
Affinity Learning on a Tensor Product Graph
with Applications to Shape and Image Retrieval

Xingwei Yang and Longin Jan Latecki
Department of Computer and Information Sciences

Temple University, Philadelphia, USA
xingwei@temple.edu, latecki@temple.edu

Abstract
As observed in several recent publications, improved re-

trieval performance is achieved when pairwise similarities
between the query and the database objects are replaced
with more global affinities that also consider the relation
among the database objects. This is commonly achieved
by propagating the similarity information in a weighted
graph representing the database and query objects. Instead
of propagating the similarity information on the original
graph, we propose to utilize the tensor product graph (TPG)
obtained by the tensor product of the original graph with it-
self. By virtue of this construction, not only local but also
long range similarities among graph nodes are explicitly
represented as higher order relations, making it possible to
better reveal the intrinsic structure of the data manifold. In
addition, we improve the local neighborhood structure of
the original graph in a preprocessing stage. We illustrate
the benefits of the proposed approach on shape and image
ranking and retrieval tasks. We are able to achieve the bull’s
eye retrieval score of 99.99% on MPEG-7 shape dataset,
which is much higher than the state-of-the-art algorithms.

1. Introduction
Image and shape retrieval belong to central topics in

computer vision. Similar to other ranking/retrieval tasks,
once a query object is given, the goal is to retrieve the
most similar objects in the database. Traditionally, the
performance of the retrieval is decided by the similar-
ity/dissimilarity measure, which separately compares the
query to each database object. However, these pairwise
comparisons ignore the structure of the data manifold de-
termined by similarities between the database objects. As
shown by a sequence of recent papers, [30, 27, 9, 2], consid-
ering the data manifold structure significantly improves the
performance of ranking/retrieval. The basic idea is inspired
by the success of google PageRank ranking. The data mani-
fold is represented as a graph with edge weights determined
by the initial pairwise similarity values. Then the pairwise

similarities between the query and each database object are
reevaluated in the context of other database objects, where
the context of each object is a set of other objects most sim-
ilar to it and the reevaluation is obtained by propagating the
similarity information following structure of the weighted
edge links in the graph. The reevaluation is closely related
to random walks on the graph, e.g., [22, 28].

Compared to the existing methods, our approach differs
in two main aspects. First, instead of propagating the simi-
larity information on the original graph, we propose to uti-
lize the tensor product graph (TPG) obtained by the ten-
sor product of the original graph with itself. Since TPG
takes into account a higher order information compared to
the original methods, it comes at no surprise that we obtain
better retrieval performance. Higher order information has
been utilized in many applications before, e.g., [6, 29], but
it comes at the price of higher order computational com-
plexity and storage requirement. The key feature of the pro-
posed approach is that the information propagation on can
be computed with the same computational complexity and
the same amount of storage as the propagation on the origi-
nal graph. We utilize a graph diffusion process to propagate
the similarity information on TPG, but we never compute
it directly on TPG. Instead, we derive a novel iterative al-
gorithm to compute it directly on the original graph, which
is guaranteed to converge. After its convergence we obtain
new edge weights that can be interpreted as new, learnt sim-
ilarities. They are then used for final retrieval ranking.

Fig. 1 compares the retrieval results of the learnt similar-
ities to those of original similarities. The queries are shown
in the first column. The first row shows retrieval results of
an original image similarity measure on a subset of Caltech
101 dataset. The second row shows the retrieval results af-
ter learning the similarities. The third row shows retrieval
results of an original shape similarity measure [15] on the
MPEG-7 dataset. The results after learning the similarities
with the proposed method are shown in the fourth row. As
can be seen the proposed similarity learning is able to cor-
rect wrong retrieval results of the original similarities.

2369

latecki
Text Box
 CVPR 2011

Query 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Query 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Query 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Query 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Figure 1. First row: the query and the retrieval results with an original image similarity measure on subset of Caltech 101 dataset. Second
row: the same query and the retrieval results after the proposed similarity learning. Third row: the query and the retrieval results with a
shape similarity measure on the MPEG-7 shape dataset. Fourth row: the same query and the retrieval results with learned similarities.

