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Abstract 
 In this paper, we propose a new definition of curvature, 

called visual curvature. It is based on statistics of the 
extreme points of the height functions computed over all 
directions. By gradually ignoring relatively small heights, 
a single parameter multi-scale curvature is obtained. It 
does not modify the original contour and the scale 
parameter has an obvious geometric meaning. The 
theoretical properties and the experiments presented 
demonstrate that multi-scale visual curvature is stable, 
even in the presence of significant noise. In particular, it 
can deal with contours with significant gaps. We also show 
a relation between multi-scale visual curvature and 
convexity of simple closed curves. To our best knowledge, 
the proposed definition of visual curvature is the first ever 
that applies to regular curves as defined in differential 
geometry as well as to turn angles of polygonal curves. 
Moreover, it yields stable curvature estimates of curves in 
digital images even under sever distortions. 
 
 

1. Introduction 
Curvatures of curves are the key to detect the salient 

points and to compute the shape descriptors. 
Mathematically, curvature of a point v is defined as 
following:  
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where θ(v) is the tangential angle of the point v and S is the 
arc length. 

When applied in digital images, three problems arise: 
(1) The digital images are usually distorted by noise. Fig. 

2(a) can be regarded as a pentagram heavily distorted 
by noise; Fig. 2(b) is the pentagram without noise. For 
the visual perception, point A is not important, 
because it should be flat there. However, the curvature 
computed by formula (1) can be very high. 

 
(a)                           (b) 

Figure 2. Pentagram 

A A 

 
(2) The images may have different level of details. If Fig. 

2(a) is regarded as an image that looks like a 
pentagram in global, the curvature of point A should 
be low in the large scale; at the same time, because 
there is a very sharp turn in small scale, the curvature 
should be high. Obviously, formula (1) is hard to 
compute the curvature in different scales. 

(3) Due to digitalization, the contours of the images are 
all stair-like, such as Fig. 3. In such case, formula (1) 
cannot be directly applied.  

 
From the point of visual perception, the curvature 

estimated in certain level must get rid of the influence of the 
convex and concave parts in smaller levels.   
 The contour can be parameterized by arc length: 
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Figure 3. Stair-like contour 

 
Figure 1.  Curvature of the curve 
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We call x(s) the height function in 0o direction and y(s) 
the height function in 90o direction. The intuition is that 
x(s) measures the distance to y-axis in 0o direction. Rotate 
the coordinate system by angle α anticlockwise, the new 
x(s) becomes the height function of the contour in direction 
α, which we denote Hα. Since the height function is defined 
as distances to rotated y-axis, and the direction of y-axis 
does not matter, we restrict α∈[0, π) . By rotating the 

coordinate system by angle 1,,0, −== Ni
N
i

i Kπα , we 

obtain a series of height functions . 
i

Hα

 
Fig. 4(b), (c), (d), (e) shows the height functions of the 

contour in (a) in 0o, 45o, 90o, 145o directions, respectively. 
Every height function reflects partial information of the 
contour. The curvature is related to the local extreme points 
of the height functions: In more directions the point is the 
extreme points, the sharper the contour is at the point, i.e. 
point A, the higher is the curvature of the point. The main 
idea of this paper is to define the curvature at a contour 
point v by counting the number of directions in which v is 
an extremum of the height function. 

Obviously, all of the extreme points are not of the same 
importance. Noise may perturb the curve and cause small 
extreme points in the height functions. However, a point on 
a small concave or convex part can not become an obvious 
height in any height functions, while a point on a large 
concave or convex part will be an obvious height in some 
height functions. For example, in Fig. 4(d), A and B are the 
very important extreme points and C is not so important, 
but C is a very important minimum point in Fig. 4(b). When 
the number of height functions is sufficiently large, no 
important points are ignored, and important high curvature 
points are detected. In this paper, we obtain multi-scale 
curvature by ignoring small heights in the height functions. 

The new definition for curvature, called visual curvature, 
is based on statistics of the extreme points of the height 
functions computed over all directions. Moreover, by 
gradually ignoring relatively small heights, multi-scale 
curvature is constructed. The multi-scale visual curvature 
has the following properties: 
(1) It is suitable for every planar curve. When the number 

of the height functions approaches infinite, on the 
regular curve, its limit is standard curvature and on the 
polygonal curve, it is identical to turn angle. 

(2) It forms a single parameter scale space. Curvature is 
obtained by ignoring small heights, not by smoothing. 
Hence it does not modify the original curve. 

