi must be in the D-neighborhood of u and pi+1 must be in the D-neighborhood
of v. Hence pi and pi+1 are both in the D-neighborhood of t , so that qi and qi+1 are in the
(D + d)-neighborhood of t , and since this neighborhood is convex, it follows that qi qi+1 is
in it. This completes our discussion of how to ensure that Q lies close to P .

Ensuring that Q is a simple polygon is more complicated. As we shall see, there are
several reasons why sides of Q may cross one another. Some of these crossings can be
prevented by suitably constraining P or the noise process; but others cannot be prevented,
but rather must be corrected.

If successive sample points pi are too close together (in fact, closer than 2d), Q may
cross itself, as illustrated in Fig. 4. (If we displace pi toward pi+1 and pi+1 toward pi , both
by d , the sides that join qi−1 to qi and qi+1 to qi+2 may cross.) Note that this type of crossing
can occur even if pi−1, pi , pi+1, pi+2 are all on the same side of P . It can be prevented by
requiring that successive pi ’s be more than 2d apart (where distance is measured along P).
Conversely, if this requirement is satisfied, and pi , pi+1, p j , p j+1 are all on the same side
of P , evidently qi qi+1 and q j q j+1 cannot cross.
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FIG. 4. If successive sample points of P are too close together, Q may cross itself.

To handle crossings that arise from p’s that are on different sides of P , we must require
that nonconsecutive sides are never within distance 2d of each other (where distance is
measured in the plane). In general, we call P e-self-avoiding if, for any two disjoint sides r ,
s of P , no point of r is within distance e of any point of s. Note that this implies, in particular,
that no vertex v of P is within e of any side s of P unless v is an endpoint of s. (In fact, if P
is a simple polygon and not a triangle, this is equivalent to e-self-avoidingness.) This in turn
implies that distinct vertices of P cannot be within e of one another, and this in turn implies
that every side of P must have length at least e. Evidently, if P is not 2d-self-avoiding, the
sides of Q may cross. (Let r , s be disjoint sides of P that come within 2d of one another; then
there may exist pi pi+1 on r and p j p j+1 on s such that qi qi+1 crosses q j q j+1; see Fig. 5.).

Self-avoidingness evidently cannot prevent some types of crossings; in particular, it
cannot prevent a crossing when pi , pi+1, p j , p j+1 are on two consecutive sides of P , since
such sides are not disjoint, so self-avoidingness does not apply to them. We shall now show
that if P is 2(D + d)-self-avoiding, no other types of crossings are possible. Indeed, suppose
qi qi+1 and q j q j+1 lie within distance D + d of two distinct sides s, t of P , and suppose
they cross. Since P is 2(D + d)-self-avoiding, this cannot happen unless s and t share a
vertex. Thus we are done unless qi qi+1 and q j q j+1 both lie within distance D + d of a
single side r , and neither of them lies within distance D + d of any other side; but we shall
now show that in this case, they cannot cross. Note first that pi , pi+1, p j , p j+1 must all
be either on r on the preceding or following side of P , since disjoint sides have disjoint
(D + d)-neighborhoods. If pi+1 were not on r , neither would pi be, so qi and qi+1 would
lie within d of the preceding side, contradiction; hence either pi lies on the preceding side
and pi+1 lies on r , or they both lie on r . Similarly, either p j+1 lies on the following side and
p j lies on r , or they both lie on r . If pi+1 were within distance D of the first endpoint of
r , qi+1 would be in the (D + d)-neighborhood of the preceding side, contradiction; hence
pi must be within distance D of the endpoint, and similarly p j+1 must be within distance

FIG. 5. If P is not 2d-self-avoiding, Q may cross itself.
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D of the second endpoint but p j cannot be. Let A, C be perpendiculars to r at distance D
from its endpoints, and let B be perpendicular to r halfway between pi+1 and p j (which
we know are at least 2d apart). No matter how sharp an angle the preceding and following
sides make with r , pi must be to the left of A and pi+1 to its right, and p j must be to the left
of C and p j+1 to its right (and this is certainly true if pi or p j+1 is on r ); thus B is between
A and C . Hence both pi and pi+1 are at least d to the left of B, and both p j and p j+1 are
at least d to its right; hence qi and qi+1 are to the left of B and q j and q j+1 are to its right,
so qi qi+1 and q j q j+1 cannot cross.

