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Abstract—In this paper, we introduce a new skeleton pruning method based on contour partitioning. Any contour partition can be

used, but the partitions obtained by Discrete Curve Evolution (DCE) yield excellent results. The theoretical properties and the

experiments presented demonstrate that obtained skeletons are in accord with human visual perception and stable, even in the

presence of significant noise and shape variations, and have the same topology as the original skeletons. In particular, we have proven

that the proposed approach never produces spurious branches, which are common when using the known skeleton pruning methods.

Moreover, the proposed pruning method does not displace the skeleton points. Consequently, all skeleton points are centers of

maximal disks. Again, many existing methods displace skeleton points in order to produces pruned skeletons.

Index Terms—Skeleton, skeleton pruning, contour partition, discrete curve evolution.

Ç

1 INTRODUCTION

THE skeleton is important for object representation and
recognition in different areas, such as image retrieval

and computer graphics, character recognition, image
processing, and the analysis of biomedical images [1].
Skeleton-based representations are the abstraction of ob-
jects, which contain both shape features and topological
structures of original objects. Because of the skeleton’s
importance, many skeletonization algorithms have been
developed to represent and measure different shapes. Many
researchers have made great efforts to recognize the generic
shape by matching skeleton structures represented by
graphs or trees [2], [3], [4], [29], [30], [31], [36]. Unfortu-
nately, these approaches have only demonstrated an
applicability to objects with simple and distinctive shapes
and, therefore, cannot be applied to more complex shapes
like shapes in the MPEG-7 data set [37]. The most
significant factor constraining the matching of skeletons is
the skeleton’s sensitivity to an object’s boundary deforma-
tion: little noise or a variation of the boundary often
generates redundant skeleton branches that may seriously
disturb the topology of the skeleton’s graph. For example,
the skeleton in Fig. 1a has many redundant skeleton
branches generated by boundary noise.

To overcome a skeleton’s instability of boundary
deformation, a variety of techniques have been suggested
for matching and recognizing shapes. Zhu and Yuille [29]
generate more than one possible skeleton graph to over-
come unreliability. A similar shape descriptor based on the
self-similarity of a smooth outline is presented in [30]. Aslan

and Tari [31] posit an unconventional approach to shape
recognition using unconnected skeletons in the course level.
While their approach leads to stable skeletons in the
presence of boundary deformations, only rough shape
classification can be performed since the obtained skeletons
do not represent any shape details.

The most common approaches to overcome skeleton
instability are based on skeleton pruning, (i.e., eliminating
redundant skeleton branches). Pruning can either be
performed implicitly as a post processing step or implicitly
integrated in the skeleton computation. However, none of
the existing skeleton pruning methods yields satisfactory
results without user interaction. Before describing the
existing skeleton pruning approaches, we characterize the
desirable properties of skeletons. The skeleton of a single
connected shape that is useful for skeleton-based recogni-
tion should have the following properties:

1. it should preserve the topological information of the
original object,

2. the position of the skeleton should be accurate,
3. it should be stable under small deformations,
4. it should contain the centers of maximal disks, which

can be used for reconstruction of original object,
5. it should be invariant under Euclidean transforma-

tions such as rotations and translations, and
6. it should represent significant visual parts of objects.

The main goal of this paper is to present a method that
extracts the exact skeleton with a new skeleton-pruning
method and which will achieve all the above properties. No
existing method can provide a skeleton with all these
properties. Our proposed method is easy to implement and
can be computed efficiently.

The following is a brief overview of skeletonization and
skeleton-pruning approaches. The skeletonization algo-
rithms can broadly be classified into four types:

. The first type is thinning algorithms, such as those
with shape thinning and the wave front/grassfire
transform [8], [9], [10], [34]. These algorithms
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iteratively remove border points, or move to the
inner parts of an object in determining an object’s
skeleton. These methods usually preserve the
topology of the original object with many redun-
dant branches, but they are quite sensitive to noise
and often fail to localize the accurate skeletal
position. In addition, it is important to determine
a good stop criterion of this iterative process.

. The second type is the category of discrete domain
algorithmsbasedontheVoronoidiagram[5], [12], [27],
[28]. These methods search the locus of centers of the
maximal disks contained in the polygons with vertices
sampled from the boundary. The exact skeleton can be
extracted as the sampling rate increases, but the time
of computation is usually prohibitive. The obtained
skeleton is extremely sensitive to local variance
and boundary noise, so that complicated skeleton
bunches need to be pruned [5], [28].

. The third type of algorithms is to detect ridges in a
distance map of the boundary points [7], [10], [11],
[13], [19], [33], [35]. Approaches based on distance
maps usually ensure accurate localization but neither
guarantees connectivity nor completeness [7], [13].
Under the completeness, the skeleton branches
representing all significant visual parts are present (6).

. The fourth type of algorithms is based on mathe-
matical morphology [22], [24], [25], [26]. Usually,
these methods can localize the accurate skeleton
[24], but may not guarantee the connectivity of the
skeleton [22].

All of the obtained skeletons are subjected to the
skeleton’s sensitivity and many of them also include
pruning methods along with the skeletonization. As an
essential part of skeletonization algorithms, skeleton
pruning algorithms usually appear in a variety of
application-dependent formulations [20]. There are two
main pruning methods: 1) based on significance measures
assigned to skeleton points [5], [6], [7], [20], [28] and
2) based on boundary smoothing before extracting the
skeletons [20], [38], [39]. In particular, curvature flow
smoothing still has some significant problems that makes
the position of skeletons shift and have difficulty in
distinguishing noise from low frequency shape informa-
tion on boundaries [20]. A different kind of smoothing is
proposed in [14]. Great progress has been made in the

type 1) of pruning approaches that define a significance
measure for skeleton points and remove points whose
significance is low. Shaked and Bruckstein [20] give a
complete analysis and compare such pruning methods.
Propagation velocity, maximal thickness, radius function,
axis arc length, and the length of the boundary unfolded
belong to the common significance measures of skeleton
points. Ogniewicz and Kübler [5] present a few signifi-
cance measures for pruning complex Voronoi skeletons
without disconnecting the skeletons. Siddiqi et al. combine
a flux measurement with the thinning process to extract a
robust and accurate connected skeleton [25].