Second, it has been noticed that if the pairwise similari-
ties are not accurate, the full graph contains too much noise,
which hurts the affinity propagation [10, 22]. Thus, it is
natural to constrain the relation from each element to its
neighbors [22]. This significantly reduces the amount of
noisy pairwise similarities, since the pairwise similarities
are more accurate for close neighbors. A common prac-
tice to achieve this is to keep only the edge weights of k
nearest neighbors (kNN) of each object and zero out the
other edge weights, i.e., remove the corresponding edges.
However, the selection of kNN is also easily influenced by
errors in the pairwise similarities and a ”good” number of
nearest neighbors k may be different for different objects.
To better define the neighbors of a point, we propose a novel
way to construct the neighborhood structure, which is called
Dominant Neighborhood (DN). Like a dominant set defined
in [19], DN considers the affinities among the neighbors to
determine the best neighborhood structure, which makes it
more robust to errors and outliers in pairwise similarities.
Another advantage of DN is that it automatically determines
the optimal number of neighbors. This solves one of the se-
rious problems of kNN . If k is too large for a given point,
its kNN includes points that are not its true neighbors. This
fact is illustrated for binary shapes in Fig. 2. The fact that
kNN for k = 9 of the dog contains two horses (first row),
may cause any affinity learning algorithm to lose the dis-
tinction between dogs and horses. The DN of the dog in the
second row correctly contains only dogs, making it easier to
learn the distinction between dogs and horses. To illustrate
the problem of kNN from the point of view of a data mani-
fold, we show a toy example in Fig. 3(a). The point marked
with a triangle incorrectly contains points of two classes in
its kNN for k = 50. As shown in Fig. 3(b), the domi-

Query 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Query 1st 2nd 3rd 4th 5th 6th 7th

Figure 2. First row: a classic kNN for k = 9 of a dog. It contains
two horses making it harder for any affinity learning algorithm to
discriminate dogs from horses. Second row: the proposed domi-
nant neighborhood (DN) obtained from kNN in the first row.

(a) −2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

(b) −2 −1 0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5

6

Figure 3. (a) The blue stars show a classical kNN of the point
marked with the blue triangle for k = 50. (b) The proposed, dom-
inant neighborhood (DN) of the same point. It is obtained as a
dominant subset form the kNN in (a).

nant neighborhood of this point only contains points form
its class.

In §2 we discusses the difference between our method to
several related works. In §3, the distance learning algorithm
on TPG is introduced in details. The construction of DN is
described in §6. The experimental results are given in §7.

2. Related Work

Zhou et al. [30] proposed to improve ranking of retrieved
objects by utilizing the data manifold structure. In other
words, the context information of similar database objects is

2370

used to improve ranking results. Recently, Bai et al. [2] pro-
posed to utilize the context information for shape retrieval
with Label Propagation, which was originally designed for
semi-supervised learning. Kontschieder et al. [9] proposed
a different way to utilize the context information to improve
the performance. A graph diffusion process is utilized for
retrieval in Yang et al. [27], where a Locally Constraint Dif-
fusion Process (LCDP) is proposed. LCDP has been used
in [15] and [23] to improve their results. Graph diffusion
has also been utilized for manifold embedding [3]. How-
ever, the distances relation among data after embedding are
not suitable for retrieval, which is demonstrated in our ex-
perimental results. Furthermore, Bai et al. [1] introduce a
novel retrieval methods, co-transduction, motivated by co-
training. It fuses different similarity/dissimilarity measures
to better determine the relation between objects.

Content based image retrieval is getting more attention
recently. The classic methods [18, 20] use the bag of fea-
ture image representation for image retrieval. Jegou et al.
[8] refine the affinity among the objects by enforcing the
neighborhood relation to be symmetric. To reduce the com-
plexity of current algorithms, Jegou et al. [7] proposes a
novel features extraction approach. Different from the cur-
rent methods, we improve the image retrieval results by uti-
lizing the higher order information of the TPG.

3. Affinity Learning
In this section we describe a novel context-sensitive

affinity learning algorithm. It is introduced as a diffu-
sion process on a Tensor Product Graph (TPG). However,
the size of TPG is quadratic as compared to the original
graph, which makes the diffusion on the TPG impractical on
large datasets due to both high computation time and high
memory requirement. To solve this problem, we propose
a novel iterative algorithm on the original graph (Section
5), and prove that it is equivalent to the diffusion process
on TPG. Consequently, both time complexity and memory
requirements of the iterative algorithm are comparable to
other affinity learning methods like diffusion on the origi-
nal graph [22] or LGC[30, 28].

