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Abstract

Outlier detection has recently become an important problem

in many data mining applications. In this paper, a novel

unsupervised algorithm for outlier detection is proposed.

First we apply a provably globally optimal Expectation

Maximization (EM) algorithm to fit a Gaussian Mixture

Model (GMM) to a given data set. In our approach,

a Gaussian is centered at each data point, and hence,

the estimated mixture proportions can be interpreted as

probabilities of being a cluster center for all data points.

The outlier factor at each data point is then defined as

a weighted sum of the mixture proportions with weights

representing the similarities to other data points. The

proposed outlier factor is thus based on global properties

of the data set. This is in contrast to most existing

approaches to outlier detection, which are strictly local. Our

experiments performed on several simulated and real life

data sets demonstrate superior performance of the proposed

approach. Moreover, we also demonstrate the ability to

detect unusual shapes.

1 Introduction

Outlier detection refers to the problem of finding pat-
terns in data that do not conform to expected behav-
ior. These non-conforming patterns are often referred
to as outliers or anomalies. Detection of outliers (or rare
events) has recently gained a lot of attention in many
domains, ranging from video surveillance and intrusion
detection to fraudulent transactions and direct market-
ing. For example, in video surveillance applications,
video trajectories that represent suspicious and/or un-
lawful activities (e.g. identification of traffic violators
on the road, detection of suspicious activities in the
vicinity of objects) represent only a small portion of
all video trajectories. Similarly, in the network intru-
sion detection domain, the number of cyber attacks on
the network is typically a very small fraction of the to-
tal network traffic. Although outliers are by definition
infrequent, in each of these examples, their importance
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is quite high compared to other events, making their
detection extremely important.

Data mining techniques that have been developed
for this problem are based on both supervised and unsu-
pervised learning. Unlike supervised learning methods
that typically require labeled data (the training set) to
classify rare events [1], unsupervised techniques detect
outliers (rare events) as data points that are very differ-
ent from the normal (majority) data based on some pre-
specified measure. These methods are typically called
outlier/anomaly detection techniques, and their success
depends on the choice of similarity measures, feature
selection, weighting, and most importantly on an ap-
proach used to detect outliers.

Outlier detection techniques can be categorized into
several groups: (1) statistical or distribution-based ap-
proaches; (2) geometric-based approaches; (3) profiling
methods; and (4) model-based approaches. In statisti-
cal techniques [2, 3], the data points are typically mod-
eled using a data distribution, and points are labeled
as outliers depending on their relationship with the dis-
tributional model. Geometric-based approaches detect
outliers by (i) computing distances among points using
all the available features [4, 5] or only feature projec-
tions [6]; (ii) computing densities of local neighborhoods
[7, 8]; (iii) identifying side products of the clustering al-
gorithms (as points that do not belong to clusters) [9]
or as clusters that are significantly smaller than others.
In profiling methods, profiles of normal behavior are
built using different data mining techniques or heuristic-
based approaches, and deviations from them are consid-
ered as outliers. Finally, model-based approaches usu-
ally first characterize the normal behavior using some
predictive models (e.g., replicator neural networks [10]
or unsupervised support vector machines [11]), and then
detect outliers as deviations from the learned model.

One of the main challenges of outlier detection al-
gorithms are data sets with non-homogeneous densi-
ties. Clustering-based outlier detection algorithms can-
not properly detect the outliers in case of noisy data
and unless the number of clusters is known in advance.
In this paper, we propose a novel approach that suc-
cessfully solves these challenges. First we fit a Gaus-
sian Mixture Model (GMM) with Gaussians centered
at each data point to a given data set. Since we only
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estimate the mixture proportions, the estimation in the
EM framework leads to a convex optimization with a
unique globally optimal solution (e.g., see [12]).

Intuitively, each mixture proportion represents the
degree to which the point is a cluster center. The higher
the mixture proportion, the more likely it is a cluster
center, which means it has higher influence on other
points. Reversely, the lower the mixture proportion
is, the less likely the point is a cluster center, which
means it has lower influence on other points. The
outlier factor at each data point is then defined as a
weighted sum of the mixture proportions with weights
representing the similarities to other data points. The
main advantage of the proposed approach is that it
brings a global information to each data point. Thus,
each outlier decision is made in global context. In
contrast, the existing density based approaches usually
only consider the local neighborhoods of points, which
make them unable to consider global information in the
computation of outliers.