The related literatures are reviewed in Section 2. In 
Section 3, the visual curvature is defined and its relation to 
standard curvature and turn angle has been proved. In 
Section 4, a scale measure of extreme point is defined in the 
point of absolute extreme. In Section 5, some properties of 
multi-scale visual curvature are described and their 
significances are discussed. In Section 6, implementation 
details are analyzed and the experimental results are 
demonstrated. In Section 7, we describe some applications 
of the visual curvature. In Section 8, we draw a conclusion 
of this paper. 

2. Literature Review 
Curvature estimation in digital images is known to be 

very susceptible to noise on the contour, thus it is very hard 
to estimate it robustly. Since large number of methods has 
already been proposed for estimating the curvature of 
contour, it is beyond the scope of this paper to list all of 
them. Therefore, we mention only a few beginning with a 
very influential method form the early days of computer 
vision [10] through methods in [1, 2, 3, 4, 5, 6]. Those 
approaches can be classified into three groups, according to 
definition of curvature they are using: tangent direction, 
osculating circle, derivation. Most methods use a sliding 
window, thus they in essence estimate the curvature 
locally. The size of the sliding window is usually hard to 
choose and when nose is large, simply increasing the size 
of sliding window usually does not work. At the same time, 
these methods are all under the assumption that there is a 
unique curvature at each point which is obviously true in 
pure mathematical view. However, in the context of 
computer vision, depending on particular goals, the 
curvature of a point may take on differing values, e.g., 
depending on whether a given point is regarded as noise or 
signal point. 

Before describing the existing multi-scale curvature 
techniques, we characterize the desirable properties of the 
curvature that is useful in computer vision: (1) it should be 
multi-scale and reflect the curvature information of the 
contour in different scale; the geometric meaning of the 
scale factor should be as clearly as possible which 
facilitates the selection of scale in the application; (2) it 
should have proper precision; (3) it should be stable under 
noise; (4) it should be invariant under rotations and 
translations. (5) it should be suitable for both smooth 
curves and polygonal arcs. 

The main goal of this paper is to propose a new curvature 
definition which will achieve all the above properties. To 
our best knowledge, no existing multi-scale curvature has 
all these properties. Our proposed multi-scale curvature is 
easy to implement, and can be computed efficiently. 

A A 
C C B 

C 

 
Figure 4. Height functions in 0o, 45o, 90o, 145o directions
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The following is a brief review of existing multi-scale 
curvature techniques. In computer vision, multi-scale 
curvature is usually related to multi-scale shape 
representation techniques. 

Mokhtarian and Mackworth [7] proposed a multi-scale, 
curvature based shape representation technique by 
convolving the contour with a Gaussian kernel. They 
demonstrated many of its appealing properties. However, 
this method modifies the original curve. At the same time, 
the geometric meaning of its scale factor which is in fact a 
parameter of Gaussian kernel is not obvious. A similar 
method [8], which is proposed by Yu-Ping Wang, 
convolves the contour with a dilated-spline kernel. Since 
just kernel function is altered, they share the same 
problems.  

Latecki and Rosenfeld [9] proposed a class of planar arcs 
and curves which is general enough to describe (parts of) 
the boundaries of planar real objects. They analyzed the 
properties of these arcs and ruled out pathological arcs, thus 
simplify the shape representation problem. A popular way 
of shape representation in digital grid is curvature based 
polygonal approximation [11, 12, 13, 14, 15]. In these 
methods, the original contour is approximated by 
simplified polygon. Obviously, in polygonal arcs, a natural 
measure of curvature information is turn angle. The 
problem with standard curvature is that it is defined on 
smooth curve and can not be applied to polygonal arcs 
directly. Thus, they need complicated estimation procedure 
to calculate curvature. 

To summarize, although there are many methods to 
obtain multi-scale curvature, they in essence estimate the 
curvature from the definition of standard curvature or its 
properties. Thus, they usually need to smooth the polygonal 
arcs, either by curve fitting or by convolution. This results 
in parameters that are hard to control, such as the size of 
sliding window, and displacement of contour points which 
is usually not desirable. 

3. Visual Curvature 
As described in Section 1, by rotating the coordinate 
system, we can obtain a series of height functions  

i
Hα , 1,,0, −== Ni

N
i

i Kπα . 

