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ABSTRACT
Recognizing freehand sketches with high arbitrariness is such a
great challenge that the automatic recognition rate has reached a
ceiling in recent years. In this paper, we explicitly explore the shape
properties of sketches, which has almost been neglected before in
the context of deep learning, and propose a sequential dual learning
strategy that combines both shape and texture features. We devise
a two-stage recurrent neural network to balance these two types of
features. Our architecture also considers stroke orders of sketches
to reduce the intra-class variations of input features. Extensive
experiments on the TU-Berlin benchmark set show that our method
achieves over 90% recognition rate for the first time on this task,
outperforming both humans and state-of-the-art algorithms by
over 19 and 7.5 percentage points, respectively. Especially, our
approach can distinguish the sketches with similar textures but
different shapes more effectively than recent deep networks. Based
on the proposed method, we develop an on-line sketch retrieval
and imitation application to teach children or adults to draw. The
application is available as Sketch.Draw.
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1 INTRODUCTION
Sketch recognition provides a powerful analysis tool for many com-
puter vision applications [9, 27], such as forensic analysis [16],
sketch-based image retrieval [10, 13, 23], and sketch-based 3D
model retrieval [32].

Sketches, reflecting chief features of objects, have long been
regarded as an effective way for human to communicate ideas.
It is extremely challenging to automatically recognize free-hand
sketches even for human being due to huge intra-class variations
brought by flexible stroke orders and styles. In this work, we ad-
dress this issue by integrating shape information that is inherent
in sketches.

A sketch consists of simple geometric primitives, e.g., line seg-
ments and curves, showing evident differences with natural images.
Nevertheless, previous works typically directly apply textural fea-
tures that gain great success in natural images to sketch recognition.
Hand-crafted features are first used in sketch recognition [7, 24].
These features highly depend on gradients information of images
with rich textures that rarely exist in sketches. Recently, the learn-
ing based features generated by convoluted responses on image
intensities (textures) have produced significant improvements over
the handcrafted ones [39].

Geometric shape cues play an important role in object recogni-
tion. Recent neuropsychological studies reveal that humans have
a specific brain area to process geometric shape information [38].
Learningmodels even trained on natural images from ImageNet pre-
fer to categorize objects according to shapes rather than colors [25].
Unfortunately, traditional hand-crafted local shape features [1, 34]
cannot be directly immigrated to characterize shapes for sketch
recognition since they have a low discriminative ability to intra-
class variations. Therefore, it is highly demanded to devise a new
learning framework to cooperate shape and texture information of
a sketch.

It is also worth noting that the sequential nature of sketch strokes
provides additional information. In a recent work [28], Sarvadevab-
hatla et al. build a recurrent network that takes each stroke image
as the input for sequential learning, yielding significant improve-
ments on accuracy. However, the arbitrariness of stroke orders
evidently alters the network inputs so that intra-class variations
significantly increase. Meanwhile, a single stroke can only provide
limited shape information. Thus, it is also crucial to investigate
utilizing the stroke order while minimizing intra-class variations
of input features, especially when we embed shape cues for sketch
recognition.

https://doi.org/10.1145/3394171.3413810
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Figure 1: Some successful classification cases with added ex-
plicit shape features that failed without shape features.

We demonstrate the effects of added explicit shape features in
Fig. 1. The first row shows five query sketches that were success-
fully recognized with added shape features but wrongly classified
without shape features. The most similar shapes from their wrongly
assigned classes are displayed in the second row. We notice sim-
ilar texture features of corresponding sketches. For example, the
horizontal and vertical lines are similar for both fire hydrant and
skyscraper, and also the stripes on tiger and church are similar.
On the other hand, when explicit shape features are added, we are
able to distinguish different shapes of pigeon and parrot, possibly
including subtle local differences such as the shape of their beaks.

This paper presents a sequential dual recurrent neural networks
(SD-RNN) architecture for sketch recognition that combines both
shape and texture of sketches as shown in Fig. 2. Five images are
constructed by accumulative strokes according to the stroke order.
Subsequently, coded shape context [37] and texture from Sketch-
A-Net (SAN) [40] are fed into two cascaded gated recurrent units
(GRUs). The outputs of these two GRUs stages produce the final
classification. Our contributions are summarized as follows:

• To the best of our knowledge, explicit shape features are
introduced into sketch recognition for the first time in a
deep learning framework.

• Dual recurrent neural networks are cascaded into two stages
to combine both shape and texture features, and to learn the
balance of their contributions.

• By quantizing the strokes into five stages, we explore the
sequential nature of strokes while reducing intra-class varia-
tions of input features.

• We develop an on-line sketch retrieval and imitation applica-
tion to teach others to draw based on the proposed method.

Experiments on the TU-Berlin benchmark, the largest hand-free
sketch dataset, show that our method achieves over 90% recognition
rate, and outperforms both human and state-of-the-art algorithms
by over 19 and 7 percentage points, respectively.

2 RELATEDWORK
Sketch recognition has attracted much attention in recent years, sci-
ence a large crowd-sourced dataset was published [9]. The dataset
contains 20,000 sketches from daily objects distributed over 250
object categories. The fact that human can only correctly identify
the sketches with 73% accuracy shows that sketch recognition is a
challenging task even for humans.

Most existing works on sketch interpretation typically analyze
an input sketch as a traditional texture image, without attempting to
understand its shape nature. Hand-crafted features borrowed from
texture images are first employed as representation. Eitz et at. use
SIFT along with a special treatment to smooth gradients and sparse
intensities in sketches [9]. Similarly, [29] applies Fisher vectors and
spatial pyramid pooling to SIFT. Li et al. employ multiple-kernel
learning (MKL) to find appropriate weights of various textural
features for sketches [21]. Zhang et al. transfer the knowledge of
a network learned from natural images to a sketch network [41].
However, these features highly depend on gradients information,
which rarely exists in sketches.

