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ABSTRACT

In this paper, we focus on stable selection of relevant fea-
tures. The main contribution is a novel framework for s-
electing most informative features which can preserve the
linear combination property of the original feature space.
We propose a novel formulation of this problem as selection
of a minimal independent dominating set (MIDS). MIDS of
a feature graph is a smallest subset such that no two of its
nodes are connected and all other nodes are connected to at
least one node in it. In this way, the diversity and coverage
of the original feature space can be preserved.

Furthermore, the proposed MIDS framework complements
standard feature selection algorithms like SVM-RFE, stabil-
ity lasso and ensemble SVM RFE. When these algorithms
are applied to feature subsets selected by MIDS as opposed
to all the input features, they select more stable features
and achieve better prediction accuracy, as our experimental
results clearly demonstrate.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms

Algorithms

Keywords

Feature Selection, Minimum Independent Dominating Sets,
Stability

1. INTRODUCTION
One of the main challenges in feature selection is the selec-

tion stability, Since there are more and more high-dimensional
data sets with limited samples. A small variation in the
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samples often leads to huge differences in selected features.
This fact makes classifier learning biased and hence severely
impairs the generalization capability.

In particular, gene expression data is inherently high di-
mensional, which is usually in the order of thousands and
even tens of thousands. Meanwhile, due to the expense and
difficulty in collecting the data, the number of samples can
be even less than one hundred. This fact makes the following
two tasks very challenging: 1) predict prognostic value giv-
en gene expression profile [17, 18, 19], i.e., make prediction
on whether a patient has disease or not, and 2) identify the
gene expression profiles associated with a certain disease.
For task 1), the prediction accuracy may drop dramatical-
ly if overfitting happens when training classifiers, such as
SVM or Adaboost. In order to enhance the generalization
ability, it is very important to prevent the potential over-
fitting during the training phase. A common solution is to
reduce the dimension of the data by filtering the features.
Its efficiency has been proved by many feature selection al-
gorithms, such as [3, 6, 10, 21, 1, 15]. Using these feature
selection methods, task 2) seems to be also solved, since the
output of those algorithms corresponds to the set of relevan-
t features for prediction. However, this is only the case if
the selected relevant features are stable, i.e., small change
in the training samples, leads to only small variance in the
selected features. Moreover, a feature selection algorithm
with good stability will further decrease the danger of over-
fitting, since it is less sensitive to the training data, which is
a key factor to ensure proper generalization power. Further-
more, by presenting the selected feature set to an expert
with prior knowledge, such as biologist, this will enable a
better analysis and understanding between the genes and
disease. Although a lot of them have not been discovered
yet, it is well known that several genes could have similar
functionality, therefore selecting any one of those features in
a group will deliver a good prediction.

In this paper, we propose a novel feature selection frame-
work. Its focus is on stability of the selected features, which
also delivers a good prediction on test data sets. We have
two main observations for developing a stable feature se-
lection method in high-dimensional and small-sample data.
The first one is that highly correlated features with same
functionality can be selected differently due to slight varia-
tion in the training data set, especially, when there are very
few training samples. This problem have been confirmed by
several recent works on feature selection [4, 9, 20]. Con-
sequently, identifying highly correlated features and finding
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out a representative feature subset should be part of any sta-
ble feature selection method. The second one is that many
feature selection algorithms tend to select a minimum subset
of features to predict the target label. This indicates that
only one (or at most few features in the same highly corre-
lated feature set) should be selected, with the other features
in the same group ignored. Therefore, it is crucial to guar-
antee those ignored features can be truly represented by the
selected features, without any information loss, otherwise we
may lose some relevant features which will in turn harm the
predication performance and the feature selection stability.

Motivated by the two observations, our goal is to identify
the smallest set of representative features by suppressing
features with similar functionality. The main contribution of
this paper is a novel framework to effectively find the most
representative features. We solve this problem as finding
a Minimal Independent Dominating Set (MIDS). First, a
graph G = (V,E) is constructed, where vertices V represent
features and two features are linked by an edge in E if their
correlation is significant. HenceG is a binary and undirected
graph.