All presented methods have several drawbacks. First,
many of them are not guaranteed to preserve the topology
of a complexly connected shape (e.g., a shape with holes).
This is illustrated in Fig. 2, where the skeleton in Fig. 2d
violates the topology of the input skeleton in Fig. 2c. This
skeleton was obtained by the method in [7]. However, many
methods described above would lead to topology violation,
particularly all methods presented in [20] (including the
method of Ogniewicz and Kübler [5]). These methods are
guaranteed to preserve topology for simply connected
objects (objects with a single contour), but not for objects
with more than one contour like the can in Fig. 2. The
topology preserving skeleton obtained by the proposed
pruning method is illustrated in Fig. 2e. We will prove in
the Appendix, which can be found at http://computer.org/
tpami/archives.htm, that our method is guaranteed to
preserve topology. Even if the input shape is simply
connected, some of methods described above are not
guaranteed to preserve the original topology (e.g., see in
Fig. 1b, generated by the pruning method in [7]).

The second drawback of the methods described above is
that main skeleton branches are shortened and short
skeleton branches are not removed completely. This may
lose important shape information and seriously compro-
mise the structure of the skeletons. These effects are
illustrated in Figs. 1b and 3a, e.g., the horse legs in Fig. 1b
are shortened too much, although, at the same time, some
spurious skeleton branches remained. Thus, shortening of
branches may cause branches of significant visual parts to
be indistinguishable form branches resulting from noise.

The third drawback is that usually only the local
significance of the skeleton points is considered, and the
global information of the shape is discarded. However, the
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Fig. 1. The skeleton in (a) has many redundant branches. To remove them, usually skeleton pruning is applied. (b) Illustrates the problems of actual

pruning approaches (it is generated by a method in [7]). In particular, observe that pruning may change the topology of the original skeleton.

(c) Illustrates the pruning result of the proposed method that is guaranteed to preserve topology.



same part may represent an important shape feature for one
shape while it may represent noise for a different shape.
This is illustrated in Fig. 4. Clearly, the spike in Fig. 4b is
less relevant for the overall shape than in Fig. 4a, and
consequently, it is more likely to be a result of noise. The
proposed pruning method is able to recognize this fact,
which leads to the removal of the skeleton branch induced
by the spike in Fig. 4d. In contrast, the relevance of skeleton
points in the existing pruning methods is computed based
only on local contour information, which means that they
cannot differentiate the two spike induced skeleton
branches in Figs. 4a and 4b. Consequently, their pruning
result is very similar to the skeletons shown in Figs. 4a and
4b. The fourth drawback is that pruning results may be
different for different scales as pointed out in [40].

An interesting idea, called a fixed topology skeleton, is
presented by Golland and Grimson [11]: The process of
pruning is skipped and the skeletonization uses a snake-like
algorithm for estimating the positions of the skeleton with
respect to the fixed skeleton endpoints. Since the fixed
endpoints are not changed in the iteration process, a
skeleton with the global topology can be extracted.
However, the topology of the global shapes must be known
before skeletonization for the fixed topology skeleton and
the position of the obtained skeleton is not accurate.

To summarize, although the existing skeleton pruning
methods have many drawbacks, they are definitely needed
to remove inaccurate or redundant skeleton branches. The
skeleton generating approaches suffer from the fact that a
small protrusion on the boundary may result in a large
skeleton branch, which is an intrinsic problem of the
definition of the skeleton, since the mapping of boundary

points to the skeleton points is not continuous. An obvious
solution to this problem is to first remove the protrusions on
the boundary and then compute the skeleton. As stated
above, various smoothing approaches are either applied to
the contour or to the distance map before the skeleton is
computed. The problem is that isotropic (e.g., Gaussian) as
well as anisotropic smoothing only reduces, but does not
remove the protrusions [4]. A common characteristic of the
above approaches is that they displace the boundary points
and, consequently, displace the location of skeleton points.

2 MAIN IDEAS OF THE PROPOSED APPROACH

We propose an approach that completely removes protru-
sions without displacing the boundary points and, there-
fore, without displacing the remaining skeleton points.
Thus, inaccurate or redundant branches are completely
removed while the main branches are not shortened. As
illustrated above, the proposed method also does not have
the other three drawbacks listed above. The main observa-
tion of our approach is that it is possible to perform a
topology preserving skeleton pruning based on a contour
partition into curve segments. Returning to Blum’s defini-
tion of the skeleton, every skeleton point is linked to
boundary points that are tangential to its maximal circle.
These are called generating points. The main idea is to
remove all skeleton points whose generating points all lie
on the same contour segment. This works for any contour
partition in segments, but some partitions yield better
results than other. Fig. 5 illustrated three different pruned
skeletons in Figs. 5b, 5c, and 5d) obtained for the same input
skeleton in Fig. 5a. The pruned skeletons are based on three
different partitions of contour segments whose endpoints
are marked with dots. For example, removing all skeleton
points all of whose generating points lie on the contour
segment CD in Fig. 5c leads to the removal of the entire
lower part of the skeleton. Clearly, the contour partition in
Fig. 5d leads to a significantly better pruning result than the
partitions in Figs. 5b and 5c. Thus, in our framework, the
question of skeleton pruning is reduced to finding a good
partition of the contour into segments. We obtain such
partitions with the process of Discrete Curve Evolution
(DCE) [15], [16], [17], which we briefly introduce as follows.

First, observe that every object boundary in a digital image
can be represented without the loss of information as a finite
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Fig. 2. (a) The input object. (b) Binary object mask. (c) The initial skeleton. (d) A pruned skeleton obtained by the method in [7]. (e) A pruned skeleton

obtained by the proposed method. While the skeleton in (d) violates the topology, the proposed method is guaranteed to preserve the topology.

Fig. 3. Comparison on between the result in [7] (a) and our result in (b).



polygon, due to finite image resolution. Let us assume that the
vertices of this polygon result from sampling the boundary of
the underlying continuous object with some sampling error.
There then exists a subset of the sample points that lie on the
boundary of the underlying continuous object (modulo some
measurement accuracy). The number of such points depends
on the standard deviation of the sampling error. The larger
the sampling error, the smaller the number of points will lie
on the boundary of the continuous object, and subsequently,
the less accurately we can recover from the original boundary
[15]. The question arises as to how to identify the points that
lie on (or very close to) the boundary of the original object or
equivalently how to identify the noisy points (that lie far away
from the original boundary). The process of DCE is proven
experimentally and theoretically to eliminate the noisy points
[15], [16], [17]. This process eliminates such points by
recursively removing polygon vertices with the smallest

shape contribution (which are the most likely to result from
noise). As a result of DCE, we obtain a subset of vertices that
best represents the shape of a given contour. This subset can
also be viewed as a partitioning of the original contour
polygon into contour segments defined by consecutive
vertices of the simplified polygon. A hierarchical skeleton
structure obtained by the proposed approach is illustrated in
Fig. 6, where the (red) bounding polygons represent the
contours simplified by DCE. Because DCE can reduce the
boundary noise without displacing the remaining boundary
points, the accuracy of the skeleton position is guaranteed.
The continuity, which implies stability in the presence of
noise, of the proposed pruning methods follows from the
continuity of the DCE. This means that if a given contour and
its noisy versions are close (measured by Hausdorff distance),
the obtained pruned skeletons will also be close. A formal
proof of DCE continuity with respect to the Hausdorff
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Fig. 4. (a) and (b) show pruned skeletons obtained by the method in [7]. The proposed pruning method can distinguish that shape contribution of the

spike in (b) is smaller than in (a) and, therefore, it is possible to prune the branch resulting form the spike in (d).