Recently, learning based features are explored for sketch recog-
nition due to the great success of deep learning in visual recogni-
tion [17]. Wang et al. use a variant of Siamese network for sketch-
to-3D-shape retrieval [33]. In [28], sketch features are obtained by
AlexNet. Zhang et al. design a hybrid network combined multiform
features [42]. CousinNet [41]leverages natural images to guide the
target network to extract powerful features for recognition. How-
ever, these sketch features are produced by deep networks designed
for texture images, and little attention has been paid on the special
nature of sketches, which mostly encode curves and lines. One
exception is the Sketch-A-Net (SAN) work [39, 40]. Yu et al. take
the sparse nature of sketches into account, and design a deep learn-
ing network that enlarges the pooling sizes and patches of filters.
Sketch-A-Net surpasses the best result of humans for the first time.
SketchPointNet shares similar idea and leverages sparse sampling
points on sketch [36]. However, the shape nature of sketches is still
ignored.

Shape representation has been studied in computer vision for
a long time. Shape context [1] and its variants [26, 34] are among
the most popular shape descriptors. Researchers also develop de-
scriptors to accommodate a wide range of geometric transforma-
tions [15]. Motivated by the middle level "bag-of-features", Wang et
al. develop a bag of contour fragments (BCF) approach that achieves
the state-of-the-art for simple shape contour classification [37].
Different from shapes of natural objects [19], sketches have high
flexibility and sequential information on strokes. One can hardly
obtain satisfactory results by directly applying shape descriptors
to sketch recognition. In this paper, we leverage a mid-level shape
feature for sketches to reduce the variation of intra-classes. Mean-
while we also combine both shape and texture features to achieve
the state-of-the-art recognition performance.

More specifically, a sketch is an ordered list of strokes. In Sketch-
A-Net [39], the sequential nature of sketches is explored to produce
abstract sketches for data augmentation. However, Sketch-A-Net
does not build connections between sequential strokes. DVSF [12]
improves Sketch-A-Net by combining sequential feature and inte-
grated features. However, shape features are still ignored.

For time series like speech and natural language, many works
resort to memorable network architectures. A recurrent neural
network (RNN) [30, 31] is designed for processing input sequence,
which can bridge the hidden units and deliver the outputs from
former sequence to the latter ones. However, it has a significant
limitation called ’vanishing gradient’. In order to overcome the
limitation of RNN, a long short term memory (LSTM) [11] network,
and recently gated recurrent unit (GRU) [3] have been proposed.
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Figure 2: Overview of SD-RNN. Textural features of Sketch-A-Net (𝑥1𝑡𝑒𝑥𝑡𝑢𝑟𝑒 , . . . , 𝑥
5
𝑡𝑒𝑥𝑡𝑢𝑟𝑒 ) and coded shape features

(𝑥1
𝑠ℎ𝑎𝑝𝑒

, . . . , 𝑥5
𝑠ℎ𝑎𝑝𝑒

) (labeled in blue and yellow, respectively) extracted from each accumulative stroke image are taken as the

inputs of GRUs . The corresponding prediction sequence 𝑦1
𝑠ℎ𝑎𝑝𝑒

, . . . , 𝑦5
𝑠ℎ𝑎𝑝𝑒

and 𝑦1𝑡𝑒𝑥𝑡𝑢𝑟𝑒 , . . . , 𝑦
5
𝑡𝑒𝑥𝑡𝑢𝑟𝑒 are combined and fed into

the second stage GRUs. All the outputs of 𝑧1
𝑠ℎ𝑎𝑝𝑒&𝑡𝑒𝑥𝑡𝑢𝑟𝑒 , . . . , 𝑧

5
𝑠ℎ𝑎𝑝𝑒&𝑡𝑒𝑥𝑡𝑢𝑟𝑒 generate the final classification result.

GRU outperforms LSTM in many cases by learning smaller number
of parameters [4]. Sarvadevabhatla et al. [28] take the order of
strokes as a sequence and feed their features stroke by stroke to
GRU. They achieve the best published recognition performance.
However, different form handwritten characters with relatively
fixed structural ordering, sketches exhibit a much higher degree
of intra-class variation in stroke order. These variations definitely
bring unstable features. In contrast, our work aims to learn a stable
sequential features capturing both shape and texture information
for sketch recognition.

3 EXPLORING STROKE ORDERS
The stroke order of the same sketch varies more severely than hand
written digits and characters. Every person may have his/her own
order of strokes when drawing the same object [9]. There are two
pairs of sketches divided by the horizontal dash line, i.e., cows and
elephants, as shown in Fig. 3. Each pair belong to the same class but
drawn by different individuals. The two vertical dash lines separate
the figure into three columns, the left two of which demonstrate the
first ten strokes and the the complete sketches, respectively. The
first stroke of the ‘cow’ in one sketch of Fig. 3 lies in its back while
the other in its belly. The stroke orders evidently vary in the same
class. These variations definitely bring unstable features (will be
discussed in experiments). Inevitably, these unstable inputs affect
the convergence and further classification accuracy.