Finding MIDS is a classical problem in graph theory, in
which a subset S ⊂ V with the minimal number of vertices
needs to be found such that no two vertices in S are adja-
cent and every vertex not in S is connected to at least one
vertex in S. The main advantage of this framework for the
proposed feature selection is that it has two guarantees: 1)
For the selected representative features, i.e., the features in
the MIDS, any two of those features have very low correla-
tion. This promises that the diversity of the representative
features in the MIDS. 2) For any feature not in MIDS, which
is removed from consideration, there is at least one feature
in the MIDS with a large correlation. This indicates that for
the abandoned features, features with similar functionality
will be very likely preserved in the MIDS. We refer to this
property as coverage.

The proposed MIDS feature selection framework is differ-
ent from the dense group finder algorithms in [20], which is
motivated by a key observation that in the sample space, the
dense core regions (peak regions), measured by probabilis-
tic density estimation, are stable with respect to sampling
of the dimensions (samples). While the methods show that
the features can be effectively grouped together, it is hard to
control the inter and intra cluster differences, which mean-
s that it is hard to guarantee diversity and coverage. In
our approach, we use Pearson’s correlation as the similarity
measure. Due to the non-transitivity of Pearson’s correla-
tion, we only need to consider direct neighbors when finding
representative features and its corresponding high correlated
features.

Finding the MIDS in a graph is in general NP-complete
[5], but for small problems it can be solved with mathe-
matical programming solvers such as CPLEX[8]. Due to
large size of the considered problems (large number of fea-
tures), we first map this problem to the problem of finding
Maximum Weight Independent Set (MWIS), which is then
solved in a relaxed setting by a recently proposed algorithm
[2]. The algorithm is very effective and fast. After we ob-
tain the MIDS,any other feature selection methods, such as
LASSO, can be used to further determine which of features
in MIDS are relevant to the target label.

The pipeline of our method is shown in Figure 1. The
main goal of computing MIDS is to identify independent

dominating features, which allows us to represent the origi-
nal feature space without information loss. The main ben-
efit is that the number of independent dominating features
is usually much smaller than that of the number of the orig-
inal features. By doing this, the high dimensional data can
be reduced to a much lower dimension while minimizing the
possible loss of useful features. In the second step, we can
use any standard stability feature selection method to iden-
tify the relevant features among the dominating features.
In this paper, we consider the following three algorithms:
SVM-RFE [6],a recursive feature elimination algorithm us-
ing support vector machines, and Stability LASSO [14], a
variance of LASSO with bagging embedded, which is shown
to be one of the state-of-the art feature selection approach-
es. The third algorithm is ensemble SVM-RFE [16], which
aggregates results from SVM-RFE on a number of boot-
strapping samples.

We present experiments on both synthetic and benchmark
data sets, and there are performance improvements in both
the stability of the selected features and in the prediction
accuracy. This demonstrates the efficiency and effectiveness
of the proposed method.

The rest of the paper is organized in the following way.
In Section 2, we review the related works, especially those
approaches which put effort on stable feature selection. In
Section 3, the details of the proposed dominating set based
feature selection algorithm are elaborated. Experimental
settings and results are proposed in section 4, detail analysis
about the stability and classification accuracy can also be
found in section 4. In section 5, we conclude with some final
marks.

2. RELATED WORK
For many years, feature selection was simply considered

as a dimensionality reduction method to improve the predic-
tion accuracy, without serious need in understanding which
features are selected. However, in recent years, a stable fea-
ture selection draws more attention. In particular, there are
several recent works showing that traditional feature selec-
tion approaches are sensitive to the training data, especially
in the setting with small number of samples but with high
feature dimensionality [4, 9, 20]. This means that small vari-
ation in the training samples may lead to huge variation in
the selected features. Consequently, the features selected on
training data do not generalize well to the test data, due
to the overfitting problem. Meanwhile, a quickly growing
number of researchers agree that stable feature selection is
critical for a further study of the understanding between the
genes and diseases [7].