Fig. 5. Pruning the input skeleton (a) with respect to contour partition induced by five random points on the boundary in (b) and (c). The five points in

(d) are selected with DCE.



distance of polygonal curves is given in [23]. Thus, our
approach provides a solution to the instability of the classical
skeleton pruning algorithms.

All pruning methods based on a significance measure for
skeleton points use local criteria to compute this measure
[21], [29], [5], [6], (e.g., the measure in [5] is base on the
shortest contour arc between the generating points). Also,
all contour smoothing methods are based on local contour
information only. In contrast, DCE evaluates global contour
information in order to generate the simplified contour.
This property is illustrated in Fig. 4. The same spike is on
the boundary of Fig. 4a and Fig. 4b, but it has different
shape contribution for both objects. While it is more likely to
be a shape feature in Fig. 4a, it is more likely to be regarded
as noise in the object Fig. 4b. DCE can effectively quantify
this difference in shape contribution. Consequently, we
obtain the skeletons as shown in Fig. 4c and Fig. 4d.

The proposed pruning method can be applied to any
input skeleton. We only require that each skeleton point is
the center of a maximal disk and that the boundary points
tangent to the disk (generating points) are given. We also
present a skeleton growing algorithm that includes an
efficient implementation of the proposed pruning method.
The main idea is that the pruning is not done in
postprocessing (after the skeleton is computed) but is
integrated into the skeleton growing process. To implement
this idea, we extended the skeleton growing algorithm in [7]
based on the Euclidean distance map. First, we selected a
skeleton seed point as a global maximum of the Euclidean
distance map. Then, the remainder of the skeleton points is
decided by a growing scheme. In this scheme, the new
skeleton points are added using a simple test that examines
their eight connected points. During this process, the
redundant skeleton branches are eliminated by the DCE.

3 BACKGROUND DEFINITIONS

Before we define a skeleton, we need to characterize planar
sets for which we can determine the skeleton. Following
[32], we assume that a planer set D is the closure of a
connected bounded open subset of R2 whose boundary @D
is composed of a finite number of mutually disjoint simple
closed curves. Each simple closed curve in @D consists of a
finite number of pieces of real analytic curves. We further
assume in this paper that each simple closed curve is a
polygonal curve, (i.e., the pieces they consist of are line
segments). We make this assumption only to simplify some
definitions and we stress that all of our results also hold for
simple closed curves that consist of a finite number of real
analytic curves. This assumption does not introduce any
restriction on object contours in digital images since each
boundary curve in a digital image can be regarded as
polygonal curve with vertices being the boundary pixels.

According to Blum’s definition of the medial axis [1], the
skeletonSSðDÞ of a setD is the locus of the centers of maximal
disks. A maximal disk ofD is a closed disk contained inD that
is interiorly tangent to the boundary @D and that is not
contained in any other disk inD. Each maximal disc must be
tangent to the boundary in at least two different points. We
denote as TTanðsÞ the set of the boundary points tangent to the
maximal closed diskBBðsÞ centered at s 2 SðDÞ. The points in
TanðsÞ are called generating points of the skeleton point s.
Due to our assumption that, each boundary curve is a simple
closed polygonal curve, TanðsÞ is composed of a finite
number of isolated boundary points, since BðsÞ can intersect
each boundary line segment in at most one point. (Without
this assumption, TanðsÞ would be composed of a finite
number of isolated contour subarcs.) The degree degðsÞ of
s 2 SðDÞ is defined as the cardinality of TanðsÞ, (i.e., as the
number of boundary points tangent to the maximal circle
centered at s). Let the boundary @D of D be composed of
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Fig. 6. Hierarchical skeleton of leaf obtained by pruning the input skeleton (top left) with respect to contour segments obtained by the Discrete Curve

Evolution (DCE). The outer (red) polylines show the corresponding DCE simplified contours.



k simple closed curve polygonal curves C1; . . . ; Ck. Then the
degree with respect toCj degðs; CjÞ is equal to the cardinality
of TanðsÞ \ Cj.

For a given boundary point x 2 @D, we define SðxÞ as
the center of the maximal disk that is tangent to @D at x. The
function S : @D! SðDÞ is a strong deformation retraction
by Theorem 8.1 in [32]. Moreover, by Theorem 8.2 in [32],
the skeleton SðDÞ is a geometric graph, which means that
SðDÞ can be decomposed into a finite number of connected
arcs, called skeleton branches, composed of points of
degree two, and the branches meet at skeleton joints (or
bifurcation points) that are points of degree three or higher.

We also summarize some of the consequences of
Theorem 5.1 in [32], called Domain Decomposition lemma,
that will be particularly useful here. For an illustration, see
Fig. 7. Given a skeleton point p 2 SðDÞ, the maximal closed
disk BðpÞ decomposes D�BðpÞ into a finite number of
connected components D1ðpÞ; . . . ; DkðpÞ; also @D�BðpÞ is
decomposed into a finite number of open contour curves
C1ðpÞ; . . . ; CkðpÞ, and the skeleton SðDÞ � fpg is decomposed
into finite number of skeleton curves S1ðpÞ; . . . ; SkðpÞ,
such that CiðpÞ ¼ DiðpÞ \ @D and SiðpÞ ¼ DiðpÞ \ SðDÞ. A
very important consequence of this theorem is that, for
two different skeleton points p; q 2 SðDÞ, we must have
one of the following three cases CiðpÞ \ CjðqÞ ¼ ; or CiðpÞ �
CjðqÞ or CjðqÞ � CiðpÞ. For example, in Fig. 7, C1ðpÞ ¼ ðx; yÞ,
which is an open contour segment, C1ðqÞ ¼ ðu; vÞ, and we
have C1ðqÞ � C1ðpÞ, while C2ðpÞ \ C1ðqÞ ¼ ; and C3ðpÞ \
C1ðqÞ ¼ ;, since C2ðpÞ ¼ ðy; zÞ and C3ðpÞ ¼ ðz; xÞ.

4 SKELETON PRUNING WITH CONTOUR PARTITION

In this section, we introduce the contour partition into
contour segments and skeleton pruning based on it.