Therefore, we use accumulative strokes instead of single one in
order to reduce input variations for the same class. This treatment
is motivated by humans’ drawing habit. Most people prefer to
draw from the outline to details, which can be validated in the last
column of Fig. 3. The right column shows the accumulative stroke
images derived from stroke orders: the first image shows the first
20% strokes, and the second one gives the first 40% in the stroke

sequence, and so on. The image variations in the same accumulative
group (corresponding to one step in our SD-RNN) clearly decrease.

We take statistics on the number of the strokes, and find that
54.7% sketches have the number of strokes between 6 and 20, while
16% equal or less than 5. Thus, we take five groups with about
four strokes in each group. If the number of groups was too small,
there would exist strokes with both outer contour and details, while
larger number of groups may result in only one stroke for each
group, degrading to stroke-by-stroke strategy. Supposing that there
are 𝑁 strokes for a sketch 𝑆 , (𝑠1, 𝑠2, . . . , 𝑠𝑁−1, 𝑠𝑁 ), we can construct
an sequence with five images. The first one contains the strokes
from 𝑠1 to 𝑠𝑁 /5, the second one from 𝑠1 to 𝑠2𝑁 /5, and the last one
shows the complete sketch.

Similar to [18], we also expand each accumulative image to ten
by cropping and reflection. These ten accumulative stroke images
are taken as the input at one step of GRU. Figure 4 shows an input
sequence of one accumulative stroke group. From the right to left,
the inputs are the crops of original images when time step 𝑡 is odd,
and the inputs are the crops of orignial reflections for even 𝑡s. The
crop order for each original image is the top left, bottom left, top
right, bottom right, and finally center. As we have five accumulative
stroke images for each sketch and ten crops for each image, we
finally have 50 input images in total. Their corresponding features
are fed into our deep network described in the next section.

4 INTEGRATING SHAPE AND TEXTURE
WITH RECURRENT NEURAL NETWORKS

In this section, we first introduce the shape and texture features for
sketches. Then we present a specially designed network to combine
and balance these features.



Figure 3: Comparisons of single stroke (left) and accumulative stroke images (right).
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Figure 5: Shape context features are collected at five sample points
on a stroke between points 𝑢𝑖 and 𝑢 𝑗 .

4.1 Shape features of strokes
Sketches are composed of strokes, which contain both local and
global shape information. Thus, we adopt strokes as basic shape
element for learning a shape codebook and building our shape
representation.

For each stroke, we describe it using shape context [1].We sample
5 reference points on the stroke equidistantly, and then compute 5
shape context histograms based on the reference points individually.
Shape context descriptor for each stroke is a concatenation of the 5
shape context histograms, e.g., see Fig. 5.

Each stroke of a sketch can be drawn in different styles, render-
ing its high flexibility. In order to handle these intra-class varia-
tions, we leverage a coding method [37] to generate close features
from similar strokes. We first apply the 𝑘-means algorithm [8] on
shape context descriptors of randomly selected strokes. The cluster
centers are regarded as the codebook. Thereafter, we can use 𝑀
prototypes to describe the whole stroke space as shown in Fig. 6
where the colorful dots stand for the cluster centers. In our experi-
ments,𝑀 is set to 500 as in [37]. We use a fast and effective scheme,
local-constraint linear coding (LLC) [35], to generate the final coded
representation of strokes. As shown in Fig. 6, similar strokes may
have the same 𝑘 nearest neighbors so that we take the 𝑘 (𝑘 = 5 in
our paper) nearest neighbors to encode each shape feature. Finally,
we run max-pooling [14] on all stroke features of each sketch to
obtain more discriminative features with 500 dimensions.

4.2 Texture features for sketches
We leverage Sketch-A-Net [40] to extract texture features of the
sketches. Sketch-A-Net is a variant of a CNN tailored to sketch
recognition, consisting of eight layers. The first five layers are
convolutional layers, and the last three are fully connected. Each
convolutional layer is constructed upon rectifier (ReLU) units, while
the first, second and fifth layers are followed by max pooling. For
each input image, Sketch-A-Net produces a 512 dimensional feature
vector from the last fully-connected layer.

In [40], five versions of the same deep network are run, each for a
different resolution of the input image, and the final classification is
obtained by a joint Bayesian classifier [2] applied to the five outputs.
In this paper, we employ only the network from [40] trained for
sketches of size 256 × 256 pixels, and take the 512-dimensional
vector of the last fully-connected layer as the texture features of
sketches without any retraining.

4.3 Integrating shape and texture features with
recurrent neural networks

Shape features describe the geometric structure of sketches along
strokes, which can be viewed as 1D curves. In contrast, texture fea-
tures describe 2D patches on surface of sketches, which are treated
as gray scale images. In order to combine and balance shape and
texture features while exploring the sequential nature of strokes,
we devise a sequential dual recurrent neural network (SD-RNN)
architecture.

4.3.1 Sequential dual recurrent neural network (SD-RNN) . We take
GRUs as basic blocks to combine both shape and texture features
and exploit the sequential nature of sketches, since GRUs have a
smaller number of parameters and perform better than LSTM in
sketch recognition [28].

The overview of our SD-RNN is shown in Fig. 2. As shown in the
red frame, there are two GRUs in the first stage, which receive the
two types of features as inputs, respectively. Then a third GRU in the
second stage combines the outputs of the first stage, i.e., memorized
shape and texture features. The first unit inside the third GRU is a



Figure 6: Encoded features of similar shapes. The colorful
circle points stand for the cluster centers, and several of
these clusters represent a stroke.

linear function that reduces the dimensionality of the concatenation
of the two vectors of shape and texture features. The output of the
third GRU is densely connected to a final softmax layer, acting as
the classifier. Each of the three GRUs of this two-stage network
contains 128 hidden units.