Definition 1. For a point v on the curve C, suppose S(v) is 
its neighborhood of size ΔS on the curve C, the visual 
curvature of v is defined as:  
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where ( )[ ])(# vSH
iα  represents the number of local extreme 

points of the height function in the neighborhood S(v).  
i

Hα

This definition also points out how to compute the visual 

curvature. For a point v on the contour, we estimate its 
curvature in its small neighborhood S(v). In every height 
function, we find its extreme points and count the number 
of the extreme points that are in the neighborhood S(v). We 
sum up all the numbers and calculate the curvature using 
formula (3). As we will report later in the section on 
experimental results, keeping ∆S=1, i.e., S(v)={v}, yields 
the most robust curvature estimate for digital contours in 
real images. We did not restrict the size ∆S of the 
neighborhood of point v in formula (3) for theoretical 
reasons, in particular, to formulate Theorem 1 below in its 
general form. This theorem reveals the relation between 
visual curvature and the standard curvature on the regular 
curve. It states that when the number of the height functions 
is sufficiently large, the visual curvature approaches the 
standard curvature. Regular curve is a curve which is 
differentiable and the derivative never vanishes.  

Theorem 1. For a point v on the regular curve C, we have 
( ) ( )vKvK SNNS Δ∞→→Δ

= ,0
limlim                  (4) 

Proof: Let θ be the tangent angle at point v. Assume θ≠0. 
If θ=0, we rotate the coordinate system so that it satisfies 
this assumption. Since the curve is regular, by properly 
rotating coordinate system, there exists a neighborhood 
S(v) such that the range of the tangent angle in this 
neighborhood is a subset of the half-open interval [0,π), 
devoted by (θ1, θ2). See Fig. 5 below. 
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Figure 5. Relation between tangential angle and extreme point 

 
If a point v1∈S(v) is the extreme point of the height 

function , then α
i

Hα i∈(θ1, θ2) and vice versa. Hence the 

number of the extreme points of all the height functions in 
the neighborhood S(v) is identical to the number of 
direction angles αi that belong to the open interval (θ1, θ2). 

The direction angle series 
⎭
⎬
⎫
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πα of the 

height functions is a uniform sampling of the half-open 
interval [0, π). Suppose αn=πn/N and αm=πm/N are the 
smallest and largest sampling direction angles in the open 
interval (θ1, θ2), respectively. Then π(m-n+1)/N is an 
estimation of θ2-θ1.  

We now prove that the limit of π(m-n+1)/N is θ2-θ1 when 
N approaches infinity. We just need to show that 
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Both (a) and (b) can be proved in the same way, thus, we 
just prove (a). Because αm=πm/N is the largest angle in the 
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The theorem below reveals the relation between visual 
curvature and turn angle of polygonal curves. We first 
motive this theorem with an example. In Fig.6, MON is part 
of the polygonal curve, the turn angle at O is α. t is a line 
whose directional angle, denoted by βt, is in the interval 
(0,α) and l is a line whose directional angle, denoted by βl, 
is in the interval (α,π). Obviously, O is an extreme point of 
height function in the direction π/2+βt which is 
perpendicular to t, but it is not an extreme point of height 
function in the direction π/2+βl which is perpendicular to l. 
Thus, in Fig. 6, in the direction perpendicular to β ∈(0, α), 
O is an extreme point and total range of β is α. 

 
Theorem 2. For a point O with turn angle α(O) on a 
polygonal curve, we have 
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Proof: Since ΔS=1, we just need to count the number of 
height functions in which O is an extreme point. Let us 
assume that there are N height functions and O is an 
extreme point of M height functions. Then πM/N is an 
estimation of the range of the angle in which direction O is 
an extreme point. As illustrated in Fig. 6, such range is α. 
Following the proof of theorem 1, we can show: 

( ) ( )OK
N
MO NNN 1,limlim

∞→∞→
== πα  

4. A Scale Measure of Extreme Point 
In Def. 1, all extreme points are counted, not considering 

whether they are important or not. Therefore, Theorem 1 
also explains why standard curvature is not robust. In fact, 
in a certain scale, small concave or convex parts should be 
ignored. By imposing a scale measure for extreme point, 
the multi-scale visual curvature can be defined as follows: 
Definition 2. For a point v on a curve C, suppose S(v) is its 
neighborhood of size ΔS on the curve C, the multi-scale 
visual curvature of the point v is defined to be:  
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Where λ is a scale factor and ( )[ ])(# vSH
i