Definition 1. Let the boundary @D of a set D be composed of k
simple closed curves C1; . . . ; Ck. Let x and y be two contour
points lying on the same simple closed curve Ci. With ½x; y�,
we denote the shortest closed contour segment (subarc) of Ci
that connects x and y. For simplicity, we assume that x and y
are positioned on Ci so that ½x; y� is uniquely determined. With
ðx; yÞ, we denote the segment ½x; y� without the endpoints x
and y (i.e., the open subarc). (A distinction between open and
closed contour segments is unimportant in the digital images,
but we need to establish some formal properties on the
continuous plane.) A sequence of points x0; . . . ; xn�1 on a
simple closed curve Ci forms a partition of Ci if two
consecutive segments ½xi; xiþ1�, ½xiþ1; xiþ2� intersect in
fxiþ1g (the indices are modulo n), nonconsecutive segments

have empty intersection, and Ci is the union of these segments.
The partition � of the boundary @D is a sequence of sequences
that are partitions of the simple closed curves C1; . . . ; Ck.

Definition 2. Let ½x; y� be a contour segment that belongs to some

contour partition � . In particular, ½x; y� is a subsegment of one

of the contour curves C of @D. For a skeleton point s whose all

generating points TanðsÞ lie in ½x; y�, let arcarcðss; ½xx; yy�Þ be the
smallest subarc of ½x; y� that contains TanðsÞ. Observe that

arcðs; ½x; y�Þ is a contour segment of C (i.e., arcðs; ½x; y�Þ ¼
½a; b� for some a, b 2 C, since arcðs; ½x; y�Þ is an arc connected
subset of ½x; y�.) As a consequence of Theorem 5.1 in [32], we

also obtain that SðaÞ ¼ SðbÞ ¼ s (Fig. 8).

Let CSð½x; y�Þ ¼ fz 2 ½x; y� : S�1ðSðzÞÞ � ½x; y�g be the set

of all points z in ½x; y� such all generating points of SðzÞ are

contained in ½x; y�. For example, in Fig. 8, CSð½x; y�Þ ¼ ½a; b�.
Similarly, we can define CSððx; yÞÞ for an open segment ðx; yÞ.

Definition 3. Given a partition � of the boundary @D of a
simply connected set D (i.e., @D consist of one simple closed
curve), the skeleton pruning is defined as the removal of all
skeleton points s 2 SðDÞ whose generating points lie in the
same open segment of the partition. More precisely, the pruned
skeleton is composed of all points s 2 SðDÞ such that TanðsÞ
is not contained in the same open segment of the partition � .

This is a very simple definition of skeleton pruning, and
it works with any contour partition. The key issue is to get
reasonable partitions. As we will show, DCE provides a
very good partition for the pruning. We show in Theorem 1
(in the Appendix which can be found at http://computer.-
org/tpami/archives.htm) that the topology of a pruned
skeleton is preserved for a pruned skeleton generated by
any partition of the contour. We illustrate the meaning of
Theorem 1 in Fig. 8. The CSððx; yÞÞ ¼ ða; bÞ is a subsegment
of ðx; yÞ. Therefore, the thick dashed part of the skeleton
SðCSððx; yÞÞÞ generated by contour segment ðx; yÞ can be
removed and the pruned skeleton has the same topology.
Observe that the only point in SðCSð½x; y�ÞÞ that connects
SðCSð½x; y�ÞÞ to the rest of the skeleton is point s.

The situation is a bit more complicated if D is not simply
connected (i.e., @D consist of more than one simple closed
curve). For example, CSð½x; y�Þ ¼ ½a; c� [ ½d; b� shown in Fig. 9
is not a subsegment of ½x; y�, due to the interior simple closed
curve. Therefore, SðCSð½x; y�ÞÞ ¼ ½u; s� cannot be removed
without violating the topology. Observe that it suffices to
additionally check for every partition segment ½x; y�whether
CSð½x; y�Þ is arc connected. WhenCSððx; yÞÞ is arc connected,
then we can remove part SðCSððx; yÞÞÞ of the skeleton
without violating the skeleton topology as proven in
Theorem 2 (in the Appendix which can be found at http://
computer.org/tpami/archives.htm).
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Fig. 7. This figure illustrates Theorem 5.1 in [32], called the Domain

Decomposition Lemma.

Fig. 8. The initial contour segment [x,y] is marked with a thick continuous

line. CSð½x; y�Þ ¼ ½a;b� ¼ arcðs; ½x; y�Þ, where SðaÞ ¼ SðbÞ ¼ s. The corre-

sponding skeleton part Sð½a; b�Þ is marked with a thick dashed line.



5 SKELETON PRUNING WITH DISCRETE CURVE

EVOLUTION

In this section, we introduce the contour segmentation
process based on Discrete Curve Evolution (DCE). The
hierarchical decomposition of the boundary of the set D
obtained by DCE is the key component in the proposed
skeleton pruning method.

5.1 Discrete Curve Evolution

The Discrete Curve Evolution (DCE) method was intro-
duced in [16], [17], [18]. Contours of objects in digital
images are distorted by digitization noise and segmentation
errors; it is desirable to eliminate the distortions while at the
same time preserving the perceptual appearances sufficient
for object recognition. DCE accomplishes this goal by
simplifying the shape. For example, a few stages of DCE
are illustrated in Fig. 6 for the outer (red) polylines. The
shape of the leaf becomes more and more simplified by
DCE, while preserving the main visual parts.

Since any digital curve can be regarded as a polygon
without the loss of information (but, with the possibility of a
large number of vertices), it is sufficient to study evolutions
of polygonal shapes. The basic idea of the proposed
evolution of polygons is simple:

. In every evolutional step, a pair of consecutive line
segments s1, s2 is replaced by a single line segment
joining the endpoints of s1 [ s2.

The key property of this evolution is the order of
the substitution. The substitution is achieved accord-
ing to a relevance measure K given by:

KðS1; S2Þ ¼
�ðS1; S2ÞlðS1ÞlðS2Þ

lðS1Þ þ lðS2Þ
;

where line segments s1, s2 are the polygon sides
incident to a vertex v, �ðs1; s2Þ is the turn angle at the
common vertex of segments s1, s2, l is the length
function normalized with respect to the total length
of a polygonal curve C. The main property of this
relevance measurement is [16], [18]:

. The higher value of Kðs1; s2Þ, the larger is the
contribution of the arc s1 [ s2 to the shape.

Given the input boundary polygon P with
n vertices, DCE produces a sequence of simpler
polygons P ¼ Pn; Pn�1; . . . ; P 3 such that Pn�ðkþ1Þ is
obtained by removing a single vertex v from Pn�k

whose shape contribution measured by K is the
smallest.