The remainder of this paper is organized as fol-
lows. In Section 2, we briefly review some well-known
geometric-based outlier detection algorithms. The de-
tails of the proposed approach is given in section 3. Sec-
tion 4 gives the experimental results to show the advan-
tage of the proposed approach. The time complexity of
the proposed approach is analysed in Section 5. Con-
clusion and discussion are given in Section 6.

2 Related Work

Breunig et al. [7] assign an outlier score to any given
data point, known as Local Outlier Factor (LOF),
depending on distances in its local neighborhood. LOF
as well as all other outlier detection methods based
on local neighbors have difficulty to identify outliers
in data sets with varying densities. A simple example
of such data sets is shown in Fig. 1. There are four
outliers and two clusters with different densities. As
we show in Section 4, LOF is unable to detect the four
outliers for any size of the local neighborhood. Besides,
some distance-based outlier detection work has been
introduced recently [36, 34, 35].

Tang et. al [13]introduced the Connectivity-based
outlier factor (COF) algorithm, dual to the LOF al-
gorithm. Analog to LOF, COF algorithm identifies as
outliers points where a quantity called average chain-
ing distance is larger than the average chaining distance
at their k-nearest neighborhood. Instead of comparing
the density of the point to its neighbors densities to
calculate the outlier factor as in LOF, COF algorithm
considers the Set Based Nearest path (SBN), which is
basically a minimal spanning tree with k nodes, start-
ing from the point in question. Outlier factor of a point
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Figure 1: A simulated data set with two clusters of
different densities and four outliers A, B, C and D.

is calculated using the SBN for that particular point
and that of its neighbors. Both LOF and COF are very
similar in nature, and are based on local neighborhoods.

Papadimitriou et al. [8] computes the neighborhood
size (the number of neighbors) for each point and
identifies as outliers points whose neighborhood size
significantly vary with respect to the neighborhood size
of their neighbors. More precisely, they propose the use
of Multi-granularity Deviation Factor (MDEF). MDEF
measures to which extent the density in a point varies
from the average density in its neighborhood. Note
that here the density is measured as the number of
neighbors within a specified distance (and not as the
average distance of the specific number of neighbors as
it is basically performed in LOF). Instead of assigning
an outlier score to a test point, the LOCI algorithm
uses a richer LOCI plot which contains information
such as inter-cluster distance, cluster diameter, etc.
Recent extensions of this algorithm also use density
estimates. In [14] a kernel based distribution density
estimate is used in context of LOCI-based on-line outlier
detection [8]. This approach uses Epanechnikov kernels
with fixed bandwidths throughout the whole data set.
Lazarevic and Kumar [15] introduce a novel feature
bagging approach to detection outliers. It combines
results from multiple outlier detection algorithms that
are applied using different set of features.

Many of the earlier clustering-based outlier detec-
tion techniques find outliers as by-product of a clus-
tering algorithm [16, 17]. There, the data point which
does not belongs to any cluster is considered as an out-
lier. For example, Jiang et. al [18] proposed a variant
of k-means algorithm to detect outliers. Since the main
aim is to find clusters, such techniques are not optimized
to find outliers. However, several clustering based tech-
niques focus on detecting outliers, instead of generating



clusters. The CLAD algorithm [19] derives the width
from the data by taking a random sample and calculat-
ing the average distance between the closest points. All
the clusters whose density is lower than a threshold are
declared as ’local’ outliers while all those clusters which
are far away from other clusters are declared as ’global’
outliers. FindCBLOF [20] uses squeezer [21] to deter-
mine the Cluster-Based Local Outlier Factor (CBLOF)
for each data point. Similar to it, Barbara et. al [22]
introduced an approach which is based on Transduc-
tive Confidence Machines. One of the main problems
of DBSCAN [17] is that it cannot deal with clusters of
different densities. A recent clustering algorithm called
OPTICS [23] can however perform well in the presence
of unknown number of clusters with various densities.
It is extended for outlier detection [24]. As reported in
[25], it is very similar to LOF [7]. The main problem of
clustering-based outlier detection techniques is that the
outlier factor is a direct outcome of clustering. Conse-
quently, the quality of outlier detection is directly linked
to the quality of clustering. Although the proposed ap-
proach is related to clustering in that we estimate the
degree of being cluster center for each data point, we
actually do not perform any clustering. Therefore, the
quality of the proposed outlier factor is not directly re-
lated to any clustering outcome.