We have thus shown that if successive pi ’s are more than 2d apart on P , P is 2(D + d)-
self-avoiding, and there is a pi within distance D of every vertex of P , then two sides qi qi+1

and q j q j+1 of Q can cross only if they lie in the (D + d)-neighborhoods of two consecutive
sides s, t of P . Such crossings cannot be prevented, but we will now describe how they can
be eliminated.

Evidently, such a crossing must lie in the intersection of the (D + d)-neighborhoods of s
and t . Let this intersection be denoted by ND+d (s, t); we shall require from now on that for
all distinct pairs of consecutive sides of P , these N ’s are disjoint. Let Qst be the subset of
Q contained in ND+d (s, t). Evidently, the Qst ’s are joined by pieces of Q that are simple
polygonal arcs. Let Qi and Q j be the sides of Q that enter and leave ND+d (s, t). There is a
shortest path in ND+d (s, t) that joins Qi to Q j , and such a path must be a simple polygonal
arc; thus if we eliminate all of Qst except for this path, and do this for each Qst , the resulting
simplified Q is a simple polygon Q′. Evidently, each side of Q′ lies within distance D + d
of some side of P . (The sides inside each ND+d (s, t) that are used to simplify Q all lie
within distance D + d of both s and t .)

Finally, we claim that the correspondence of sides of Q′ with the sides of P that they
lie close to is order-preserving. Note first that by our requirement that consecutive sample
points are at least 2d apart, when sides of Q′ originate from sample points on the same side
of P , their order is the same as that of these sample points. Also, by the discussion earlier
in this section (showing that there must be a sample point within distance D of every vertex
of P), the correspondence between the sides of Q and the sides of P that they lie close to
is order-preserving. We obtain Q′ from Q by eliminating sides of Q that lie close to a pair
of consecutive sides s, t of P , and replacing these sides of Q by line segments (segments
of sides of Q) that all lie close to both s and t . Thus any of these new sides of Q′ can be
associated with either s or t , and this can evidently be done so as to preserve the order of
the correspondence.

The results of this section can be summarized in

THEOREM 1. Let P be a simple polygon which is 2(D + d)-self-avoiding, and such that
for each pair of consecutive sides s, t of P , the intersection of the (D + d)-neighborhoods
of s and t is disjoint from any other such intersection. Let p1, . . . , pn be points of P such
that successive pi ’s are at least 2d apart and there is at least one pi within D of each
vertex of P. Let qi be the result of randomly displacing pi by at most d , let Q be the polygon
constructed by joining successive qi ’s, and let Q′ be obtained by replacing Qst ’s by shortest
paths as described above. Then Q′ is a simple polygon, and every side of Q′ lies within
distance D + d of some side of P; moreover, this correspondence of the sides of Q′ with
the sides of P is order-preserving.

Note that although Q′ is close to P , it is not necessarily a D-recovery of P , since it may
have too many vertices. In Section 3.2 we will show how to obtain a D-recovery of P by
eliminating vertices from Q′.
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2.2. Image Digitization

Our second method of creating noisy versions of a simple polygon (or other simply
connected shape) is based on the concept of noisy image digitization. Let P be a simple
polygon; since P is a simple closed curve, its complement consists of two connected regions,
one “inside” (i.e., surrounded by) P and the other “outside” (surrounding) P . Let P̄ be the
union of P and its “inside” region; thus P̄ is a “solid” polygon. Evidently P̄ is a closed,
simply connected region; we will refer to this region as “black,” and to its complement (the
“outside” of P) as “white.”