Definition 4. An important property of DCE is that it introduces
a hierarchical partition of the input polygon P . Let fv1; . . . ; vng
be vertices of P and let fu1; . . . ; umg � fv1; . . . ; vng be the
convex vertices of Pn�k for m � n� k. On the level n� k of
the partition hierarchy Hn�kðP Þ, P is decomposed into
m subarcs of P : Hn�kðP Þ ¼ f½u1; u2�; ½u2; u3�; . . . ; ½um; u1�g.
We call these arcs DCE (contour) partition (on DCE level
n� k). The reason that our partition is based only on convex
vertices of P will be explained in the next section, in which
skeleton pruning is defined.

If vertex ui is deleted in the next evolution step, (i.e.,

ui 2 Pn�k � Pn�ðkþ1Þ), or becomes concave (due to the

deletion of one of its neighbors), then the arc ½ui�1; uiþ1�
replaces arcs ½ui�1; ui�, ½ui; uiþ1� in the partition level

Hn�ðkþ1ÞðP Þ.
Observe that DCE and the hierarchical partition can be

also defined for a finite set of polygonal curves. The only
difference is that in each DCE step a single vertex is
removed from one of the polygons whose actual relevance
measure is the smallest. This observation is particularly
important for our approach, since the proposed pruning can
be applied to a planar set D such that its boundary @D is
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Fig. 9. The initial contour segment ½x; y� is marked with a continuous
thick line. Observe that CSð½x; y�Þ ¼ ½a; c� [ ½d; b� is not a subsegment of
½x; y� since it is not arc connected. Therefore, CSð½x; y�Þ is not equal to
arcðs; ½x; y�Þ, where SðaÞ ¼ SðbÞ ¼ s. Since CSð½x; y�Þ is not a subseg-
ment of ½x; y�, SðCSð½x; y�ÞÞ cannot be removed by Theorem 2. The
skeleton part SðCSð½x; y�ÞÞ represented by the segment ½u; s� is marked
with a thick dashed line. Observe that removing ½u; s� disconnects the
skeleton.

Fig. 10. (a) A simplified polygon with seven vertices (in red) and the skeleton obtained based on this polygon. The green skeleton branch (ending at

C) remained, since each of its points has generating points on two different arcs BC and CD of the original contour. A skeleton branch shown in

green in (b) does not belong to the skeleton determined by the DCE polygon, since it ends at a concave vertex P. As shown in (c), it would have been

removed anyway, but at a later stage of DCE simplification.



composed of a finite number of simple closed polygons.
Thus, the connected set D may have holes. In other words,
D does not need to be simply connected.

Though the DCE procedure can effectively remove the
noise and visually unimportant portions of the image, a
proper stop parameter is still necessary. In other words, we
seek such a k so that the simplified polygon Pn�k represents
the input contours on the adequate level of detail. In order
to quantify the level of detail, we define the average
distance DavðPn�kÞ between original points of P and their
corresponding line segments in Pn�k.

Given a threshold T , we can stop DCE if DavðPn�kÞ > T

for some k. Given a sequence of T values, we can obtain a

hierarchical sequence of DCE simplified boundary poly-

gons, which leads to a hierarchical sequence of correspond-

ing skeletons. In general, an adequate stop condition

depends on the particular application. A stop condition

that is adequate for shape similarity is given for DCE in [18].

It is based on the difference of the DCE simplified contour

to the original input contour. When the pruned skeletons

are input into a shape similarity measure, this stop

condition is recommended.

DCE can be viewed as a greedy approach to simplify the

contour so that the length difference between the original

and the simplified contour is minimal. It is easy to

implement a simplification method (using dynamic pro-

gramming) which is optimal with respect to the length

difference. DCE yields very similar results.

5.2 Skeleton Pruning with Discrete Curve Evolution

Given a skeleton SðDÞ of a planar shape D and given a DCE

simplified polygon Pk, we perform skeleton pruning by

removing all points s 2 SðDÞ such that the generating points

TanðsÞ of s are contained in the same open DCE segment.

Each pruned point s results from a local contour part with

respect to the DCE partition and, therefore, s can be

considered as an unimportant skeleton point and can be

removed. The simplification of the boundary contour with

DCE corresponds to pruning complete branches of the

skeleton. In particular, a removal of a single convex vertex v

from Pn�k to obtain Pn�ðkþ1Þ by DCE implies a complete

removal of the skeleton branch that ends at v. We give an

example illustrating this fact in Fig. 10a. This figure shows a

polygon with seven vertices obtained from a DCE leaf

contour and the skeleton is obtained by pruning based on

this polygon. There are only five skeleton branches ending in

the five convex vertices of the simplified polygon. The pruned

skeleton was computed with respect to the DCE segments

(A, C), (C, D), (D, E), (E, F), and (F, A). The pruning was

applied to the leaf skeleton shown in the first image in Fig. 6.

(The skeleton in Fig. 10a is the same as in the last image in

Fig. 6.) We can illustrate the main idea of our approach by

explaining why the green skeleton branch in Fig. 10a that ends

at point C remained. It remained because each of its points has

maximal disks tangent to points on two different DCE

segments, which are contour arcs (A, C) and (C, D).

We perform contour decomposition into DCE segments

based only on convex vertices of the DCE simplification. This

means that not only when a given vertex is removed by DCE

but also when a convex vertex becomes concave in the process

of DCE, the skeleton branch ending in this vertex is removed.

This approach allows us to remove minor (small) branches in

the earlier stages of the DCE evolution. Fig. 10b illustrates

why we only use convex vertices to define DCE segments. The

green branch in Fig. 10b that ends at vertexP would be part of
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Fig. 11. The same convex vertices may generate different skeleton

branches with different importance.

Fig. 12. Removal of unimportant convex vertices for generating an optimal visual skeleton.



the skeleton if we also used concave vertices of the simplified

polygon (shown in red) to define DCE segments. This branch

would have been removed anyway, since vertex P was

removed from the further simplified polygon shown in

Fig. 10c. Thus, the fact that DCE segments are defined using

only convex vertices of the simplified polygon allows for

faster pruning of irrelevant branches.

A very important property of DCE induced contour

partition, and every partition that is restricted to vertices of

the boundary polygon, is that fact that there is a skeleton

branch ending at every partition point. As stated above, if a

partition point that is also a polygon vertex ui is deleted in a

DCE evolution step, (i.e., ui 2 Pn�k � Pn�ðkþ1Þ), or becomes

concave (due to the deletion of one of its neighbors), then
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Fig. 13. Our results on Mpeg 7 shape database illustrate the extraordinary stability of pruned skeletons in the presence of significant shape variations

and deformations.



the arc ½ui�1; uiþ1� replaces arcs ½ui�1; ui�, ½ui; uiþ1� in the

contour partition. Therefore, the whole skeleton branch that

ends at vertex ui is eliminated with skeleton pruning. This

fact is proven in Theorem 3 in the Appendix, which can be

found at http://computer.org/tpami/archives.htm.
Although convex vertices from DCE can prune skeletons

to get clear structures, they may also generate unimportant

skeleton branches. We illustrated this problem with Fig. 11.