3 Convex Optimization and Outlier Detection

Given a set of data points X = {x1, . . . , xn}, a standard
Gaussian mixture model clustering seeks to maximize
the scaled log-likelihood function

l(π1:m, µ1:m, λ ;X ) =
1
n

n∑

i=1

log[
m∑

j=1

πjp(xi|µj , λ)](3.1)

where m is the number of model components, πj =
p(ωj |λ) represents the strength of jth component ωj

with
∑m

i=1 πi = 1, and π1:m is a vector composed of
πj for j = 1, . . . , m. The probability p(xi|µj , λ) is
a Gaussian and λ is a vector of parameters specified
below.

In the standard mixture model µj is the unknown
mean vector for jth component and is estimated to-
gether with other parameters using an EM algorithm.
Since our goal is not clustering but an estimation of
an outlier factor at every data point, we assume that
each data point is a cluster center. Thus, in our setting,
m = n and µj = xj for j = 1, . . . , n. This way, the
mixture proportion πj represents the likelihood of point
xj to be a cluster center. We obtain a simplified version
of Eq. (3.1):

l(π1:m ;X ) =
1
n

n∑

i=1

log[
n∑

j=1

πjp(xi|xj , λ)].(3.2)

We obtain a particularly simple version of the EM
algorithm in which at tth iteration, we only need to
estimate the vector λt = {π1(t), · · · , πm(t)}. As it is
the case in every EM algorithm, we iterate the following
two steps.

In E-step we compute for each class i = 1, . . . , n
and for each data point k = 1, . . . , n:

p(xi|xk, λt) =
p(xk|xi, λt)p(xi|λt)

p(xk|λt)
(3.3)

=
p(xk|xi)πi(t)∑n

j=1 p(xk|xj)πj(t)
,(3.4)

since p(xi|λt) = p(ωi|λ) = πi.
Our M-step is particularly simple, since we only

need to update the mixture proportions:

πi(t + 1) =
1
n

n∑

k=1

p(xi|xk, λt).(3.5)

Then, plugging Eq. (3.4) into Eq. (3.5) gives

πi(t + 1) =
1
n

n∑

k=1

p(xk|xi)πi(t)∑n
j=1 p(xk|xj)πj(t)

(3.6)

where

p(xk|xj) =
1

σ
√

2π
e−

(d(xk,xj))2

2σ2

and d(xk, xj) is a distance between data points xk and
xj . The scale factor σ is the only parameter of the
proposed approach.

A very important property of our approach is the
fact that the recursive estimation in Eq. (3.6) has
a globally unique solution, since we perform convex
optimization that is guaranteed to converge to the
global optimum if distance d is a Bergman divergence
[12]. A particular instance of a Bergman divergence is
the Euclidean distance [26].

In order to provide a more detailed explanation of
Eq. (3.6), we denote skj = p(xk|xj). We observe that
S = (skj) is the affinity matrix of the graph spanned by
the data set X , where skj represents the strength of the
connection between points xk and xj . Consequently, we
obtain the following formulation of Eq. (3.6)

πi(t + 1) =
1
n

n∑

k=1

skiπi(t)∑n
j=1 skjπj(t)

,(3.7)

which can be expressed as:

πi(t + 1) =
1
n

n∑

k=1

skiπi(t)
zk(t)

(3.8)



where

zk(t) =
n∑

j=1

skjπj(t).(3.9)

From the view of point xk, Eq. (3.9) represents how
all the other points influence it. In particular, the term
skjπj(t) represents how much point xk is influenced by
point xj with skj being the strength of the connection
and πj(t) measuring the importance of point j. This
motivates the proposed definition of the outlier factor
at point xk as

Fk = zk(th) =
n∑

j=1

skjπj(th),(3.10)

where th represents the final iteration step of Eq. (3.8).
In other words, we iterate Eq. (3.8) until convergence,
and then define the outlier factor by Eq. (3.10).