In the paper, the data is represented as an edge-weighted
graph G = (V,A), where V = {v1, ..., vn} is the set of
vertices representing the data points and A is the graph ad-
jacency matrix A(i, j) = (aij) for i, j = 1, . . . , n, where
aij presents the edge weight from vi to vj . We assume that
A is nonnegative and the sum of each row is smaller than
one. A matrix A that satisfies these requirements can be
easily created from a stochastic matrix (see Section 6).

It is well known that a graph diffusion process is able to
reveal the intrinsic relation between objects [3, 22]. Proba-
bly the simplest realization of a diffusion process on a graph
is by computing powers of the graph matrix, i.e., the edge
weights at time t are given by At. Usually, the time is dis-

G G G = G⊗G
Figure 4. An example of a tensor product graph. We do not show
the self connections (loops), but each node has a loop in G.

crete and t corresponds to the iteration number. However,
this process is sensitive to the number of iterations [10]. For
example, if the sum of each row of A is smaller than one,
as we assumed, then it converges to zero matrix, in which
case determining a right stopping time t is critical. In order
to make the graph diffusion process independent from the
number of iteration, accumulation between different num-
bers of iterations is widely used [10]. Following this strat-
egy, we consider the graph diffusion process defined as

A(t) =
t∑

i=0

Ai (1)

Our assumption that the sum of each row of A < 1 is
equivalent to the fact that the the maximum of the row-wise
sums of matrix A < 1. It is known that the maximum of
the absolute values of the eigenvalues is bounded by the the
maximum of the row-wise sums. Therefore, we obtain that
the maximum of the absolute values of the eigenvalues of A
is smaller than one. Consequently, (1) converges to a fixed
and nontrivial solution given by limt→∞ A(t) = (I−A)−1,
where I is the identify matrix.

4. Diffusion Process on Tensor Product Graph
The Tensor Product Graph (TPG) G = G⊗G is defined

as G = (V × V,A). Thus, each vertex of G is a pair of
vertices in G, and consequently, it is indexed with a pair of
indices. The adjacency matrix of G is defined as A = A⊗A,
where ⊗ is the Kronecker product [11, 24]. In particular, for
α, β, i, j = 1 . . . , n we have

A(α, β, i, j) = A(α, β) ·A(i, j) = aα,β · ai,j .

Thus, if A ∈ Rn×n, then A = A ⊗ A ∈ Rnn×nn. An
example is shown in Fig. 4.

We define the diffusion process on TPG as

A(t) =

t∑
i=1

Ai. (2)

Since the edge weights of TPG relate 4 tuples of original
vertices, G contains high order information than the input
graph. The higher order information is helpful for revealing
the intrinsic relation between objects, which is obtained by
the diffusion process on TPG.

2371

As is the case for (1), the process (2) also converges to a
fixed and nontrivial solution

lim
t→∞

A(t) = lim
t→∞

t∑
i=1

Ai = (I − A)−1. (3)

To show this, we only need to show that the sum of each
row of A is smaller than 1, i.e.,

∑
β,j A(αβ, ij) < 1, where

β, j both range from 1 to n. This holds, since∑
βj

A(αβ, ij) =
∑
βj

aαβaij =
∑
β

aαβ
∑
j

aij < 1. (4)

Consequently, (3) provides a closed form solution for the
diffusion process on TPG. However, our goal was to utilize
TPG to learn new affinities on the original graph G. i.e., to
obtain a new affinity matrix A∗ of size n × n. The matrix
A∗ containing the learned affinities is defined as

A∗ = vec−1((I − A)−1 vec(I)), (5)

where I ia an n × n identity matrix and vec is an operator
that stacks the columns of a matrix one after the next into a
column vector. Formally, for a given m× n matrix B

vec(B) = (b11, . . . , bm1, b12, . . . , bm2, . . . , b1n, . . . , bmn)
T .

Since vec : Rm×n → Rmn is an isomorphism, its inverse
exists, and we denote it with vec−1.