The obtained SD-RNN is run five times on different accumulative
stroke groups, which is illustrated in Fig. 2 with five copies of the
same network linked by vertical arrows to illustrate the temporal
dependencies of the input sequence. This architecture is able to
learn the weights of the two types of features, and thus balance
their influence to produce the desired performance. As a result, our
SD-RNN embraces learnable textural features, memorized shape
features, and learnable fusion of these two. We present more details
now.

Taking the shape feature as an example, the GRU shape network
in the first stage learns a mapping from the input 𝑥𝑡

𝑠ℎ𝑎𝑝𝑒
to the

output 𝑦𝑡
𝑠ℎ𝑎𝑝𝑒

for 𝑡 = 1, . . . , 5, which is given by

𝑟𝑡 = 𝜎

(
𝑊𝑥𝑟𝑥

𝑡
𝑠ℎ𝑎𝑝𝑒

+𝑊ℎ𝑟ℎ𝑡−1 + 𝑏𝑟
)
, (1)

𝑧𝑡 = 𝜎

(
𝑊𝑥𝑧𝑥

𝑡
𝑠ℎ𝑎𝑝𝑒

+𝑊ℎ𝑧ℎ𝑡−1 + 𝑏𝑧
)
, (2)

∼
ℎ𝑡 = tanh(𝑊𝑥ℎ𝑥

𝑡
𝑠ℎ𝑎𝑝𝑒

+𝑈 (𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ), (3)

ℎ𝑡 = (1 − 𝑧𝑡 ) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙
∼
ℎ𝑡 , (4)

𝑦𝑡
𝑠ℎ𝑎𝑝𝑒

=𝑊ℎ𝑦ℎ𝑡 , (5)
where 𝜎 (·) is an element-wise logistic Sigmoid function. ℎ𝑡 is the
hidden state and it is regulated by the gating unit 𝑟𝑡 , 𝑧𝑡 and

∼
ℎ𝑡 .

The operator ⊙ denotes the element-wise vector product. The𝑊 s,
𝑏s and 𝑈 are trainable parameters. Similarly, we can get the 𝑡-th
output for texture as 𝑦𝑡𝑡𝑒𝑥𝑡𝑢𝑟𝑒 . More details about GRUs can be
found in [5].

4.3.2 Features fusion and balance. Both shape and texture features
are fed into the respective GRUs of the first-stage, outputting two
128 dimensional vectors, 𝑦𝑡𝑡𝑒𝑥𝑡𝑢𝑟𝑒 and 𝑦𝑡

𝑠ℎ𝑎𝑝𝑒
. For the third GRU

in the second stage, the 𝑡-th input is [(𝑦𝑡𝑡𝑒𝑥𝑡𝑢𝑟𝑒 )⊤ (𝑦𝑡𝑠ℎ𝑎𝑝𝑒 )
⊤]⊤, and

the output is 𝑧𝑡
𝑡𝑒𝑥𝑡𝑢𝑟𝑒&𝑠ℎ𝑎𝑝𝑒 .

We add a linear function𝑊𝑐 [(𝑦𝑡𝑡𝑒𝑥𝑡𝑢𝑟𝑒 )⊤ (𝑦𝑡𝑠ℎ𝑎𝑝𝑒 )
⊤]⊤ +𝑏𝑐 at the

beginning of the second-stage GRU (just before Eq. 1) so that our

SD-RNN has the ability to automatically learn the weights of two
features for recognition. The weights of the linear function𝑊𝑐 are
256 × 128 as both 𝑦𝑡𝑒𝑥𝑡𝑢𝑟𝑒 and 𝑦𝑠ℎ𝑎𝑝𝑒 have 128 dimensions. These
parameters in𝑊𝑐 and 𝑏𝑐 are fine-tuned in the learning process,
resulting in the increased performance of our network.

For each of the five SD-RNNs in Fig. 2, we obtain a𝐶-dimensional
vector of class probabilities 𝑧𝑡

𝑠ℎ𝑎𝑝𝑒&𝑡𝑒𝑥𝑡𝑢𝑟𝑒 with𝐶 being the number
of classes (𝐶 = 250 in our experiments) and 𝑡 = 1, . . . , 5. We sum
the prediction vectors of all 5 steps, and choose the class ID with
the max value of the summation as the final output.

5 EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we first describe the dataset and experiment settings.
Subsequently, we validate the effectiveness of the shape feature and
stroke orders. Finally, our method is compared with the state-of-the-
art and humans with the same protocol in order to demonstrate the
overall performance of SD-RNN. The results show that our method
does not only produce the accuracy over 90% for the first time, but
also beats the state-of-the-art over 14 percentage points.

5.1 Experiment settings
We evaluate SD-RNNon the TU-Berlin sketch dataset [9], the largest
and most commonly used sketch dataset currently available. It con-
sists of 20, 000 sketches of 250 categories, 80 sketches per category.
The dataset was collected on Amazon Mechanical Turk (AMT)
from 1350 participants. Thus the dataset guarantees the diversity
of object categories and sketch styles within every category. As is
commonly the case, we use 67% of the data for training, and 33%
for testing.

As the performance measure we use the standard classification
accuracy, which is defined as the ratio of the number of correctly
classified sketches to the total number of sketches in the test dataset.

Data augmentation is employed to reduce the risk of overfitting.
In order to increase the number of sketches per category, we apply
several transformations on each sketch, including horizontal reflec-
tion and rotation ([-5,-3,0,+3,+5] degrees), followed by systematic
combinations of horizontal and vertical shifts (±15 pixels). The data
augmentation procedure results in 18 (10 + 8 = 18) × 80 = 1, 440
sketches per category, a total number of 1440 × 250 = 360, 000
sketches evenly distributed over 250 categories.