According to Eq. (3.10), the smaller Fk, the more
likely is data point xk to be an outlier. However, usually
an outlier factor is defined so that the larger it is, the
more likely a given data point is an outlier (e.g., [13, 7]).
Therefore, we will use the reciprocal of Eq. (3.10) as our
definition of outlier factor in the rest of this paper,
and will denote it with

OFk =
1
Fk

.(3.11)

As we demonstrate in the next section, the globally
optimal procedure used to define the proposed outlier
factor leads to robust outlier detection results.

4 Experimental Results

Our experiments were performed on several synthetic
and real life data sets. In all our experiments, we have
assumed that we have information about the normal
behavior (normal class) and rare events (outliers) in the
data set. However, we did not use this information
in detecting outliers, i. e., we have used completely
unsupervised approach. Besides, in order to show the
improvement of the proposed approach, we compare to
three state of the art outlier detection algorithms: COF
[13], LOF [7], and LOCI [8].

4.1 Synthetic data sets In Fig. 2, a synthetic data
set is used to illustrate the advantage of the proposed
approach compared to LOF [7] and COF algorithms
[13]. The data set contains 41 points in the sparse
cluster1, 104 points in the dense cluster2, and four
outstanding outliers A, B, C and D (marked with red
dots).

LOF and COF methods were not able to detect
points A and B as outliers for any value of its parameter

k. Fig. 2(a,b,c,d) illustrates this fact for two values of
parameter k (k = 10 and k = 20). Unlike LOF and
COF, the proposed approach is able to clearly identify
all four outliers (Fig.2(e)).

As our second synthetic data set on the plane, we
use an elongated data set shown in Fig. 3(a). The
Curvepoints data set is obtained by digitalization and
thresholding of a silicon wafer micrography image. The
goal is to detect and eliminate outliers (image artifacts)
in order to obtain a proper parametric approximation
of the depicted curve. The data set consists of 868
two-dimensional points positioned along a curved line.
It contains three outstanding outliers with coordinates
[217, 855], [706, 714] and [707, 716] , which are marked
with a, b, c in Fig. 3(a). Due to the image resolution,
the last two outliers are shown as a single point in Fig.
3(a), since they are very close to each other.

As can be seen in Fig. 3(b,c) neither LOF nor
COF can correctly detect the three outliers, even though
COF is designed for finding outliers in elongated data
sets. Here we take a different approach from COF
to deal with elongated data sets. We propose to
learn new distances between data points so that we
can apply our outlier detection method without any
modifications. The new distances are learned with
Path-Based Similarity Measure [27, 28]. The idea of this
measure is to compute new distances between points by
considering certain paths through the data set. First a
weighted complete graph G = (X , E, d) is constructed
with edge weights dij = d(xi, xj) being the original
distance between points xi, xj . Let Pij represent all
paths from point xi to point xj . Then the new distance
between points xi and xj is defined as:

d′ij = minp∈Pij{max1≤h≤|p|−1d(p[h], p[h + 1])}(4.12)

where p[h] represents the hth point in the path p. As
shown in [27, 28], d′ can be efficiently computed with a
liner algorithm with respect to the the number of data
points n.

For the Curvepoints data set, the distance between
points are learned according to Eq. (4.12). Then, the
proposed outlier detection algorithm is used and the
result is shown in Fig. 3(d). To summarize, we propose
a two step process for outlier detection in elongated data
sets: first learning new distances and then detecting the
outliers.

We have also tested LOCI on both data sets (two
cluster and Curvepoints), and it was unable to correctly
detect the outliers. We did not include any figures
with LOCI results, since it only returns binary labels
for outliers; thus, making the visualization as shown in
Figs. 2 and 3 impossible.
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Figure 2: Results on the data set in Fig. 1 for LOF in (a) k=10 and (b) k=20, for COF in (c) k=10 and (d) k=20
The result of the proposed approach is shown in (e).

4.2 Performance Evaluation Before we describe
our experimental results on real data sets in Section
4.3, we briefly describe here a standard performance
measure. Outlier detection algorithms are typically
evaluated using the detection rate, the false alarm rate,
and the ROC curves [33]. In order to define these
metrics, let us look at a confusion matrix, shown in
Table 1. In the outlier detection problem, assuming
class ”C” as the outlier or the rare class of the interest,
and ”NC” as a normal (majority) class, there are four
possible outcomes when detecting outliers (class ”C”) -
namely true positives (TP), false negatives (FN), false
positives (FP) and true negatives (TN).