λ
α  represents 

the number of the extreme points of the height 
function  in the neighborhood S(v) whose scale 
measure is not smaller than λ. In short, the multi-scale 
visual curvature is computed by counting the number of 
relative important extreme points. The scale measure λ can 
be defined in different ways. Definition 5 below presents 
our choice. The intuition is that in every height function, 
the higher the peak represented by the extreme point is, the 
more important the extreme point is. We begin with a 
definition of a measure that quantifies the heights of peaks.  

i
Hα

Definition 3. The influence region of a local maximum 
(minimum) point v in a height function Hα, denoted by 
Rα(v), is its maximal neighborhood such that the height of 
every point in this neighborhood is not higher (lower) than 
the height of the point v. If curve C is open or point v is not 
an absolute extremum, Rα(v) is divided into two segments 
by v, we denote the left segment by ( )vR−

α  and the right 

segment by ( )vR+
α , see Fig. 7. If curve C is closed, Rα(v) 

may be the whole curve, in which case ( )vR−
α  and ( )vR+

α  
both represent the whole curve except point v, in particular, 

( ) ( )vRvRvR −+ == ααα )( .  
 

Figure 6. Relation between visual curvature and turn angle 
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Definition 4. The height of the peak represented by an 
extreme point v in the height function Hα, denoted by rα(v), 
is defined as: 

( ) ( ) ( )[ ]vrvrvr −+= ααα ,min              (7) 

( ) ( ) ( ) ( ){ }vRpvHpHvr ++ ⊂−= αααα |max  

( ) ( ) ( ) ( ){ }vRpvHpHvr −− ⊂−= αααα |max  

( )vr +
α and ( )vr −

α are the maximal height differences 

between v and the points belonging to ( )vR+
α and ( )vR−

α , 
respectively. 
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In Fig. 7, v is a local maximum point, the curve segment 

P1P2 which is in red is its influence region, the curve 
segment vP1 is the left segment of the influence region and 
curve segment vP2 is the right segment of the influence 
region. Obviously, whether a peak is important or not, 
depends not only on the height of this peak, but also on the 
scale of the contour or the image. In the definition below, it 
is compared to the height of Hα, denoted by hα, which is the 
height difference between the absolute maximum point and 
the absolute minimum point of Hα. However, we could 
define it in different ways according to applications. 
Definition 5. The scale measure of an extreme point v in the 
height function Hα, denoted by λα(v), is the height of the 
peak represented by v divided over the height of Hα: 

( ) ( )
α

α
αλ h

vrv =       (8) 

The scale measure of a point v represents in which scale 
in direction α, v can be considered to be important. 
According to the definition, λα(v)>0. 
Definition 6. The representative scale measure of a point v, 
denoted by λ(v), is the maximum of its scale measures in all 
the height functions.  

For a contour point, in the scale larger than its 
representative scale measure, its visual curvature vanishes 
and the convex or concave part represented by this point is 
ignored. 

5. Properties of Multi-scale Visual Curvature 
This section presents a number of important results on 

the multi-scale visual curvature. It also discusses the 
practical significance of each of those results. The 
properties below are all under the assumption that the 
number of the height functions is sufficiently large, thus 
none of important extreme point is ignored. 
Theorem 3. As the scale factor λ increases, the multi-scale 
visual curvature of a point is non-increasing. 

    Theorem 3 is a natural result of the definition of 
multi-scale visual curvature. It shows that an unimportant 
contour point in a certain scale is also unimportant in a 
higher scale. 

Theorem 4. Multi-scale visual curvature is invariant under 
rotation and translation. If the size ΔS in formula (6) is 
proportional to the whole length of the contour, it is also 
invariant under uniform scaling.  

α vαh
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αH
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Figure 7. Influence region and the height of peak 

    This invariance property is very essential since it 
make it possible to compute the shape descriptors from 
multi-scale visual curvature. 
Theorem 5. Let C be a closed planar curve and let G be the 
boundary curve of its convex hull, v is a point on the curve 
C. Then 
(1) v∈G if and only if λ(v)=1 
(2) v∉G if and only if λ(v)<1 

In the digital images, the contour C is in fact a polygon 
with finite vertices {Vi|i=1,…,N}, where N is the number of 
the vertices. Let G be the boundary curve of the convex hull 
of C. For a contour segment defined by vertices 
{Vi|i=m,…,n} with Vm and Vn being its two end points, we 
call it a concave segment if all the points except the two end 
points on the segment do not belong to G.   