To define a noisy digitization of P̄ , we divide the plane containing P̄ into unit-square
pixels pi . A set of pixels Q̄ is called a noisy digitization of P̄ if it has the following
properties: If the interior of pi is all black, pi belongs to Q̄; if its interior is all white, it
does not belong to Q̄; if its interior is partly black and partly white, it may or may not
belong to Q̄. In ordinary (nonnoisy) digitization, pi belongs to Q̄ if (e.g.) more than half
of its area is black, and does not belong to Q if less than half its area is black; exact ties are
decided by some type of rounding. We can introduce nondeterminism into this digitization
as follows: pi belongs to Q̄ if more than a certain fraction ρ of its area is black, where
ρ ≤ 1/2; it does not belong to Q̄ if more than ρ of its area is white; but if the black fraction
of its area is between ρ and 1 − ρ, we decide (e.g.) randomly whether to make pi black or
white. If ρ = 1/2, this is almost the same as nonnoisy digitization, except that exact ties are
resolved randomly rather than by rounding. As ρ decreases, the digitization becomes more
noisy, because a larger fraction of the decisions are made nondeterministically. If ρ = 0, the
decisions are all made in this way unless the interior of pi is entirely black or entirely white.
A noisy digitization for which ρ = 0 will be called a random digitization. [Note that the
pixels whose interiors are all black certainly belong to Q̄, and those whose interiors are all
white certainly do not. We do not allow pixels that lie entirely inside or entirely outside P
to be colored randomly, which would result in “salt and pepper noise” in the digital image;
the nondeterminism affects only those pixels whose interiors are partly black and partly
white, i.e., those pixels that intersect the boundary P of P̄ .]

Evidently, if Q̄ is a random digitization of P̄ , every border pixel of Q̄ either intersects
P or is a 4-neighbor of a pixel that intersects P . Thus the “cracks” (unit-length horizontal
and vertical line segments) that separate pixels of Q̄ from pixels of its complement all lie
within distance

√
2 of sides of P . Similarly, the “chain” segments that join the centers of

successive border pixels of Q̄ all lie within distance 3
√

2/2 of sides of P if they are inside
P̄ , and within distance

√
2/2 if they are outside P̄ . (Note that these chain segments may be

either horizontal or vertical and of unit length, or diagonal and of length
√

2.) If we think
of the successive cracks or chain segments as defining polygonal arcs, these arcs thus must
be close to P .

Unfortunately, random digitization need not preserve the topology of P̄ . Thus the union
of the pixels of Q̄ may not be simply connected or even connected, and its border (whether
defined by cracks or chain segments) may not be a simple polygon. For example, in the
local pattern of pixels shown in Fig. 6a, suppose a side of P crosses d, e, b, and c, so
that a is entirely outside P , f is entirely inside it, and b, c, d, e properly intersect it. In
a random digitization of P̄ , a cannot belong to Q̄; f must belong to it; and b, c, d, e
may or may not belong to it. If b does belong to Q̄ but e and c do not, then since the
pixel above b cannot belong to Q̄, b has no 4-neighbors in Q̄—in other words, Q̄ is not
4-connected. Thus even the pixels of Q̄ that lie along a side of P̄ need not be 4-connected.
Near a vertex of P , Q̄ need not even be 8-connected. For example, if the vertex angle is
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FIG. 6. Random digitization need not preserve connectedness.

very sharp (see Fig. 6b), the part of P near the vertex may be less than one unit wide, so
that it intersects a sequence of single pixels. In Q̄, these pixels can be either black or white;
in particular, a pixel p close to the vertex may be black while a neighbor of p farther from
the vertex may be white, so that p is not connected to the rest of Q̄. More generally, if
two sides of P come within distance 2

√
2 of one another, so that they pass through two

4-neighboring pixels p, q (Fig. 6c), and p and q are both white, Q̄ may be disconnected.
(Note that if the two sides are nonconsecutive, this can happen only if P is not 2

√
2-self-

avoiding.)
Violations of topology that occur at corners of P̄ are hard to prevent by constraining

P , as we saw in Section 2.1. However, some types of violations can be prevented, so we
next define constraints on P that prevent them. To begin with, we require that P be 2

√
2-

self-avoiding. This implies that the vertices of P are at least 2
√

2 apart (so that the sides
of P are at least 2

√
2 long). In fact, we impose a stronger constraint on the separation of

the vertices. Let v be the vertex where the consecutive sides s, t of P meet. Let Tv be the
isosceles triangle with vertex v whose equal sides are segments of s and t and whose base
has length 2

√
2. The sides of Tv must be

√
2 sec(α/2) long, where α is the vertex angle of

Tv; thus if α is very acute, s and t must be very long. We also require from now on that,
for all vertices u, v of P , the triangles Tu and Tv must be at least 2

√
2 apart. (In particular,

we assume that there must be a triangle Tv at every vertex; this implies that the sides that
meet at every vertex are at least

√
2 sec(α/2) long, where α is the vertex angle.) Under these

assumptions about P , we will show in the following paragraphs that the toplogy violations
in Q̄ are isolated, and can be eliminated by locally “editing” Q̄.