From Table 1, detection rate and false alarm rate
may be defined as follows:

Detection Rate = TP/(TP+FN)
False alarm rate = FP/(FP+TN)(4.13)

Detection rate gives information about the relative
number of correctly identified outliers, while the false
alarm rate reports the number of outliers misclassified
as normal data records (class NC). The ROC curve
represents the trade-off between the detection rate and
the false alarm rate and is typically shown on a 2-
D graph, where false alarm rate is plotted on x-axis,
and detection rate is plotted on y-axis. The ideal
ROC curve has 0% false alarm rate, while having 100%

Table 1: Confusion matrix defines four possible scenar-
ios when classifying class ”C”

Predicted Outliers Predicted Normal
Class C Class NC

Actual Outliers True Positive False Negative
Class C (TP) (FN)

Actual Normal False Positive True Negative
Class NC (FP) (TN)

detection rate. However, the ideal ROC curve is hardly
achieved in practice. The ROC curve can be plotted by
estimating detection rate for different false alarm rates.
The quality of a specific outlier detection algorithm can
be measured by computing the surface area under the
ROC curve (AUC). The AUC for the ideal ROC curve
is 1, while AUCs of ”less than perfect” outlier detection
algorithms are less than 1.

4.3 Real data sets The real life data sets used in our
experiments have been used earlier by other researchers
for the outlier detection [32, 15]. Since rare class
analysis is conceptually the same problem as the outlier
detection, we employed those data sets for the purpose
of outlier detection, where we detected rare class as
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Figure 3: Curvepoints are shown in (a) and the outlier detection result of COF in (b), LOF in (c), and of the
proposed approach in (d).

outliers. In all our experiments reported in this section,
we use the original, Euclidean distances as used by other
researches on the test data sets. In particular, we did
not use Eq. (4.12) to modify the distances.

The COIL 200 data set consists of two classes
and the size of the data set is 5822 with 348 outliers.
Similar to COIL 200, Mammography also has two
classes, in which the larger one contains 10923 instances
and the smaller one contains 260 instances. The
Rooftop data set contains 17829 data points with 9
continuous features, where 781 data points (4.38%
of entire distribution) correspond to the rare class
(outliers). For the Satimage data set we choose the
smallest class as the minority class and collapsed the
remaining classes into one class as was done in [32]. This
procedure gives us a skewed 2-class data set, with 5809
majority class examples and 626 minority class outliers.

The results of the proposed approach compared to
other approaches are shown by ROC curves in Fig. 4
and AUC values in Table 4.3. It can be observed that

the proposed approach outperforms all of the state of
art methods [7, 13]. The improvement in the detection
performance for the COIL 200 is very obvious, but it is
still under 60% (Fig. 4 and Table 4.3). The main reason
may be the large number of attributes in the data set,
which has 85 attributes. Similar to COIL200, Satimage
data set has 36 features for each object. Therefore,
the proposed approach has significant improvement for
Satimage data set (Fig. 4(b) and Table 4.3), but it still
needs further improvement. The greatest enhancements
in outlier detection are achieved for the mammography
and Rooftop data sets (Fig. 4(c),(d) and Table 4.3).

4.4 Unusual Shapes Among the visual features of
multimedia content, shape is of particular interest be-
cause humans can often recognize objects solely based
on shape. There has been a great amount of research
on shape analysis, focusing mostly on shape indexing,
clustering and classification. Recently [29] introduced
a new problem of finding shape discords, which are the
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Figure 4: ROC curves for LOF (red), COF (green), and the proposed approach (black) for the data sets: (a)
COIL 200, (b) Satimage, (c) Mammography, and (d) Rooftop.