There are two main research directions aiming at achiev-
ing a more stable feature selection without reducing the pre-
diction accuracy. One direction is ensemble based stability
feature selection approaches. These methods combine sub-
sampling (bootstrapping) with traditional feature selection
algorithms. Saeys et al. [16] studied bagging-based ensem-
ble feature selection, which aggregates the results from a
conventional feature selection algorithm, such as SVM-RFE,
and is repeatedly applied on a number of bootstrapped sam-
ples of the same training set. Their results show that sta-
bility ensemble SVM-RFE can improve a lot compared to a
single run of SVM-RFE. Meinshausen et al. [14] introduce
stability selection based on subsampling in combination with
random LASSO. They perturbed the data many times and
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Figure 1: The processing flow of the proposed framework for stable feature selection based on MIDSs.

choose all variables that occur in a large fraction of the re-
sulting selection sets. By doing the subsampling, a more
stable and with better generalization feature set is identi-
fied. However, this group of methods only consider reduc-
ing variance in the feature selection algorithm, but without
putting efforts in explicitly exploring the structure among
the features, such as features which are highly correlated
and function similarly.

The other direction is feature grouping based approaches.
It is known that there exists highly correlated feature groups
among high dimensional data, especially for gene expression
data. The key insight of these approaches is to identify con-
sensus feature groups by explicitly exploring the structure
among the features. Then within each feature group, on-
ly one feature is taken as representative. By doing this,
the number of the features can be significantly reduced so
that the selected feature set is less likely to suffer from the
overfitting problem during the training phase. An example
approach is DRAGS proposed by Loscalzo et al. [20], which
exploits the intrinsic correlations among a large number of
features to identify consensus feature groups and treat fea-
tures in the each dense groups as a coherent entity for feature
selection. The later work of this group (CGS) [11] combines
subsampling and grouping features together. They first i-
dentify consensus feature groups by subsampling training
samples and then select the relevant features by treating
the consensus feature groups as entities.

The proposed framework is inspired by works in both
directions. Particularly, our main contribution is a novel
framework for identifying a set of representative features
by explicitly exploring the features structure through find-
ing the smallest dominating set. The main advantage of
the proposed framework is its ability to explicitly guaran-
tee the diversity and coverage properties, which proved to
be a good guidance for selecting representative features, as
demonstrated by the experimental results. In the second
phase we can run any feature selection algorithm on the
selected, representative features. Since the feature dimen-
sion have been reduced with the functionality of the original
feature space preserved, the stability and classification ac-
curacy of the feature selection algorithms can be improved
a lot.

3. METHODOLOGY
In this section, we introduce our stable feature selection

framework in detail. we first formulate the selection of s-
mallest set of representative features as the minimum inde-
pendent dominating set. Then we formulate our problem
to maximum weight independent set problem and give the

solution.

3.1 Problem formulation
Given is a training data set containing N data points in p

dimensional feature space with N ≪ p. We represent it with
a data matrix X = (xi,j) ∈ R

N×p, where each data point
Xi = (xi,1, . . . , xi,p) ∈ R

p is a row vector. We also given a
corresponding set of labels y = (y1, y2, · · · , yN)T , i.e., y is a
column vector. We will denote these data with DX,y. The
columns of data matrix X represent the p features. Hence
we can write X = (F1, F2, · · · , Fp), where each Fi ∈ R

N is
a column vector.

Given a pair of features Fi and Fj ,we use the Pearson’s
correlation coefficient (PCC) to measure their correlation:

ρ(i, j) =
∑

k (Fi,k−Fi,k)(Fj,k−Fj,k)√∑
i (Fi,k−Fi,k)

2

√∑
i (Fj,k−Fj,k)

2
(1)

Where Fi,k is the mean of Fi and Fj,k is the mean of Fj .
PCC captures linear correlation between pairs of features

with efficient computation. The value of ρ(i, j) lies between
−1 and 1, inclusive. If Fi and Fj are completely correlated,
ρ(i, j) can take value of 1 (positively correlated) or −1 (neg-
atively correlated). If Fi and Fj are independent, ρ(i, j) is
0.