We call a pixel p special if p intersects a side of P , and some 2-by-2 block of pixels that
contains p intersects two sides of P; otherwise, we call p regular. It is easy to see that if
p is special, it intersects one of the equal sides of the isosceles triangle Tv associated with
some vertex v of P . Thus the border of Q̄ consists of runs of regular pixels separated by
runs of pixels that intersect Tv’s. We shall next show that the runs of regular pixels give
rise to portions of the border of Q̄ that are simple 4-arcs except possibly at isolated pixels,
which can be locally identified.

A run of regular pixels all intersect a single side E of P . Suppose, without loss of
generality, that the slope θ of E is in the first octant; i.e., 0 ≤ θ ≤ π/4, and P̄ lies below
E . In each column, E either intersects a single pixel p or intersects two vertically adjacent
pixels p and q with p above q (i.e., E crosses the crack between p and q). In the first case,
the pixels above p must be white; those below p must be black; and p itself can be either
black or white. Thus in this case the column consists of a run of white pixels above a run
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FIG. 7. Height differences between top cracks in successive simple columns.

of black pixels; we call such a column a simple column. In the second case, both p and q
can be either black or white; the pixels above p must be white and those below q must be
black. If p and q are both black or both white, or if p is white and q is black, the column is
simple, but if p is black and q is white, the column consists of (from top to bottom) a run
of white pixels, a single black pixel (p), a single white pixel (q), and a run of black pixels;
we call such a column a complex column.

Define the “top crack” of a simple column as the crack that has white above it and black
below it, and the “top crack” of a complex column as the upper of the two cracks that have
white above them and black below them. It is not hard to see that in two consecutive columns
c, d , the difference of the heights of the top cracks is between −1 and +3 (see Fig. 7). If
c and d are both simple (see Fig. 7), any of these differences can occur, and the resulting
pattern of black and white pixels never violates topology (i.e., the black pixels are always
simply 4-connected).

We can eliminate all the complex columns by performing the local operation illustrated
in Fig. 8. Evidently this operation does not change the 8-connectedness of Q̄ or the distance
from the border of Q̄ to P . (The operation shown in Fig. 8 is designed to handle edges of P
in the first octant. To handle the other octants, we use rotations of the operation by multiples
of 90◦.)

Figures 9, 10, and 11 show all the possible cases of a complex column followed by a
simple column; a simple column followed by a complex column; and a complex column
followed by a complex column. In Fig. 9, we see that only the height differences −1, 0, and 1
can occur; the other cases (labeled “impossible geometry”) cannot occur, because the pixel
marked p must be white. After performing the operation of Fig. 8, the complex columns
become simple and the height differences remain the same. Note that in the −1 case, the
operation also eliminates a topology violation (p is not 4-connected to the rest of Q̄).

FIG. 8. Elimination of complex columns.
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FIG. 9. Cases in which a complex column is followed by a simple column.

FIG. 10. Cases in which a simple column is followed by a complex column.

FIG. 11. Cases in which a complex column is followed by a complex column.
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In Fig. 10, we see that only the differences 1, 2, and 3 can occur. Note that the pixel marked
q, in the next column, must be black. Again, after performing the operation, the complex
columns become simple, the height differences remain the same, and the topology violation
in the +1 case is eliminated. Finally, in Fig. 11, only the difference +1 can occur; here again,
the operation makes both columns simple, preserves the height difference, and eliminates
the topology violation.

Let Q̄′ be the result of applying the operation of Fig. 8 to Q̄. Based on the legal sequences
of simple columns shown in Fig. 7, we see that the chain code C(Q̄′) of the border of
Q̄′ can make only SE, E, N E , and N moves. Hence the chain code has monotonically
nondecreasing x coordinates, so that its projection on E is monotonic.