For shape features, we apply shape context on 5 points with equal
interval of each stroke. The number of bins of shape context is set
to be 60. Thus, the dimension of the shape context descriptor for
each stroke is 300 with the size of the codebook 500. We implement
SD-RNN on Torch [6], and set the initial learning rate to 0.002 with
weights decay 0.99. The batch size is set to 100.

5.2 Contributions of shape features
Table 1 lists the classification accuracy of SD-RNN obtained by
only shape features, only texture features, and both in order to
validate the effects of different features in our method. We can see
that the accuracies with only shape and texture features can only
reach 30.32% and 77.03% respectively, in contrast to 92.65% when we
combine both in our architecture. Shape features may not be able to
gain good performance by itself, but they play an important role in
sketch recognition, improving the accuracy of SD-RNN with only



Table 1: Evaluation on the Contributions of Shape Features

Our SD-RNN Method Recognition Accuracy (%)
Shape Feature Only 30.32
Texture Feature Only 77.03
Our SD-RNN Method 92.65
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Figure 7: Classification results without and with shape fea-
tures at different time steps. The first row shows input im-
age sequence, the second and third row exhibit the results
without and with shape features.

texture features over 15 percentage points. Simply concatenating
shape and texture features with fixed weights cannot output desired
performance as ours because SD-RNN is capable of learning their
contributions adaptive to object categories.

In order to give an intuitive demonstration of the effects of shape
features, we present some false recognition examples without shape
features but successfully recognized with shape features in Fig. 1.
The first row lists five query sketches including lobster, fire hydrant,
tiger, spider, and pigeon. The second row shows that SD-RNN with-
out shape features produces wrong classification results for all these
queries. It can be explained as texture features can represent detail
features of the sketch, such as the stripes on tiger and church, and
the horizontal and vertical lines for both fire hydrant and skyscraper.
However, the shape of these wrong matched pairs are totally differ-
ent. With the help of shape features, all these query sketches can
be recognized sucessfully. Our method can even distinguish pigeon
and parrot with subtle local differences on the beak.

Further, we illustrate the classification results for each time step
shown in Fig. 7. The first row shows the query sketches represented
by five accumulative stroke images, the second and third rows
provides the results without and with shape features at each time
step, respectively. The results of each output in the second column
are all incorrect, while the third one produces correct results from
the second output of the sequence. These results demonstrate that
shape features can also discriminate geometrically similar strokes.

5.3 Contributions of SD-RNN architecture
In order to validate the effect of SD-RNN architecture, we compare
the result of the proposed method with Sketch-A-Net architecture
coupled both shape and texture features. We are able to boost the
74.9% classification accuracy of Sketch-A-Net to 84% by concatenat-
ing shape context features with Sketch-A-Net deep features with

Table 2: Evaluation on Different Fusion Strategies

Method Recognition Accuracy (%)
direct concatenation 88.33

maxpooling 90.46
our method with linear function 92.65

Table 3: Sketch Recognition on TU-Berlin Dataset

Method Recognition Accuracy(%)
HOG-SVM [9] 56.0
Ensemble [22] 61.5
MKL-SVM [21] 65.8
FV-SP [29] 68.9
Humans 73.1

AlexNet-SVM [17] 67.1
AlexNet-Sketch [17] 68.6

LeNet [20] 55.2
Sketch-A-Net 1.0 [40] 74.9
Sketch-A-Net 2.0 [39] 78.0
Hybrid-Conv [42] 85.1
SketchPointNet [36] 74.2

DVSF [12] 79.6
CousinNet [41] 80.1

Our SD-RNN method 92.65

a linear SVM. However, there is still a notable gap between the
result (92.65%) of our SD-RNN and this naive strategy. Thus, the
proposed SD-RNN architecture can not only integrate shape and
texture features, but also memorize and pass the features in each
step to obtain the final performance.

5.4 Comparisons of different stroke order
strategies

In order to validate the robustness of our accumulative stroke strat-
egy, we compare the features produced by the accumulative stroke
images with that of the linear order of all individual strokes in [28].
Since, typically, the first stroke exhibits significant variations per-
son by person, we peer into the input shape and texture features
of the first stroke, and compare the feature variances of the first
stroke and our first accumulative stroke group.

For fair comparison, each feature vector is normalized by Eq. (6),
where 𝑥𝑖 and 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑛) are the elements of 𝑥𝑠ℎ𝑎𝑝𝑒 or
𝑥𝑡𝑒𝑥𝑡𝑢𝑟𝑒 before and after normalization, respectively, and 𝑛 is the
dimension of the vector.

𝑥𝑖 =
𝑥𝑖√

(𝑥1)2 + (𝑥2)2 + . . . + (𝑥𝑛)2
(6)

Figs. 8(a) and (b) show the variances of shape and texture features,
respectively. The x-axis shows the label of the 250 categories, and y-
axis is the value of the variances. The variances of ours and the first
stroke strategy in each category are labeled in blue plus sign and
red star, respectively. The shape feature variances of our strategy
are smaller for 242 out of 250 categories, while our variances on



(a)

(b)

Figure 8: Comparison of (a) variances of shape and (b) tex-
ture features for 250 sketch classes.

textures are smaller for all categories. This is clearly visible, since
almost all blue pluses are below the red stars.