 
In Fig. 8, there are two concave segments, 

V1V18V17V16V15V14 and V8V9V10V11V12. Obviously, by 
substituting all concave segments with the line segments 
connecting their two end points, we obtain the convex hull 
of the polygon.  
Definition 7. The scale measure of a concave segment Γ, 
denoted by λ(Γ), is the maximum of the representative 
scale measure of the points which belong to Γ except the 
two end points. 

In Fig. 8, the scale measures of the two concave 
segments are: 

( ) ( ) ( ) ( ){ }1110912111098 ,,max VVVVVVVV λλλλ =  
( ) ( ) ( ) ( ) ( ){ }1516171814151617181 ,,,max VVVVVVVVVV λλλλλ =  

 Since except the two end points, the points which 
belong to Γ do not belong to the convex hull, according to 
Theorem 5, λ(Γ)<1.   
Definition 8. Given a scale threshold λ, for a closed 
polygon C, deletes all the vertices V where the visual 
curvature vanishes and connects the remaining vertices in 
sequence. The new polygon is called a λ-scale 
approximation of C, denoted by Cλ. 
Theorem 6. On the Cλ, all the concave segments which 
scale measures are smaller than λ are substituted by the line 

1V

2V

3V
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6V
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14V
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Figure 8. The concave segments 
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segments connecting their two end points. Specially, C0=C 
and C1=G. 

Theorem 6 is a natural result of Def. 7 and Def. 8. It 
shows that as λ increases, more concave segments are 
ignored and Cλ becomes simpler until it converges to the 
boundary curve of its convex hull. It also points out how to 
select the scale threshold λ in the applications: the scale 
threshold depends on the scale of the concave segments we 
want to ignore. 

6. Implementation Details and Experimental 
Results 

Because of digitalization, some high curvature points 
may disappear. Let us consider two example cases in Fig. 9. 

 
In Fig. 9(b), the turn angle at point O is about 117o; 
however, point O is not represented by a pixel at the same 
location. The digitalization process mapped it to one of 
digital points M and N or possibly to both of them. Neither 
the visual curvature at M nor at N is equal to the curvature 
of O, but their sum is. This observation motivates the 
following approach to compute visual curvature in digital 
images. 

For a given scale λ and a given threshold T, for every 
point v we consider its neighborhood U(v) of radius T. If 
the representative scale measure λ(v) is the largest among 
all points in U(v), then the new digital visual curvature at v 
is sum of all curvature values in U(v), i.e.,  
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At the same time we set the digital visual curvature value 
of all other points in U(v) to zero. Actually, we compute in 
formula (9) the total curvature over the arc determined by 
the neighborhood U(v), and assign it to a single point. 

Now we illustrate on our example in Fig. 9 that there 
exists a digital point whose visual curvature best represents 
the original point O. After digitalization, O disappears and 
its information is lost. However, the turn angle of M and N 
is high in a relative high scale, such as λ=0.01. Point M is 
selected as best representing O based on the fact that 
λ(M)>λ(N) and the distance between M and N is less then 
T. We show that the proposed approach modifies the 
curvature of M to be the curvature of O in the original 
continuous contour. For simplicity, let us assume that 

neighborhood U(M) just contain P, M, N. We obtain  
)()()()(
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The computed digital visual curvature of M is 117/180π. 
According to Theorem 2, this yields correctly the value of 
about 117o for the turn angle of M. The justification for this 
is as follows. In a height function Hα, if one of the points 
among P, M and N is an extreme point, we increase the 
count number of M. From the figure, we can observe that if 
O is an extreme point of the height function of the original 
continuous object in direction α, then either M or N will be 
an extreme point of the height function of the digital object 
in direction α. Thus, the computed turn angle of M is about 
117o now. We need to assign 0 to other points in this 
neighborhood, such as point N and P, since their 
contribution is added to M. According to our experiment, 
T=10 is a good choice for most of the case. 

   
    (a)        (b) 

Figure 9. High curvature point disappears 

O 
M N In our method, the main computation load is to compute 

the scale measures for all the extreme points in all the 
directions. In the worst case, the time complexity is O(Nn2), 
where N is the number of the height functions and n is the 
number of vertices on the curve. When they have been 
computed, given a scale threshold λ, the visual curvature 
for all the points can be computed in the complexity of 
O(n). 

From the definition of visual curvature, we can see that 
the arc length parameterization is not needed, through it 
makes our implementation easier. What we need is just the 
order of the contour points, whether there are gaps or not 
makes no difference. This makes our method can deal with 
very complicated images. 