As regards the portion of the border of Q̄′ that intersects any Tv , it can be replaced by a
simple 4-arc just as we did in Section 2.1. Thus we have shown that we can edit Q̄ to make
its border a simple polygon Q.

We summarize the results of this section in

THEOREM 2. Let P be a simple polygon which is 2
√

2-self-avoiding. Suppose further
that these exist isosceles triangles at the vertices of P that have base lengths 2

√
2, and that

any two of these triangles are at least 2
√

2 apart. Let Q̄ be the result of a random image
digitization of P̄. Then Q̄ can be “edited” by performing the operation of Fig. 8, yielding
Q̄′, and then replacing the parts of C(Q̄′) in the triangles by shortest paths. The result of
this editing is a simple polygon Q. Moreover, all of Q lies close to P (the parts inside P̄ ,
within 3

√
2/2 of P; the parts outside, within

√
2/2), and it can be projected onto P in an

order-preserving manner.

Here again Q is close to P , but it is not a 3
√

2/2-recovery of P because it has too many
vertices. In Section 3.3 we will show experimentally that P can be recovered by eliminating
vertices from Q.

3. POLYGON RECOVERY BY VERTEX ELIMINATION

In Sections 2.1 and 2.2 we formulated conditions on the polygon P and on the hand or
image digitization process that ensure that when P is digitized, the important geometric
features of P are preserved. When these conditions are satisfied, Q lies close to P , and it
should be possible, in principle, to obtain an ε-recovery of P (for some suitable ε) from the
digitized version Q of P by selecting a subset of the vertices of Q.

In this section we show how an ε-recovery of P can be obtained by eliminating “incon-
spicuous” vertices of Q. In Section 3.1 we discuss possible measures of the conspicuousness
of a polygon vertex, and define plausible constraints that such measures should satisfy. In
Section 3.2 we prove that if a hand digitization Q of P satisfies the conditions in Theorem 1,
a D-recovery of P can be constructed by repeatedly eliminating Q’s most inconspicuous
vertices. We have not been able to prove an analogous result when Q is a noisy image digiti-
zation of P , but in Section 3.3 we show experimentally that in this case too, when Q’s most
inconspicuous vertices are repeatedly eliminated, an acceptable recovery of P is obtained.

3.1. Vertex Conspicuousness

Let A, B, C be three consective vertices of a polygon. In triangle ABC , let the base AB
have length l, and let the sides AC, BC make angles α and β, respectively, with AB, as
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FIG. 12. Two triangles with their parts labeled.

shown in Fig. 12. The exterior angle τ = α + β at vertex C is the turn angle at C ; evidently
we have τ < π . The “conspicuousness” of the vertex C should be a quantity that characte-
rizes how different the pair of sides AC and C B is from the side AB. Such a conspicuous-
ness measure can be interpreted as the cost of eliminating vertex C and replacing the pair
of sides AC, C B with the side AB. If AC and C B are consecutive sides of a polygon, the
conspicuousness of C can also be regarded as a measure of the significance of the contribu-
tion of vertex C to the shape of the polygon. We now discuss plausible properties of such a
measure.

Let d be the (Euclidean) distance from the vertex C to the base AB. Note that if the base
angles α and β are both acute, d is the altitude h; but if one of them is obtuse, d is the length
of the side that makes the obtuse angle with the base (see Fig. 12). The conspicuousness K
of C may depend on the lengths l, d as well as the angles α, β. We will assume that K is a
continuous function of these quantities.

Assume that K is proportional to (linear) size. Since the lengths l and d can vary in-
dependently, and both vary linearly with scale, we can study the shape dependence of K ,
as distinguished from its scale dependence, by considering how K varies with (say) d as
l remains constant. It seems intuitively plausible that K is a monotonic function of d and
goes to zero as d → 0 (Fig. 13). One could also assume that K becomes arbitrarily large as
d → ∞ (Fig. 14), but this assumption seems to be less essential. Other plausible assump-
tions are that K is monotonic in α and β and that for any given value of τ = α + β, K
takes on its maximum value when α = β (Fig. 15); but these assumptions too seem less
essential.