5.5 Comparisons on different feature fusion
strategies

Given two features, various fusion strategies can be adopted for
the final classification. Table 2 compares our linear function fusion
method with the alternative direct concatenation and maxpooling
fusion. For the direct concatenation fusion, we concatenate the
shape and texture vectors obtained as the outputs of the first stage
to a single vector as the inputs to the second stage. The maxpool-
ing combination reaches the accuracy as 90.46%. The maxpooling
makes the combined feature more discriminative than the concate-
nation one. Our linear function fusion can still achieve the best
performance among the three. It is also possible to consider other
fusion strategies, e.g., fusion before the input of the first-stage GRUs
or after the second-stage GRU layer.

5.6 Comparisons with the state-of-the-art
We compare SD-RNN with the state-of-the-art methods for sketch
recognition. These methods can be divided into two groups. One
combines hand-crafted features and classifiers, e.g., HOG-SVM [9],
structured ensemble matching [22], multi-kernel SVM [21] and
Fisher Vector Spatial Pooling (FV-SP) [29]. The other is deep learn-
ing based methods including AlexNet [17], LeNet [20], AlexNet-FC-
GRU [28], two versions (Sketch-A-Net 1.0 [40] and Sketch-A-Net
2.0 [39]) of Sketch-A-Net framework, DVSF [12], Hybrid convo-
lutional neural network [42], SketchPointNet [36], and Cousin-
Net [41].
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Figure 9: Accuracy comparisons between our SD-RNN and
human in (a), and Sketch-A-Net [39] in (b).
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Figure 10: Illustration of recognition successes and failures.

Table 3 shows the classification accuracy of the compared meth-
ods on the TU-Berlin dataset. The listed results of other methods
were generated by their own implementations or reported in their
papers. In general, methods based on deep networks obtain better
performance than those based on hand-crafted features. The accu-
racy of the methods based on hand-crafted features is lower than
humans [9]. This is because the existing hand-crafted features are
well-designed for traditional images but not suitable for abstract
and sparse sketches. Among the existing deep learning based meth-
ods, Sketch-A-Net 1.0 [40] is the first method that beats humans
with the accuracy 74.9%, and the improved version (Sketch-A-Net
2.0) obtains the accuracy 78.0%. DVSF [12] improves Sketch-A-Net
by combining integrated sketch features, and obtains the accuracy
of 79.6%. SketchPointNet [36] obtains similar accuracy of 74.2% by



taking the sparse of sketch into consideration. Our experiments
cover all the categories and keep the same proportion for training
(2/3) and testing (1/3) as these works do. Our method outperforms
these methods by more than 13% in accuracy.

Among the methods introducing additional information, Cousin-
Net [41] leverages natural images to guide the target network to
extract powerful features for recognition. Seventy-two instances
(90% of the total) in each category are used for training, while we
only use 66.7% (2/3) for training. However, we outperform Cousin-
Net by 12.55 percentage points. Another method that also combined
multiform features is Hybrid convolutional neural network [42].
Sketches are represented and learned by point-set in one branch,
and AlexNet is used for the other branch. The hybrid network
reaches the highest accuracy of 85.1% among the existing methods.
However, this is still 7.55 percentage points lower than our SD-RNN
method.

Further, we separately demonstrate the results of 250 categories
compared with human and Sketch-A-Net [39] implemented on the
same dataset and the same protocol with ours, and having the
closest accuracy to ours. The horizontal coordinate of each point of
the 250 blue points in Fig. 9(a) shows the human accuracy, while the
value of the vertical coordinate shows the accuracy of our method.
Similarly, our results compared with Sketch-A-Net are shown in
Fig. 9(b). For both figures, we can see most points lie in the upper
triangle, which means higher accuracy of our approach than the
other two. It is notable that our method obtains 100% rate on 110
categories, while humans have only one and Sketch-A-Net only
two categories with 100% accuracy. The lowest accuracy for our
method is 42.11% on the category of ‘seagull’, which is also difficult
for human and Sketch-A-Net to recognize with the accuracies as
low as 2.50% and 26.92%, respectively.

Figure 10 shows some tough examples. The ground truth is
labeled in black, while our results are labeled in green and other
methods in red. Our method succeeds in the first row but other
methods fail. In the second row, mistakes made by our method
seem reasonable. One may expect humans making similar mistakes.
The clear challenge level of sketch ambiguity demonstrates why
reliable sketch based communication is hard even for humans.

5.7 Online application
Base on the proposed method, we designed a novel app to teach
children and adults to draw 1. After a user first creates a rough
sketch, the app suggests most similar complete sketches. The user
can then select one of them and imitate it by retracing. The system
overview is shown in Fig. 11. The app runs in real-time and submits
the rough sketch to the server. Both geometry and texture features
are extracted and fed into the proposed SD-RNN on the server. The
recognition result and its corresponding instances are sent back
to the app. Users can choose any sketch they like to imitate. Our
results show that the proposed network architecture, and on-line
application generalize well to real user input and enable high quality
retrieval results without additional post-processing. Some retrieval
instances of our proposed online app are shown in Fig. 12.

1The application is available as Sketch.Draw.

Figure 11: System overview of the proposed online applica-
tion.

Figure 12: Retrieval instances of proposed online applica-
tion.

6 CONCLUSION
In this paper, we propose a sequential dual recurrent neural net-
work that combines both shape and texture features for sketch
recognition. Experimental results demonstrate that we achieve the
best performance compared with the state-of-the-art and humans
on sketch recognition. We use shape features to characterize geo-
metric information of sketches, which nicely complement texture
features, and combine both feature types in a deep learning frame-
work. Moreover, we explore the sequential nature of accumulative
stroke images rather than direct order of individual strokes. Thus,
our framework can enable interesting applications such as our
sketch retrieval and stick figure imitation framework. The learned
features of sketches can also be used in some other sketch-related
applications, such as sketch-based emoji retrieval, image and 3D
shape retrieval.