The vertices A, B, C, and D have the same DCE relevance

measure K, since K is restricted to directed neighbors of a

given vertex. However, the four green skeleton branches

ending at them are of differing importance. The branch

ending at D has especially and significantly lower im-

portance, and should be removed. Due to the concave

vertices inside the shapes with vertices C and D, the

importance of the skeleton branches ending at the convex

vertices C and D is significantly reduced. Such cases occur

in limb shaped parts of visual forms as defined in [41].

To overcome the problem, we introduce an additional

relevance measure. For each convex polygon vertex v, we

compute the distance DlðvÞ between v and the nearest

concave vertex u such that the line segment vu is inside the

shape if such a vertex u exists. We then remove vertices

with low value of the new relevance measure DlðvÞ.
Fig. 12 illustrates the effect of removing the convex vertices

v with low relevance DlðvÞ. There are five short skeleton

branches (in green) that end at A, B, C, D, E in Fig. 12a that

have been removed in Fig. 12b. This leads to a contour

partition with only seven convex vertices numbered 1-7 in

Fig. 12b.
To summarize, the vertices Vf that are used for contour

partitioning induced by DCE are computed as: Vf ¼ Vs �
ðVconcave [ VlÞ, where Vs denotes all the vertices of the

simplified polygon P obtained by DCE, Vconcave denotes all

of the concave vertices of Vs and Vl denotes vertices of Vs with

low value of the measureDl.

5.3 Time Complexity

The contour partition by DCE has a complexity ofOðN logNÞ
[18], where N is the number of the vertices on the original

polygon. We can traverse the contour in linear time, OðNÞ,
and assign to each contour vertex the label of its partition

segment. During skeleton computation, the labels can be

passed to each skeleton point as features of generating points.

Therefore, the complexity of the proposed pruning is

OðN logNÞ if DCE is computed, and linear if DCE has been
precomputed.

6 GROWING A PRUNED SKELETON FROM A

DISTANCE TRANSFORM

The main goal of this section is to show that it is not necessary

to have a separate post-processing step in skeleton pruning,

as we can grow a pruned skeleton directly form the distance

transform. In this section, we work in the discrete domain of

2D digital images, in which the object contour is still

represented with polygons. To achieve our goal, we extend

the fast skeleton growing algorithm presented by Choi et al.

[7]. We briefly review the skeleton growing algorithm in [7].

First, the Euclidean Distance Transform DT of the binary

image of a given shape D is computed. Then the point with

the maximal value of DT ðDÞ is selected as a seed skeleton

point. Finally, the skeleton is grown recursively by adding

points that satisfy a certain criterion, which intuitively means

that the added points lie on ridges of the DT ðDÞ. The grow

process is based on examining every eight-connected point of

the current skeleton points. The skeleton continues growing

in this way until it reaches an endpoint of a skeleton branch.

Next, other skeleton branches starting at other skeleton

points are considered.
The proposed extension of the algorithm in [7] is very

simple, and it can also be applied to other skeleton growing
algorithms. For a point to be added, it must additionally
have its generating point on at least two different contour
segments of a given contour partition.

7 EXPERIMENTAL RESULTS AND COMPARISON

In this section, we show the performance of the proposed
method in three parts: 1) stability in relation to noises and
variance, 2) an analysis of our skeletons and comparison to
other skeletons, and 3) a discussion of the potential for
skeleton matching.

7.1 Stability of Pruning with DCE

Some results on shapes from MPEG-7 Core Experiment CE-
Shape-1 database [37] are shown in Fig. 13. For each shape
class, we show pruned skeletons for several objects from the
same class. Although the objects differ significantly from each
other, the obtained pruned skeletons have the same struc-
tures. The final DCE simplified polygons are also shown

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 3, MARCH 2007

Fig. 14. Hierarchical skeleton of a walking human. The input image is similar to a walking human in [11].



overlaid on the shapes with red segments. The skeleton
pruning is performed with respect to contour partition
induced by the vertices of these polygons. In the first row in
Fig. 13, the skeletons of the thin and long tails of rats remained
complete. This cannot be achieved by other pruning methods
since these may shorten or disconnect the skeleton. Although
the camels differ significantly in their shapes, all obtained
skeletons have a clear global structure. The extraordinary
stability of the skeletons obtained by the proposed pruning
method in the presence of significant shape variations and
distortions is illustrated for “star” and “plus” shaped objects.
These results are possible due to the contour partition
stability of DCE. The last row of Fig. 13 shows the DCE’s
stability to the same shapes in different scales.

7.2 Analysis and Comparison

In this part, we describe our test results with the

proposed approach on several binary shape images with

the size 500� 500. All the images that were tested have

significant boundary distortions.
A hierarchy of pruned skeletons is shown for the walking

human in Fig. 14. The pruning is preformed with respect to
DCE simplified contours with N ¼ 200, 100, 50, 30, and
12 vertices. We have also shown a hierarchy of pruned
skeletons in Fig. 6. We can see that the results of our algorithm
are in accord with human visual perception. Besides

hierarchical and visual property, our skeleton has a unique
property: As proven in Theorem 3 (in the Appendix, which
can be found athttp://computer.org/tpami/archives.htm),
in the cause of the DCE evolution process, the pruned
branches are eliminated completely, (i.e., the obtained
skeletons are without the presence of remaining half-
shortened small, short branches). For example, in Fig. 14,
each skeleton branch is removed, and no remaining fractions
are left.

The skeleton in Fig. 15a illustrates a common problem
with the existing skeleton pruning approaches [5], which is
the problem of inaccurate, half-shortened braches that are
not related to any obvious boundary features. It is also
shown in Fig. 1b and Fig. 3a. Figs. 15b, 1c, and 3b show that
the proposed approach is able to completely eliminate all
the unimportant branches and still preserve all main
structure. Our method does not suffer from shortening
main skeleton branches and it preserves the topology of the
skeleton. Moreover, the obtained skeletons seem to be in
accord with human perception. Figs. 1 and 3 show a
comparison of our method and the method in [7]. The result
obtained using the method in [7] also exhibits problems
with the skeleton topology in Fig. 1b. Fig. 15 shows a
comparison of our method with the method by Ogniewicz
and Kübler [5]. It also illustrates that our pruning method
can be used in pruning branches of the Voronoi skeleton. As
the Voronoi skeleton points are symmetrical to the
boundary sample points, the generating boundary points
of each skeleton point are known.