Various simple geometric quantities associated with the triangle ABC have these prop-
erties. Perhaps the simplest of these is the distance d itself. To show that, for a given value
of α + β, d takes on its maximum when α = β we can use the facts that

d = h
l

(cot α + cot β)
for α, β <

π

2

FIG. 13. Conspicuousness goes to zero as d goes to zero.
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FIG. 14. Conspicuousness grows monotonically with d .

and

d = l sin β

sin(α + β)
for α >

π

2
.

It should be pointed out that several other quantities also have these properties. One of
them is the length of the median, i.e., the line segment joining the vertex C to the midpoint
of the base AB. Another such quantity, which we have used in earlier experiments [4, 5],
can be defined as follows: Draw a line L through the vertex C , and imagine that each of the
sides C A and C B is rotated about C until its other endpoint hits L . Let L A and L B be the
lengths of the arcs through which C A and C B rotate (i.e., the arcs traced by A and B as
they rotate). If we rotate L (around C) toward C A, L A decreases and L B increases, and if
we rotate it toward C B, the reverse is true; thus there exists an L for which L A = L B . This
common value of L A and L B is the K used in [4, 5]; it can be shown that its value is

τ
1

1
a + 1

b

= τab

a + b
.

Our goal in the next two sections is to show that if Q is a hand or image digitization of
P , we can obtain an approximate recovery of P by eliminating the vertices of Q in order of

FIG. 15. For a given turn angle (or equivalently, a given vertex angle), conspicuousness may be greatest when
the base angles are equal.
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their inconspicuousness. To ensure that closeness to P is preserved during the elimination
process, we must use a measure of conspicuousness that is a monotonic function of d and
goes to zero as d → 0. We have found that it makes little difference which measure we
use, as long as it has these properties; in the experiments described below we will use the
measure K of [4, 5].

3.2. Polygon Recovery from a Noisy Hand Digitization

In this section Q denotes a noisy hand digitization Q′ of P that satisfies the constraints
of Theorem 1 (Section 2.1); thus Q lies close to P . We assume that the side lengths of Q
all have length at least E . We will prove in the following paragraphs that if we eliminate
the vertices of Q in order of their inconspicuousness, then even after many of the vertices
of Q have been eliminated, the simplified Q remains close to P , as long as it has at least
as many vertices as the original P . Thus if P has n vertices, Q has N > n vertices, and we
eliminate the N − n least conspicuous vertices from Q, we obtain an n-vertex polygon Q′

that lies close to P . This Q′ evidently must closely resemble P , so that by constructing Q′

we have recovered an approximation to P from its noisy version Q.
Let A′, B ′, C ′ be three consecutive vertices of Q, obtained by randomly displacing the

points A, B, C of P . We call (A′, B ′, C ′) a side triangle if A, B, C are all on the same side
of P; otherwise, we call it a vertex triangle. We will show in the following paragraphs that

(a) the B ′’s of the side triangles have conspicuousnesses that are bounded above;
(b) for each vertex v of P (having sides s, t , say) there exists a vertex triangle A′ B ′C ′

such that A is on s and C is on t , and the conspicuousness of B ′ is bounded below, and in
fact is greater than the conspicuousnesses of all the side triangles.

It follows from (a) and (b) that if we eliminate the vertices of Q in the order of their
inconspicuousness, for every vertex v of P there exists a vertex triangle A′

v B ′
vC ′

v such that
the vertices of all the side triangles will be eliminated before the vertices B ′

v of these vertex
triangles are eliminated. Thus the resulting simplified Q′ will have a vertex close to each
vertex of P , so that Q′ is a good approximation to P .

LEMMA 1. If 2d < E , then the conspicuousness of every B ′ in a side triangle
(A′, B ′, C ′) is at most 2d.