ACKNOWLEDGMENTS
This work is partially supported by the Natural Science Foundation
of China under grant Nos. 61733002, 61632006 and 61876030, Funda-
mental Research Funds for the Central University under grant No.
DUT19RC(3)004, Natural Science Foundation of Liaoning Province
under grant No.20170540173, and by the NSF under Grant No. IIS-
1814745.



REFERENCES
[1] Serge Belongie, Jitendra Malik, and Jan Puzicha. 2002. Shape Matching and Object

Recognition Using Shape Contexts. IEEE TPAMI 24, 4 (2002), 509–522.
[2] Dong Chen, Xudong Cao, Liwei Wang, Fang Wen, and Jian Sun. 2012. Bayesian

face revisited: A joint formulation. In European Conference on Computer Vision.
Springer, 566–579.

[3] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[4] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[5] Junyoung Chung, Caglar Gülçehre, Kyunghyun Cho, and Yoshua Bengio. 2015.
Gated Feedback Recurrent Neural Networks.. In ICML. 2067–2075.

[6] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. 2002. Torch: a modular
machine learning software library. Technical Report. Idiap.

[7] Navneet Dalal and Bill Triggs. 2005. Histograms of Oriented Gradients for
Human Detection. In 2005 IEEE Computer Society Conference on CVPR (CVPR
2005). 886–893. https://doi.org/10.1109/CVPR.2005.177

[8] Richard O Duda, Peter E Hart, and David G Stork. 2000. Pattern Classification
and Scene Analysis Part 1: Pattern Classification. Wiley, Chichester (2000).

[9] Mathias Eitz, James Hays, and Marc Alexa. 2012. How do humans sketch objects?
ACM Trans. Graph. 31, 4 (2012), 44:1–44:10. https://doi.org/10.1145/2185520.
2185540

[10] Mathias Eitz, Kristian Hildebrand, Tamy Boubekeur, and Marc Alexa. 2011.
Sketch-Based Image Retrieval: Benchmark and Bag-of-Features Descriptors. IEEE
Trans. Vis. Comput. Graph. 17, 11 (2011), 1624–1636. https://doi.org/10.1109/
TVCG.2010.266

[11] Alex Graves. 1997. Long Short-Term Memory. Neural Computation 9, 8 (1997),
1735.

[12] Jun-Yan He, Xiao Wu, Yu-Gang Jiang, Bo Zhao, and Qiang Peng. 2017. Sketch
recognition with deep visual-sequential fusion model. In Proceedings of the 25th
ACM international conference on Multimedia. 448–456.

[13] Rui Hu and John P. Collomosse. 2013. A performance evaluation of gradient field
HOG descriptor for sketch based image retrieval. CVIU 117, 7 (2013), 790–806.
https://doi.org/10.1016/j.cviu.2013.02.005

[14] Yongzhen Huang, Zifeng Wu, Liang Wang, and Tieniu Tan. 2014. Feature coding
in image classification: A comprehensive study. IEEE TPAMI 36, 3 (2014), 493–506.

[15] Qi Jia, Xin Fan, Yu Liu, Haojie Li, Zhongxuan Luo, and He Guo. 2016. Hierarchical
projective invariant contexts for shape recognition. PR 52 (2016), 358 – 374.
https://doi.org/10.1016/j.patcog.2015.11.003

[16] Brendan F. Klare, Zhifeng Li, and Anil K. Jain. 2011. Matching Forensic Sketches
to Mug Shot Photos. IEEE TPAMI 33, 3 (2011), 639.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States. 1106–1114.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[19] Longin Jan Latecki, Rolf Lakamper, and Ulrich Eckhardt. 2000. Shape Descriptors
for Non-rigid Shapes with a Single Closed Contour. In Proc. of CVPR. 424–429.

[20] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, R. E. Howard,
Wayne E. Hubbard, and Lawrence D. Jackel. 1989. Handwritten Digit Recognition
with a Back-Propagation Network. In Advances in NIPS 2, [NIPS Conference,
Denver, Colorado, USA, November 27-30, 1989]. 396–404.

[21] Yi Li, Timothy M. Hospedales, Yi-Zhe Song, and Shaogang Gong. 2015. Free-
hand sketch recognition by multi-kernel feature learning. CVIU 137 (2015), 1–11.
https://doi.org/10.1016/j.cviu.2015.02.003

[22] Yi Li, Yi-Zhe Song, and Shaogang Gong. 2013. Sketch Recognition by Ensemble
Matching of Structured Features.. In BMVC, Vol. 1. 2.

[23] Hangyu Lin, Yanwei Fu, Peng Lu, Shaogang Gong, Xiangyang Xue, and Yu-Gang
Jiang. 2019. Tc-net for isbir: Triplet classification network for instance-level sketch
based image retrieval. In Proceedings of the 27th ACM International Conference on
Multimedia. 1676–1684.

[24] David G. Lowe. 2004. Distinctive Image Features from Scale-Invariant Keypoints.
IJCV 60, 2 (2004), 91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

[25] Samuel Ritter, David G. T. Barrett, Adam Santoro, and Matt M. Botvinick. 2017.
Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study.
(2017).

[26] Edgar Roman-Rangel, Carlos Pallan Gayol, Jean-Marc Odobez, and Daniel Gatica-
Perez. 2011. Searching the past: an improved shape descriptor to retrieve maya
hieroglyphs.. In ACM Multimedia. 163–172.