In all our experiments, N=128 and ΔS=1. 

 
Fig. 10(b) shows the visual curvatures of the four points 

A, B, C, D in the Fig. 10(a) calculated in different scales. 
Obviously, the turn angle of these four points on a 
pentagram without noise should be 72o, 0o, 0o and 144o, 
respectively. Because of noise, B and C have large turn 
angles in small scales. For example, when λ=0.01, the turn 
angles of these points are 77o, 121o, 142o, 140o, 
respectively. As scale increases, visual curvature decreases. 
Since λ(C) < λ(B) < λ(A) < λ(D), the visual curvature of C 
vanishes first, then B and A, the visual curvature of D never 
vanishes since it’s a point on the convex hull of the 
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    (a)          (b) 
Figure 10. Visual curvatures in different scales 
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pentagram. As the value of λ increases, the obtained 
curvature estimation is not accurate. However, increasing λ 
is very useful for dominant point detection, e.g., as can be 
seen in Fig. 10(b). The most dominant point is D and then 
A. 

 

 
Fig. 11 demonstrates the visual curvature as arc length 

functions for two pentagrams in Fig. 2 in two scales. Fig. 11 
(a) and Fig.11 (c) is the function of Fig. 2(a); Fig. 11 (b) 
and Fig.11 (d) is the function of Fig. 2(b). A is the start 
point and we follow the contour clockwise. Obviously, 
there are ten peaks in all graphs; the noise in Fig. 2(a) is 
suppressed, especially when the scale is large, see Fig. 
11(a) and Fig. 11(c). 

Fig. 12 demonstrates the multi-scale approximation of 
Fig. 4(a). As λ increases, the visual curvature of more 
points vanishes and Cλ becomes simpler until it converges 
to the boundary curve of its convex hull.  

 

7. Applications 
In this section, we will demonstrate some applications of 

the multi-scale visual curvature. 

7.1. Curve Evolution 

As λ increases, the λ-scale approximation series {Cλ} 
can be considered as an evolution procedure. Since we just 
delete the vertices where the visual curvature vanishes, it 
leads to simplification of shape complexity with no 
blurring effects and no dislocation of relevant features. 
Finally, when all the concave segments disappear, the 
contour converges to the boundary of its convex hull.  

Fig. 13 shows the evolution procedure of a horse by 
gradually deleting the points where visual curvature 
vanishes. When λ is sufficiently large, the horse is evolved 
to the boundary curve of its convex hull. 

 

7.2. Corner Detection 
The multi-scale visual curvature can estimate the 

curvatures at a continuum of scales. At the same time, it 
does not modify the original curve. So it can be utilized to 
detect the corners precisely and robustly.  

In our method, a contour point is described both by its 
visual curvatures and corresponding scales. In a certain 
scale, we consider the points which digital visual curvature 
is above a threshold DK0 as corner points.  

Fig. 14 demonstrates the corners of a butterfly detected 
in different scales. In this experiment, curvature threshold 
DK0=17π/64(48o). 

 

 
Fig. 15(a) is a raster scanned point set with known order; 

however, there are many gaps. In Fig. 15(b), we connect 
these points by line segments and demonstrate the detected 
corner points at scale 0.01. In this experiment, 
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Figure 11. Visual curvature for the two pentagrams in Fig. 2 

   
          (a) C0    (b) C0.02   (c) C0.06 

   
    (d) C0.07   (e) C0.15   (f) C0.28

Figure 13. The evolution procedure of a horse

 
Figure 12. Multi-scale approximation of Fig. 4(a)
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DK0=33π/128(46o). 
Figure 16 demonstrates the results of corner detection on 

20 kinds of objects, each kind has two images, one is the 
original image and one is with significant noise. 

 

8. Conclusion 
This paper proposes a new curvature definition which 

can be considered to be a geometric explanation of standard 
curvature. Based on this definition, a natural multi-scale 
curvature is introduced. Because the scale measure can be 
defined in different ways, in fact we obtain a series of 
multi-scale visual curvature.  

The properties of the multi-scale visual curvature are 
investigated and their practical significances are analyzed. 
Based on these properties, we discussed two kinds of 
applications of multi-scale visual curvature, corner 
detection and curve evolution. The experiments show that 
the multi-scale visual curvature is very robust and intuitive, 

and thus is very suitable to visual processing.  
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Figure 16. Corner detection of twenty kinds of objects 
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