Proof. Let (A′, B ′, C ′) be a side triangle of Q, obtained by randomly displacing the
points A, B, C that lie on the side r of P . Thus A′, B ′, C ′ lie within distance d of A, B, C ,
respectively, and B ′ A′, B ′C ′ have lengths at least E . Evidently, since 2d < E and since the
projection of A′, B ′, C ′ on r is order preserving (Section 2.1), the base angles of (A′, B ′, C ′)
must be acute and the altitude of (A′, B ′, C ′) can be at most 2d; thus the conspicuousness
of (A′, B ′, C ′) is bounded above by 2d. �

LEMMA 2. Let v be a vertex of P with angle V at which sides s and t meet. If

4d ≤ E cos(45◦ + V/4),

then there exists a sample point B within distance D of v such that the vertices of all side
triangles whose vertices originate from s and t will be eliminated before B ′.

Proof. Since 4d ≤ E cos(45◦ + V/4) ≤ E , the hypothesis of Lemma 1 is satisfied for
sides s and t . Hence Lemma 1 implies that the conspicuousnesses of the side triangles are
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bounded above by 2d . We will now show that there exists a sample point B within distance
D of v such that the conspicuousness of B ′ is greater than 2d.

We recall that there must be at least one sample point on P within distance D of v. Let
B1, . . . , Bn be all these sample points. Let B be the Bi such that B ′ is the last B ′

i to be
eliminated, and let Q∗ be a simplified version of Q that contains B ′ but does not contain
any other B ′

i .
Let A′ and C ′ be the neighbors of B ′ in Q∗. Since the other B ′

i ’s have been eliminated,
A and C are not within distance D of v. As we shall now see, this allows us to give a lower
bound on the conspicuousness of B ′ in Q∗.

Assume, without loss of generality, that A lies on s and B, C lie on t (see Fig. 16). Since
we are looking for a lower bound, we can assume that sides B ′ A′ and B ′C ′ both have length
E . If one of the base angles of (A′, B ′, C ′) is obtuse, the conspicuousness of B ′ is one of
these side lengths, which is E . Since 4d ≤ E cos(45◦ + V/4) ≤ E , the conspicuousness of
B ′ is at least 4d and so is greater than 2d.

Now we consider the case in which the base angles of (A′, B ′, C ′) are acute. In this case
the conspicuousness of B ′ is the altitude of (A′, B ′, C ′).

We first estimate the altitude of (A, B, C). The closer B is to v, the larger is this altitude.
Thus we obtain the smallest altitude if B (on t) is D away from v. The distance of A (on s)
from v is greater than D; to obtain the extremal case we assume that A too is D away from
v (see Fig. 16).

The angle b at B in triangle (A, B, C) is 90◦ + V/2, where the dotted line is the bisector of
the angle at vertex v. Consequently, in the extremal case the altitude h of triangle (A, B, C)
is E cos (45◦ + V/4). Thus we have

4d ≤ E cos(45◦ + V/4) < h.

Since A′, B ′, C ′ lie within distance d of A, B, C , respectively, we obtain the largest
difference between the altitude h′ of triangle (A′, B ′, C ′) and the altitude h of triangle
(A, B, C) if A′, B ′, C ′ are displaced parallel to h, with A′, C ′ displaced toward B and B ′

displaced toward the base AC . In this case we have h′ = h − 2d; consequently, we always
have h′ > 2d . Thus the conspicuousness of B ′ is greater than 2d.

Since the conspicuousnesses of the side triangles are bounded above by 2d, we can
conclude that the vertices of all the side triangles associated with s and t will be eliminated
before B ′. �

FIG. 16. Lower bound on the conspicuousness of a vertex triangle.
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FIG. 17. Relationship between d and the vertex angle V (in radians).

As a simple consequence of Lemma 2 we have

THEOREM 3. Let v1, . . . , vm be the vertices of P , say with vertex angles V1, . . . , Vm.
If

4d ≤ min{E cos(45◦ + Vi/4) | i = 1, . . . , m},

then there exists a sample point Bi within distance D of every vertex vi of P such that
the vertices of all the side triangles in Q will be eliminated before B ′

1, . . . , B ′
m. Thus the

polygon B1, . . . , Bm is a D-recovery of the original polygon P.

To illustrate the relation between d and E when the hypothesis of Lemma 2 holds, suppose
E = 1, and regard d as a function of the angle V at a given vertex v of P: d(V ) = 1

4 cos π + V
4 .