We construct an undirected, binary graph G = (V,E),
which we call feature graph. The vertex set V represents the
features, so |V | = p, and E corresponds to the correlation
between two features. Given a threshold ǫ > 0 two features
are connected if their correlation is above the threshold, i.e.,

E(i, j) =

{

1 if |ρ(i, j)| > ǫ and i 6= j
0 otherwise

(2)

Unlike many common mathematical binary relations, Pear-
son’s correlation is not transitive. This non-transitivity prop-
erty has been pointed out by McNemar [13] in 1949. A
more detailed way of looking at the non-transitivity prop-
erty is that, given three quantitative features Fi, Fj , and
Fk, a positive correlation between Fi and Fj and a posi-
tive correlation between Fj and Fk (in terms of Pearson’s
correlation coefficients, ρ(i, j) > 0 and ρ(j, k) > 0), not nec-
essarily mean that Fi and Fk will be positively correlated.
In fact, Fi and Fk might be uncorrelated ( ρ(i, k) = 0 )
or even negatively correlated (ρ(i, k) < 0). This property
holds even when feature pair Fi, Fj is highly correlated and
feature pair Fj , Fk is also highly correlated.

For the above reasons, it make sense that features can only
be represented by its direct neighbors. In order to guaran-
tee that the selected features can preserve the functionality
of all the removed features. We formulate the problem as
independent dominating set.



A subset of graph nodes S ⊂ V is called independent dom-
inating set (IDS) if

∀vi, vj ∈ S, E(i, j) = 0, and (3)

∀vi /∈ S ∃vj ∈ S E(i, j) = 1 (4)

Consequently, the correlation between any two features in
the S set must be smaller or equal to ǫ, and any feature
not in S must have at least one feature in S with correlation
larger than ǫ. The threshold ǫ can be determined empirically
with certain prior knowledge, or through cross-validation. In
all of our experiments, ǫ is determined through an exhaustive
search on a validation set in the range between 0.5 and 0.8.

Our aim is to identify a MIDS of features from high di-
mensional feature space given only a small number of data
samples. The intuition is that the MIDS is able to represent
all the other features in the original feature space with high
diversity and coverage.

However, finding a MIDS is a known NP-complete prob-
lem [5]. In order to solve it, we first reformulate it to a
NP-complete problem, which we then solve in a relaxed set-
ting.

3.2 Finding the Minimal Independent Domi-
nating Set

We first show that the problem of finding a MIDS set
can be expressed as a problem of finding a maximum weight
independent set (MWIS). We define the weight of node vi
of graph G as the cardinality of its neighborhood

wi = |N (vi)|, (5)

and consider the weight vector w = (w1, . . . , wp)
T .

Let x = (x1, . . . , xp)
T ∈ {0, 1}p be an indicator vector of

a subset S of the vertices of graph G, i.e., xi = 1 if and only
if vi ∈ S. The problem of finding MWIS can be expressed
as integer program (IP):

maximize g(x) = wTx

subject to xTEx = 0 and x ∈ {0, 1}p.
(6)

It is easy to see that condition xTEx = 0 is equivalent to
the independence condition (3).

Let x be a solution of (6) and let S be the corresponding
MWIS. Since no two points of S are neighbors, we have that

g(x) = |N (S)| = |
∑

i∈S

N (vi)| = |V \ S|. (7)

Consequently, by solving (6) we have selected an indepen-
dent set S such that V \ S has the maximal cardinality.
However, this means that S has the minimal cardinality a-
mong all independent sets. We have just proved the follow-
ing proposition.

Proposition 1. Any solution of problem (6) is a minimal
independent dominating set (MIDS) of graph G.

In order to solve problem (6), we reformulate it as the
following integer quadratic program (IQP):

maximize h(x) =
1

||w||w
Tx− xTEx

subject to x ∈ {0, 1}p.
(8)

To show that the reformulation from (6) to (8) always hold-
s [2], let us assume independence condition (3) does not

hold given x, which means that xTEx ≥ 1. Considering
1

||w||
wTx is upper-bounded by 1, therefore h(x) ≤ 0. How-

ever, given w, it is easy to derive a solution x with only one
element equal to 1, i.e., xi = 1 with wi > 0, with all other
elements to be 0, this will give h(x) > 0. This implies that if
a discrete solution of (8) is optimal, independence condition
(3) must hold.

Since problem (8) is still NP-complete, we relax its binary
constraints to continuous ones and obtain

maximize f(x) =
1

||w||w
Tx− xTEx

subject to x ∈ [0, 1]p.