Fig. 15c shows an application of our method to generate a

fixed topology skeleton introduced in Golland and Grimson

[11]. The proposed pruning is not limited to the DCE
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Fig. 15. Comparison between pruning result in [5] in (a) and our results

in (b), and (c) is the result of fixed topology skeleton.

Fig. 16. Comparison between the fixed topology skeleton in [11] in (a)

and our skeleton in (b).

Fig. 17. (a) The input skeleton. (b) A pruned skeleton obtained by the

method in [7] violates the topology. (c) and (d) Pruned skeletons

obtained by the proposed method, which is guaranteed to preserve the



induced contour partitioning. Once the positions of the

skeleton’s endpoints are estimated along the boundary as in

the method in [11], the endpoints induce a partition of the

boundary curve, and the fixed topology skeleton can be

generated by pruning any skeleton with our method with

respect to this partition.

The comparison between a result in [11] and our result is

shown in Fig. 16. Fig. 16a shows a skeleton obtained by the

method in [11], and Fig. 16b shows our result induced by the

contour partition (A, B), (B, C), (C, D), (D, E), and (E, F)

marked with the red points, which represent the estimated

skeleton endpoints. We can see that the position of our

skeleton is more accurate than in Fig. 16a since all of our

skeleton points are the centers of maximal disks, which are

exactly symmetrical to the shape boundary, and which is not

the case for the fix topology method in [11]. Moreover,

compared with [11], only the endpoints need to be estimated;

we do not need to estimate the junction points of the skeleton.

Theorems 1 and 2 (in the Appendix which can be found

at http://computer.org/tpami/archives.htm) prove that

our method is guaranteed to preserve topology. We

illustrate this fact in Fig. 2e above. Fig. 17 shows another

example for a shape with three holes that has a total of four

contour curves. The result of the method in [7] is shown in

Fig. 17b. Fig. 17c shows that the proposed approach can

preserves the original topology. In Fig. 17d, the contour

partition is only composed of the four boundary curves,

(i.e., there are no segments on any of these curves), so that

the skeleton points must have their tangent points on the

different boundary curves in order to remain.

7.3 The Potential in Shape Similarity

Our skeletons have strong potential for shape similarity,

since, in addition to the above stated properties, they have

two special properties: 1) Every skeleton branch is generated

by contour parts divided by the vertices of the DCE simplified

polygon. 2) The convex vertices of the DCE simplified

polygon are the endpoints of the skeletons. Therefore, a

contour-based shape similarity measure introduced in [17]

can be used to match the obtained skeletons. Given a contour

partition induced by DCE, the method in [17] establishes the

optimal correspondence of the partition segments. Clearly,

this also yields a correspondence of skeleton branches. This

fact is illustrated in Fig. 18, where the corresponding skeleton

branches are linked with lines. The correspondence in

Fig. 18d is inspired by an example in Liu at al. example in

[30], where complex graph matching algorithms are used to

establish correspondences of skeleton braches. The quality of

the skeletons obtained by the proposed pruning makes it
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Fig. 18. The high quality of the pruned skeletons obtained by our method makes it possible to match the skeleton structure using existing shape

similarity approaches.



possible to apply existing contour similarity measures to

problems with the structural similarity of skeletons.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we establish a unique correspondence between

skeleton branches and subarcs of object contours. Based on

these connections, a skeleton is pruned by removing skeleton

branches whose generating points are on the same contour

subarc. This has an effect of removing redundant skeleton

branches and retaining all the necessary visual branches. We

prove that this approach is guaranteed to preserve skeleton

topology, does not shift the skeleton, and does not shrink the

remaining branches. We use a discrete curve evolution to

obtain a hierarchical partitioning of an object contour into

subarcs that yields a hierarchical skeleton structure. We

provide experimental results that demonstrate the high

stability of the obtained skeletons even for objects with

extremely complex shapes. The stability of skeletons is the

key property required to measure the shape similarity of

objects using their skeletons. The proposed definition of the

skeleton pruning easily extends to higher dimensions, (e.g., in

3D it only requires a surface partition into patches), but

further research on surface partitions is needed.
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[5] R.L. Ogniewicz and O. Kübler, “Hierarchic Voronoi Skeletons,”
Pattern Recognition, vol. 28, no. 3, pp. 343-359, 1995.

[6] G. Malandain and S. Fernandez-Vidal, “Euclidean Skeletons,”
Image and Vision Computing, vol. 16, pp. 317-327, 1998.

[7] W.-P. Choi, K.-M. Lam, and W.-C. Siu, “Extraction of the
Euclidean Skeleton Based on a Connectivity Criterion,” Pattern
Recognition, vol. 36, pp. 721-729, 2003.

[8] C. Pudney, “Distance-Ordered Homotopic Thinning: A Skeleto-
nization Algorithm for 3D Digital Images,” Computer Vision and
Image Understanding, vol. 72, no. 3, pp. 404-413, 1998.

[9] W. Xie, R.P. Thompson, and R. Perucchio, “A Topology-Preser-
ving Parallel 3D Thinning Algorithm for Extracting the Curve
Skeleton,” Pattern Recognition, vol. 36, pp. 1529-1544, 2003.

[10] F. Leymarie and M. Levine, “Simulating the Grassfire Transaction
Form Using an Active Contour Model,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 14, no. 1, pp. 56-75, Jan. 1992.

[11] P. Golland and E. Grimson, “Fixed Topology Skeletons,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 10-
17, 2000.

[12] N. Mayya and V.T. Rajan, “Voronoi Diagrams of Polygons: A
Framework for Shape Representation,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, pp. 638-643, 1994.

[13] Y. Ge and J.M. Fitzpatrick, “On the Generation of Skeletons from
Discrete Euclidean Distance Maps,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 18, no. 11, pp. 1055-1066, Nov. 1996.

[14] C.M. Gold, D. Thibault, and Z. Liu, “Map Generalization by
Skeleton Retraction,” Proc. ICA Workshop Map Generalization, Aug.
1999.

[15] L.J. Latecki and R. Lakämper, “Convexity Rule for Shape
Decomposition Based on Discrete Contour Evolution,” Computer
Vision and Image Understanding, vol. 73, pp. 441-454, 1999.

[16] L.J. Latecki and R. Lakamper, “Polygon Evolution by Vertex
Deletion,” Proc. Int’l Conf. Scale-Space ’99, 1999.