[27] P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays. 2017. Scribbler: Controlling Deep
Image Synthesis with Sketch and Color. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 6836–6845.

[28] Ravi Kiran Sarvadevabhatla, Jogendra Kundu, and R. Venkatesh Babu. 2016.
Enabling My Robot To Play Pictionary: Recurrent Neural Networks For Sketch
Recognition. In Proceedings of the 2016 ACM Conference on Multimedia Conference,
MM 2016, Amsterdam, The Netherlands, October 15-19. 247–251. https://doi.org/
10.1145/2964284.2967220

[29] Rosália G Schneider and Tinne Tuytelaars. 2014. Sketch classification and
classification-driven analysis using Fisher vectors. ACM TOG 33, 6 (2014), 174.

[30] Ilya Sutskever, James Martens, and Geoffrey E. Hinton. 2011. Generating Text
with Recurrent Neural Networks. In Proceedings of the 28th ICML 2011, Bellevue,
Washington, USA, June 28 - July 2, 2011. 1017–1024.

[31] Oriol Vinyals, Suman V Ravuri, and Daniel Povey. 2012. Revisiting recurrent neu-
ral networks for robust ASR. In Acoustics, Speech and Signal Processing (ICASSP),
2012 IEEE International Conference on. 4085–4088.

[32] Fang Wang, Le Kang, and Yi Li. 2015. Sketch-based 3D shape retrieval using
Convolutional Neural Networks. In IEEE CVPR. 1875–1883. https://doi.org/10.
1109/CVPR.2015.7298797

[33] Fang Wang, Le Kang, and Yi Li. 2015. Sketch-based 3d shape retrieval using con-
volutional neural networks, In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. CVPR, 1875–1883.

[34] Junwei Wang, Xiang Bai, Xingge You, Wenyu Liu, and Longin Jan Latecki. 2012.
Shape matching and classification using height functions. Pattern Recognition
Letters 33, 2 (2012), 134–143.

[35] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas Huang, and Yihong
Gong. 2010. Locality-constrained linear coding for image classification. In CVPR,
2010 IEEE Conference on. IEEE, 3360–3367.

[36] Xiangxiang Wang, Xuejin Chen, and Zhengjun Zha. 2018. Sketchpointnet: A
Compact Network for Robust Sketch Recognition. In 2018 25th IEEE International
Conference on Image Processing (ICIP). IEEE, 2994–2998.

[37] Xinggang Wang, Bin Feng, Xiang Bai, Wenyu Liu, and Longin Jan Latecki. 2014.
Bag of contour fragments for robust shape classification. Pattern Recognition 47,
6 (2014), 2116–2125.

[38] X. Wang, C. He, M. V. Peelen, S. Zhong, G. Gong, A Caramazza, and Y. Bi. 2017.
Domain Selectivity in the Parahippocampal Gyrus Is Predicted by the Same
Structural Connectivity Patterns in Blind and Sighted Individuals. Journal of
Neuroscience 37, 18 (2017), 4705.

[39] Qian Yu, Yongxin Yang, Feng Liu, Yi Zhe Song, Tao Xiang, and Timothy M.
Hospedales. 2016. Sketch-a-Net: A Deep Neural Network that Beats Humans.
IJCV (2016), 1–15.

[40] Qian Yu, Yongxin Yang, Yi-Zhe Song, Tao Xiang, and Timothy M. Hospedales.
2015. Sketch-a-Net that Beats Humans. In Proceedings of the BMVC 2015, Swansea,
UK, September 7-10, 2015. 7.1–7.12. https://doi.org/10.5244/C.29.7

[41] Kaihao Zhang, Wenhan Luo, Lin Ma, and Hongdong Li. 2019. Cousin network
guided sketch recognition via latent attribute warehouse. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 33. 9203–9210.

[42] Xingyuan Zhang, Yaping Huang, Qi Zou, Yanting Pei, Runsheng Zhang, and
Song Wang. 2020. A Hybrid convolutional neural network for sketch recognition.
Pattern Recognition Letters 130 (2020), 73 – 82. https://doi.org/10.1016/j.patrec.
2019.01.006 Image/Video Understanding and Analysis (IUVA).

https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1145/2185520.2185540
https://doi.org/10.1145/2185520.2185540
https://doi.org/10.1109/TVCG.2010.266
https://doi.org/10.1109/TVCG.2010.266
https://doi.org/10.1016/j.cviu.2013.02.005
https://doi.org/10.1016/j.patcog.2015.11.003
https://doi.org/10.1016/j.cviu.2015.02.003
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1145/2964284.2967220
https://doi.org/10.1145/2964284.2967220
https://doi.org/10.1109/CVPR.2015.7298797
https://doi.org/10.1109/CVPR.2015.7298797
https://doi.org/10.5244/C.29.7
https://doi.org/10.1016/j.patrec.2019.01.006
https://doi.org/10.1016/j.patrec.2019.01.006

	Abstract
	1 Introduction
	2 Related Work
	3 Exploring Stroke Orders
	4 Integrating Shape and Texture with Recurrent Neural Networks
	4.1 Shape features of strokes
	4.2 Texture features for sketches
	4.3 Integrating shape and texture features with recurrent neural networks

	5 Experimental Results and Analysis
	5.1 Experiment settings
	5.2 Contributions of shape features
	5.3 Contributions of SD-RNN architecture
	5.4 Comparisons of different stroke order strategies
	5.5 Comparisons on different feature fusion strategies
	5.6 Comparisons with the state-of-the-art
	5.7 Online application

	6 Conclusion
	Acknowledgments
	References