(9)

Let A be a diagonal matrix with diagonal entries equal to
1

||w||
wT , i.e., A = diag( 1

||w||
w). We obtain an equivalent

formulation to (9):

maximize f(x) = xTAx− xTEx

subject to x ∈ [0, 1]p.
(10)

We solve problem (10) with the algorithm proposed in
[12], which is a general case for the algorithm in [2]. As is
the case of the experimental results reported in [12], also in
our settings the algorithm always yields a discrete solution,
which in turn guarantees that xTEx = 0.

We denote with XS the data set obtained as the solution
of (10), i.e., feature Fi is a column vector of XS if and only
if i ∈ S if and only if x∗

i = 1, where x∗ is the solution of
(10).

Hence XS is a N × q matrix composed of the dominat-
ing features (each feature is a column vector and each data
point is a row vector). Usually we have q ≪ p. The ra-
tio between the number of features in minimal independent
dominating set S and the number of original features may
vary for different data sets. In our experiments (in Table
2), the ratio range from %0.5 to %25. Only the dominating
features in S are taken for further processing. As our exper-
imental results demonstrate, this reduction of features has a
very positive effect on both stability of feature selection as
well as prediction accuracy.

4. EMPIRICAL STUDY
In this section, results of our analysis of stability feature

selection framework on large feature and small sample size
domains are presented. First, the data sets and the exper-
iment settings used in this analysis are briefly described.
Second, we analyze two key parts of stability feature selec-
tion techniques: stability and prediction accuracy.

4.1 Data sets and Experiment Setting
In this section, we empirically study the framework of

stable feature selection based on MIDS. Especially, we focus
on the study of the stability of the selected features. The
stability of feature selection algorithms can be defined as
the variation in feature selection results due to variations in
the data set. To measure the features selection stability, we
compute the similarity between two features sets R1 and R2

as in [4, 9]:

SimID(R1, R2) =
2|R1

⋂
R2|

|R1|+|R2|
, (11)

where |R1

⋂

R2| is decided by the number of overlapping
features in two feature sets. A higher similarity means a



larger overlap between two feature sets, which indicates that
the selected features are more stable against the changes in
the training samples.

We evaluate three feature selection algorithms with re-
spect to stability and classification accuracy with or with-
out our MIDS framework. The first one is SVM-RFE [6],
a baseline gene selection algorithm for cancer classification
using support vector machines. The second one is stability
LASSO [14], a variance of LASSO with bagging embedded,
which can select stable features. The third one is ensem-
ble SVM-RFE[16], which applies SVM-RFE on a number
of bootstrapped samples of the same training set. The en-
semble algorithms can improve the performance a lot when
compared to a single run of a given algorithm.

The test data sets include two part: The first part in-
cludes two synthetic data sets, the details can be found in
Table 1. The second part includes seven benchmark data
sets, which were taken from the bioinformatics and biomed-
ical domain. Those seven benchmark data sets are charac-
terized in Tables 2. For synthetic data sets, we generate
the data in the same way as in [11]. The synthetic data
set consists of 1000 training samples randomly drawn from
the same distribution DX,y. The feature matrix F contains
1000 features, including 100 mutually independent features,
F1, F2, ..., F100, and a number of (10 ± 5) highly correlat-
ed features to each of these 100 features. In each correlat-
ed group, the Pearson correlation coefficient of each feature
pair is within (0.5, 1) so that the average pairwise correla-
tion is below 0.75. The target label y is decided based on
the first 10 features F1, F2, ..., F10 only using a linear func-
tion of equal weight to these 10 truly relevant features. We
also follow the same procedure to generate another data set,
in which the number of relevant feature groups remains to
be 10, but with the number of independent feature groups
increased to 250 and the number of highly correlated fea-
tures increased to (20 ± 5). A summary of these data sets
is provided in Table 1. In our algorithm, the threshold ǫ
in Function 2 is set to 0.6, the corresponding MIDS feature
number for the 7 real world is listed in Table 2.