Table 2: AUC (areas under the curves).
AUC

Data sets LOF COF Proposed Approach
COIL200 0.499 0.505 0.529
Satimage 0.497 0.503 0.533
Mamography 0.710 0.780 0.862
rooftop 0.538 0.498 0.722

most unusual shapes in a collection. Thus, shape dis-
cords are simply outliers in shape data sets. In [29], the
shape discord is defined as follows. Given a collection
of shapes S, shape D is the discord of S if D has the
largest distance to its nearest neighbor, i.e., ∀ shape C
in S, the nearest neighbor MC of C, and the nearest
match MD of D, Dist(D,MD) > Dist(C,MC). This
is a particularly simple definition of outliers. The main
advantage of the approach in [29] is the fact that it is
three to four orders of magnitude faster than the brute
force algorithm for finding so defined shape discords.
However, with the increasing speed, the accuracy of the
approach is reduced. The first nearest neighbor is a too
local criterion for detecting unusual shapes. For exam-
ple, in Fig. 5, there are 35 shapes in the shape database,
two bones, ten hearts, twenty deers and three horses. It



Figure 5: The shape database for unusual shape detec-
tion

is obvious that the five outliers in the data set should
be the two bones and three horses. The difference be-
tween two shapes is calculated by the shape dissimilarity
measure introduced in [30], called Inner Distance Shape
Context (IDSC). As demonstrated in [30], IDSC pro-
vides very good shape retrieval results. However, IDSC
is not an Euclidean distance, and it is not a metric, since
it violates the triangle inequality. Therefore, our results
shown below demonstrate the ability of the proposed
approach to work with distances measures that are not
metrics.

According to the definition of [29], the first five
shape discords are shown in Fig. 6 (first row). Thus,
the approach in [29] identified only one horse as outlier
and it missed two most obvious outliers, which are the
two bones. The too local criterion in [29] is only able to
find the correct unusual shapes if they are very different
from all other shapes. However, it is not sufficient for
solving the unusual shape problem. As shapes are very
complex and there are different distance distributions in
different classes, a global context information is needed.
In contrast, the proposed outlier detection algorithm
considers the whole data set to determine the unusual
shapes. As shown in Fig. 6 (second row), it correctly
identified all five outlier shapes.

In order to further demonstrate the ability of the
proposed approach for detecting unusual shapes, it is
tested on the widely used MPEG-7 shape data set for
detecting the unusual shapes in each class. MPEG-
7 consists of 70 classes with 20 shapes in each class.
Since this data set is designed to test shape similarity
retrieval, there are large in-class variances of shapes
[31]. Nevertheless, as demonstrated by our results in

Figure 6: From left to right is the first to fifth most
unusual shapes for the data set in Fig. 5. (first row)
The unusual shape detection results of [29]. (second
row) The unusual shape detection results of proposed
approach

.

Fig. 7 for three example shape classes, the detected
outlier shapes can be easily justified. For each class,
the two shapes in the first row are the outliers and the
rest of the 18 shapes in the class are shown in rows
2 to 4. For the class in Fig. 7 (a), the two ’comma’
outliers are distorted a lot in comparison to the other
shapes. Similarly, the detected unusual hearts in Fig. 7
(b) are very different compared to other hearts. For the
elephants in Fig. 7 (c), the two elephants have different
viewpoints and their pose is different from the others.

5 Time Complexity Analysis

Since Eq. (3.9) is computed for each data point, and it
requires computing Eq. (3.8), the complexity of a single
iteration is O(n3), where n is the number of data points.
For N iterations, the total time complexity is O(N n3).
Empirically, we set N to 5000 in all our experiments.
Thus, the proposed method has cubic time complexity
with rather large constant factor N .

Compared to the proposed approach, LOF algo-
rithm requires a constant number of nearest neighbor
searches per each point in the dataset. Assuming that
there is available indexing structure to support fast
nearest neighbor search, the computational complexity
of static LOF is O(n log n) where n is the number of
data points. The COF algorithms requires computa-
tion of k-nearest neighbor queries per each example and
computation of the average chain distance. Under the
same assumption as above, the computational complex-
ity of COF is O(n log n).

6 Conclusions

We have presented a novel technique to detect outliers
based on a globally optimal variant of EM. The pro-
posed approach does not make any assumption about
the data distributions and it is unsupervised. It only



requires one parameter, the σ of a Gaussian kernel. We
have shown that it provides excellent results for syn-
thetic and widely used real data sets. In particular,
it significantly outperforms the approaches in [7, 13].
Though it also outperforms the approach in [29] for
detecting unusual shapes in the shape database, as it
considers global context information, the complexity is
much higher than [29]. Therefore, reducing the com-
plexity will be the main goal in future.
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Figure 7: The unusual shape detection results on three
example shape classes of the MPEG-7 data set. The
two most unusual shapes for each class are shown in
top rows.