The graph of this function for V ∈ [0, π ] is shown in Fig. 17. We see, for example, that for
V ≈ 2.5 ≈ 130◦ we have d(V ) ≈ 0.05, which means that if no angle of P is flatter than
130◦, then d ≤ E

20 .

3.3. Polygon Recovery from a Noisy Image Digitization

Theorem 3 assumes that Q is a hand digitization of P , and its proof requires that the side
lengths of Q be bounded below (by E). Such a proof cannot be given if Q is a random image
digitization of P , because the sides of Q can be short. Nevertheless, as we shall now verify
experimentally, in this case too we can recover good approximations to P by eliminating
vertices of Q in order of their inconspicuousness.

The noisy digital polygon in our first experiment, shown in Fig. 18 (left), is a polygonal
object (with 846 vertices) extracted from a real aerial image; this image was used in [1] as an
example of model-based shape recovery. The straight segments in the boundary of this object
have been significantly corrupted by noise. The middle image in Fig. 18 shows the result of
eliminating all but 50 vertices from this noisy polygon in order of their inconspicuousness.
Evidently, the 50-vertex polygon is much less noisy but its shape has changed very little.
Figure 18 (right) shows the result of eliminating all but 24 vertices; it can be compared with
Fig. 4 of [1]. Evidently, the most significant straight segments of the boundary have all been
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FIG. 18. A noisy polygonal object extracted from a digitized aerial image, and the result of eliminating its
vertices in order of their inconspcuousness.

preserved. Note that, unlike the method used in [1], our process did not assume a model for
the object.

Figure 19 shows the results of a second experiment in which the original polygon P is
known. This polygon, shown in Fig. 19a, has 9 vertices. At some of these vertices the sides

FIG. 19. A polygon with nine vertices (a), and results of eliminating all but 176 (b), 9 (c), and 7 (d) vertices
from the digitization of the polygon (which had 1440 vertices).
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are short and the angles are extremely flat (i.e., close to π ). This polygon was digitized and
the boundary of its digital image was extracted in the form of a chain code. The resulting
chain-coded polygon Q had 1440 vertices. Figure 19b shows a simplified version of Q that
has only 176 vertices, and Fig. 19c shows a version that has only 9 vertices. We see that the
polygon in Fig. 19c is a perfect recovery of the original P . Figure 19d shows the result of
eliminating two more vertices. Note that although this 7-vertex polygon has fewer vertices,
its sides are still very close to those of the original P .

The polygon recovery results obtained in these two experiments, one for a polygon from
a real aerial photograph and one for a synthetic polygon, are representative of the results we
have obtained in a large number of experiments. Further results and an online Java applet
can be found on the Web site [6].

In order to recover P from a noisy hand digitization (in Theorem 3) or image digitization
(in Fig. 18), it is convenient to assume that the number of vertices of P is known, so we
can use the number of vertices as a stopping criterion in the vertex elimination process.
The question arises: if the number of vertices of P is not known, when should we stop
eliminating vertices?

One answer to this question is to use a threshold for the maximal distance between the
simplified polygon and the noisy polygon Q, as is done in many polygonal approximation
algorithms. Another answer is given in [7], where a cognitively motivated shape similarity
measure is used to determine a stopping criterion. The idea is that the vertex elimination
process is stopped before the simplified polygon becomes significantly dissimilar to the
noisy input polygon. A few experimental results based on this approach are shown in Fig. 20.

FIG. 20. Polygons obtained when using a shape similarity measure as a stopping criterion in the vertex
deletion process.
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4. CONCLUDING REMARKS

We have shown in this paper that if we are given a noisy polygon Q obtained from an
unknown polygon P , we can construct a simplified polygon Q′ that lies within a known
distance of P by eliminating vertices from Q in order of their inconspicuousness, as in
[4, 5]. More generally, the vertex elimination process can be used not only to restore P , but
also to simplify Q, depending on the stopping criterion.

This results of this paper can be generalized in several ways. In two dimensions, we
can consider recovery of an approximation to a general rectifiable simple closed curve C ,
rather than to a polygon P . We could also investigate generalizations of our approach to
three dimensions, where P and Q are simple polyhedra whose faces are triangular; such
generalizations are a subject for future research.
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