For every data set, the evaluation is performed in 10 fold
cross-vaidation. The data set is divided into 10 parts, the
features are selected based on 9 folds and the prediction
accuracy is evaluated on the remaining hold-out fold. We
repeat the above procedure for 10 times, each time obtaining
the feature ranking. Then we vary the selected feature sets,
and the feature number varies from 1 to 50 based on the
ranking of features. For each of these sets we compute the
stability of selected features as the average SimID between
every two sets of the 10 sets of selected features produced
by the 10 fold cross validation. For example, we obtain 10
sets composed of 20 selected features, and compute the av-
erage stability of these sets with Eq 11. Finally, we repeat
10 times the 10 fold cross validation and report the average
stability and accuracy for each data set. In order to obtain
the prediction accuracy on the benchmark data sets, a lin-
ear SVM classifier is trained based on the selected features
from the same training set (9 folds) and tested on the corre-
sponding hold-out fold. For the synthetic data set, we train
the SVM classifier on 9 out of the 10 folds, and test on an
independent test set of 500 samples, which is generated from
the same distribution of the training data set.

It is important to note that the stability of feature selec-
tion results should be considered in combination with clas-

sification accuracy. An algorithm that yields very stable
feature sets makes no sense if it returns a badly performing
model.

As the proposed method is designed for a binary classi-
fication problem, one-vs-all strategy is used when dealing
with multi-class classification task, such as Lymphoma and
SRBCT.

4.2 Result and Discussion
For synthetic data sets, besides stability and prediction

accuracy, we are able to measure the precision of the select-
ed feature as the percentage of the ground-truth relevant
features among the selected features.

In Figure 2, we can see that when the size of samples be-
comes larger, all algorithms perform better in all three per-
formance metrics. However, with relatively small number of
training samples, SVM-RFE, ensemble SVM-RFE and sta-
bility Lasso have better performance with MIDS framework.
By applying SVM-RFE, stability LASSO or ensemble SVM-
RFE alone without our MIDS method, the performance be-
comes much worse. Especially, they may fail in the task of
selecting truly relevant features, i.e., these three algorithm-
s without MIDS have very low precision when the sample
number is 100.

The results on synthetic data sets clearly demonstrates
that for a large number of features, many of which have
similar functionality, SVM-RFE, stability LASSO and en-
semble SVM-RFE cannot work effectively to select relevant
features without first identifying those representative fea-
tures and removing the redundant features.

Figure 3 compares SVM-RFE, ensemble SVM-RFE, Sta-
bility LASSO with and without MIDS on stability and pre-
diction accuracy performance on the 7 benchmark data sets.
Figures with ’SimID’ as y-axis show the stability varies with
the number of selected features. Figures with ’Accuracy’
as y-axis show the SVM classification accuracy for various
numbers of selected features.

The quantitative results are summarized in Tables 3 and
4. Table 3 reports the best prediction performance for all the
compared algorithms as the function of the selected feature
number, which is reported in brackets. Table 4 reports the
stability for the feature subsets which achieve the highest
prediction accuracy.

From Table 3 and Table 4, it is easy to observe that SVM-
RFE with MIDS can achieve higher classification accuracy
as well as higher stability. The average classification accu-
racy improves from 0.899 to 0.926 with MIDS framework.
The average similarity between selected features also in-
crease from 0.473 to 0.700. The performance enhancement
for SVM-RFE algorithms with MIDS is the most significan-
t among all the three algorithms. For ensemble SVM-RFE
and stability LASSO, The average classification accuracy al-
so improves 0.02. Particularly, stability LASSO with MIDS
got the best classification accuracy by only selecting 17 fea-
tures, which is much higher than the other algorithm. The
proposed MIDS framework with the other two stability fea-
ture selection algorithms also has a higher stability on aver-
age. Stability LASSO with MIDS achieved the best stability
in 5 of the 7 data sets. On average, stability LASSO with
MIDS achieves average stability as 0.789 with only 17 fea-
tures, which is the best among the compared approaches.
SVM-RFE with MIDS and ensemble SVM-RFE with MIDS
have more stable results when compares to the algorithms



Table 1: Summary of Synthetic Data Sets

Datasets Features Groups Rel. Feat.

D1 1000 100 (size10± 5) 10
D2 5000 250 (size20± 5) 10

Table 2: Summary of Benchmark Data Sets

Datasets Classes Instances Genes MIDS Genes

Colon 2 62 2000 65
Leukemia 2 72 7120 1235
Ovarain 2 253 15154 72
Lung 2 181 12533 1599

Lymphoma 3 62 4026 1175
Pancreatic 2 181 6771 134
SRBCT 4 63 2308 765
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Figure 2: Comparison of algorithms with or without MIDS on synthetic data sets. Column 1: precision w.r.t. the truly
relevant features. Column 2: stability of the selected features measured with SimID. Column 3: SVM classification accuracy,
for the top 10 selected features.