[17] L.J. Latecki and R. Lakamper, “Shape Similarity Measure Based on
Correspondence of Visual Parts,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 22, no. 10, pp. 1185-1190, Oct. 2000.

[18] L.J. Latecki and R. Lakamper, “Application of Planar Shape
Comparison to Object Retrieval in Image Databases,” Pattern
Recognition, vol. 35, no. 1, pp. 15-29, 2002.

[19] G. Borgefors, “Distance Transformations in Digital Images,”
Computer Vision, Graphics, and Image Processing, vol. 34, no. 3,
pp. 344-371, 1986.

[20] D. Shaken and A.M. Bruckstein, “Pruning Medial Axes,” Computer
Vision and Image Understanding, vol. 69, no. 2, pp. 156-169, 1998.

[21] K. Siddiqi, A. Tannenbaum, and S.W. Zucker, “Hyperbolic
‘Smoothing’ of Shapes,” Proc. Int’l Conf. Computer Vision,
pp. 215-221, 1998.

[22] P. Dimitrov, J.N. Damon, and K. Siddiqi, “Flux Invariants for
Shape,” Proc. Int’l Conf. Computer Vision and Pattern Recognition,
2003.

[23] L.J. Latecki, R.-R. Ghadially, R. Lakämper, and U. Eckhardt,
“Continuity of the Discrete Curve Evolution,” J. Electronic Imaging,
vol. 9, no. 3, pp. 317-326, July 2000.

[24] P. Dimitrov, C. Phillips, and K. Siddiqi, “Robust and Efficient
Skeletal Graphs,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pp. 1417-1423, 2000.

[25] K. Siddiqi, S. Bouix, A.R. Tannenbaum, and S.W. Zucker,
“Hamilton-Jacobi Skeletons,” Int’l J. Computer Vision, vol. 48,
no. 3, pp. 215-231, 2002.

[26] A. Vasilevskiy and K. Siddiqi, “Flux Maximizing Geometric
Flows,” IEEE Trans. Pattern Analysis Machine Intelligence, vol. 24,
no. 12, pp. 1565-1578, Dec. 2002.

[27] F.Y.L. Chin, J. Snoeyink, and C. An Wang, “Finding the Medial
Axis of a Simple Polygon in Linear Time,” Proc. Sixth Int’l Symp.
Algorithms and Computation, pp. 382-391, 1995.

[28] J.W. Brandt and V.R. Algazi, “Continuous Skeleton Computation
by Voronoi Diagram,” Computer Vision, Graphics, and Image Process,
vol. 55, pp. 329-338, 1992.

[29] S.C. Zhu and A. Yuille, “FORMS: A Flexible Object Recognition
and Modeling System,” Proc. Int’l Conf. Computer Vision, 1995.

[30] T. Liu, D. Geiger, and R.V. Kohn, “Representation and Self-
Similarity of Shapes,” Proc. Int’l Conf. Computer Vision, Jan. 1998.

[31] C. Aslan and S. Tari, “An Axis Based Representation for
Recognition,” Proc. Int’l Conf. Computer Vision, 2005.

[32] H.I. Choi, S.W. Choi, and H.P. Moon, “Mathematical Theory of
Medial Axis Transform,” Pacific J. Math., vol. 181, no. 1, pp. 57-88,
1997.

[33] C. Arcelli and G. Sanniti di Baja, “Euclidean Skeleton via Center of
Maximal Disk Extraction,” Image and Vision Computing, vol. 11,
pp. 163-173, 1993.

[34] C. Arcelli and G. Sanniti di Baja, “A Width Independent Fast
Thinning Algorithm,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 7, pp. 463-474, 1985.

[35] R. Kimmel et al. “Skeletonization via Distance Maps and Level
Sets,” CVIU: Computer Vision and Image Understanding, vol. 62,
no. 3, pp. 382-391, 1995.

[36] T.B. Sebastian, P.N. Klein, and B.B. Kimia, “Recognition of Shapes
by Editing Their Shock Graphs,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 26, no. 5, pp. 550-571, May 2004.

[37] L.J. Latecki, R. Lakamper, and U. Eckhardt, “Shape Descriptors for
Non-Rigid Shapes with a Single Closed Contour,” Proc. Conf.
Computer Vision and Pattern Recognition, 2000.

[38] F. Mokhtarian and A.K. Mackworth, “A Theory of Multiscale,
Curvature-Based Shape Representation for Planar Curves,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 14, pp. 789-805,
1992.

BAI ET AL.: SKELETON PRUNING BY CONTOUR PARTITIONING WITH DISCRETE CURVE EVOLUTION 13



[39] S.M. Pizer, W.R. Oliver, and S.H. Bloomberg, “Hierarchial Shape
Description via the Multiresolution Symmetric Axis Transform,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 9,
pp. 505-511, 1987.

[40] G. Borgefors, G. Ramella, and G. Sanniti di Baja, “Hierarchical
Decomposition of Multiscale Skeletons,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 13, no. 11, pp. 1296-1312,
Nov. 2001.

[41] K. Siddiqi and B.B. Kimia, “Parts of Visual Form: Computational
Aspects,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 17, no. 3, pp. 239-251, Mar. 1995.

Xiang Bai received the BS degree in electro-
nics and information engineering from Huaz-
hong University of Science & Technology
(HUST), Wuhan, China, in 2003 and the MS
degree in electronics and information engineer-
ing from HUST in 2005. He is now an exchange
student at Temple University. His research
interests include computer graphics, computer
vision, and pattern recognition.

Longin Jan Latecki received the master’s
degree in mathematics from the University of
Gdansk, Poland, in 1985, and the PhD degree in
computer science from the Hamburg University,
Germany, in 1992. He is the winner of the
Pattern Recognition Society Award together with
Azriel Rosenfeld for “the most original manu-
script from all 1998 Pattern Recognition issues.”
He received the main annual award from
the German Society for Pattern Recognition

(DAGM), the 2000 Olympus Prize. He cochairs the IS&T/SPIE annual
conference series on vision geometry. He has published more than
100 research papers and books. He is an associate professor for
computer science at Temple University in Philadelphia. His main
research areas are shape representation and similarity, robot mapping,
digital geometry and topology, data mining, and video analysis. He is a
member of the IEEE Computer Society.

Wen-Yu Liu received the BS degree in computer
science from Tsinghua University, Beijing, China,
in 1986, and the Diploma and Doctoral degrees,
both in electronics and information engineering,
from Huazhong University of Science & Technol-
ogy (HUST), Wuhan, China, in 1991 and 2001,
respectively. He is now a professor and associate
chairman of the Department of Electronics &
Information Engineering, HUST. His current
research areas include computer graphics, multi-

media information processing, and computer vision.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 3, MARCH 2007