Datasets
SVM-RFE[6] Ensemble SVM-RFE[16] Stability LASSO[14]

Without MIDS With MIDS Without MIDS With MIDS Without MIDS With MIDS
Colon 0.83(40) 0.94(39) 0.82(9) 0.93(50) 0.83(5) 0.94(50)

Leukemia 0.96(43) 0.99(14) 0.96(32) 0.98(34) 0.96(18) 0.98(26)
Ovarain 0.99(20) 1.00(12) 1.00(9) 1.00(9) 1.00(4) 1.00(3)
Lung 0.98(19) 0.99(16) 0.98(16) 0.99(20) 0.992(6) 0.995(3)

Lymphoma 1.00(27) 0.99(9) 0.99(24) 0.98(24) 0.99(36) 0.99(11)
Pancreatic 0.56(50) 0.61(43) 0.56(15) 0.60(29) 0.63(9) 0.64(4)
SRBCT 0.97(48) 0.96(50) 0.99(40) 1.00(27) 1.00(28) 1.00(24)
Average 0.899(35.3) 0.926(24.7) 0.900(20.7) 0.926(27.6) 0.913(15) 0.935(17)

Table 3: Performance comparison of classification accuracy of different feature selection algorithms with or without MIDS on
different data sets. The best results are highlighted in bold.

without MIDS.
In this case, we can conclude that the framework, which

using MIDS to remove features with same functionality, does

not reduce the classification accuracy and stability of all the
three algorithms. The selected feature number is on par
with the algorithms without MIDS frame work. Instead,



Datasets
SVM-RFE[6] Ensemble SVM-RFE[16] Stability LASSO[14]

Without MIDS With MIDS Without MIDS With MIDS Without MIDS With MIDS
Colon 0.45(40) 0.87(39) 0.39(9) 0.96(50) 0.61(5) 0.99(50)

Leukemia 0.39(43) 0.70(14) 0.38(32) 0.53(34) 0.56(18) 0.69(26)
Ovarain 0.80(20) 0.79(12) 0.70(9) 0.79(9) 0.79(4) 1.00(3)
Lung 0.44(19) 0.79(16) 0.54(16) 0.60(20) 0.68(6) 0.83(3)

Lymphoma 0.38(27) 0.60(9) 0.47(24) 0.52(24) 0.29(36) 0.53(11)
Pancreatic 0.26(50) 0.57(43) 0.33(15) 0.55(29) 0.60(9) 0.80(4)
SRBCT 0.59(48) 0.58(50) 0.62(40) 0.64(27) 0.71(28) 0.68(24)
Average 0.473(35.3) 0.700(24.7) 0.490(20.7) 0.656(27.6) 0.605(15) 0.789(17)

Table 4: Performance comparison of stability (SimID) of different feature selection algorithms with or without MIDS on
different data sets. The stability for feature subsets with the best classification accuracy is reported for each data set. The
best results are highlighted in bold.

for data set with highly correlated feature groups, such as
colon cancer, MIDS framework can improve the classification
accuracy and stability of algorithms significantly.

5. CONCLUSION
In this paper, we propose a novel stability feature selec-

tion framework that utilizes the idea of minimal independen-
t dominating sets. The minimum independent dominating
sets selected by our framework can preserve the functionality
of the original feature space. The performance of state-of-
art feature selection algorithms can be improved due to the
removed redundant features. Empirical study shows that
the features selected in our framework are not only stable
but also lead to better prediction accuracy as compared to
directly applying feature selection algorithms to all input
features.
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Figure 3: Comparison of three feature selection algorithms with or without MIDS on Colon, Leukemia, Lung,
Overain,Lymphoma,SRBCT,Pancreatic. Figures with ’SimID’ as y-axis show the stability of the selected representative
features. Figures with ’Accuracy’ as y-axis show the SVM classification accuracy for various numbers of selected features.
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