To summarize, for the input affinity matrix A, the new
learned affinities are given by matrix A∗ defined in (5).
However, the affinity learning with the proposed diffusion
process on TPG (2) is impractical for large graphs due to
high storage and computing cost. The diffusion on the orig-
inal graph G requires O(n2) storage (number of the ma-
trix elements) and its computation cost is determined by
the cost of matrix inversion, which is O(n3) for Gauss-
Jordan elimination or about O(n2.4) for the Coppersmith-
Winograd algorithm. In contrast the diffusion on TPG re-
quires O(n4) storage and its computation cost is O(n6)
for Gauss-Jordan elimination or about O(n4.8) for the
Coppersmith-Winograd algorithm. Therefore, we propose
a novel iterative algorithm in Section 5 to compute (2). Its
storage and computation cost is comparable to the diffusion
on the original graph, since it is executed on the original
graph.

5. Iterative Algorithm for Diffusion on TPG
We define Q(1) = A and

Q(t+1) = A Q(t) AT + I, (6)

where I is the identity matrix. We iterate (6) until con-
vergence. Let us denote the limit matrix by Q∗ =
limt→∞ Q(t). The proof of the convergence of (6) and a

closed form expression for Q∗ both follow from the follow-
ing key equation

lim
t→∞

Q(t) = Q∗ = A∗ = vec−1((I − A)−1 vec(I)). (7)

The remainder of this section is devoted to prove this equa-
tion. Since Q∗ = A∗, we obtain that the iterative algorithm
on the original graph G defined by (6) yields the same affini-
ties as the TPG diffusion process on G.

In order to prove (7), we first transform (6) to

Q(t+1) = A Q(t) AT + I = A(A Q(t−1) AT + I)AT + I

= A2 Q(t−1) (AT)2 +A I AT + I = ...

= At A (AT)t +At−1 I (AT)t−1 + ...+ I

= At A (AT)t +
t−1∑
i=1

Ai I (AT)i (8)

Since (by our assumption) sum of each row of A < 1, we
have limt→∞ At A (AT)t = 0, and consequently,

Q∗ = lim
t→∞

Q(t+1) = lim
t→∞

t−1∑
i=1

Ai I (AT)i (9)

We observe that the following identity holds

vec(A S AT) = (A⊗A)vec(S) = A vec(S), (10)

where we recall that ⊗ is the Kronecker product. As a con-
sequence we obtain for every i = 1, 2, . . .

vec(Ai I (AT)i) = Aivec(I). (11)

Our proof of (11) is by induction. Suppose

vec(Ak I (AT)k) = Akvec(I)

holds for i = k, then for i = k + 1 we have

vec(Ak+1 I (AT)k+1) = vec(A (Ak I (AT)k) AT)

= A vec(Ak I (AT)k) = A Akvec(I) = Ak+1vec(I)

From (11) and from the fact that vec of a sum of matrices is
sum of their vec’s, we obtain

vec(

t−1∑
i=1

(A)i I ((A)T)i) =

t−1∑
i=1

Aivec(I). (12)

Finally from (9) and (12), we derive

vec(Q∗) = lim
t→∞

vec(

t−1∑
i=1

Ai I (AT)i) = lim
t→∞

t−1∑
i=1

(Ai vec(I))

= (lim
t→∞

t−1∑
i=1

Ai) vec(I) = (I − A)−1 vec(I) (13)

2372

This proves our key equation (7). Hence the iterative algo-
rithm (6) on G yields the same affinities as the TPG diffu-
sion process on G.

Since our iterative algorithm works on the original graph
G, both its storage and computational cost requirements are
significantly lower than those of the TPG diffusion pro-
cess. It requires O(n2) storage and its computation cost
is determined by the cost of matrix multiplication, which
is O(n3) for direct implementation or about O(n2.4) for
the Coppersmith-Winograd algorithm. Consequently, if the
number of iterations is t = T , then its computational cost is
O(Tn3) or O(Tn2.4), correspondingly.

Graph G in Fig. 4 provides a simple example to illus-
trate the fact that the diffusion on the TPG considers the
information from more edge weights than the diffusion on
the original graph. For simplicity we compare only the sec-
ond iteration, i.e., we compare A(2) to Q(2) and focus on
the edge weight between 1 and 3. Since there is no edges
between 1 and 3 in G, we have a13 = a31 = 0. Therefore,
in A(2) we have a(2)13 = a12 ·a23. The corresponding weight
of the edge between 1 and 3 in Q(2) is given by

q
(2)
13 = a12 · a23 · (a11 + a22) + a12 · a33 · a33.

While a
(2)
13 only depends on the edge weights a12 and a23,

q
(2)
13 also depends on the self similarities a11, a22, a33. In

particular, we can have a
(2)
13 < q

(2)
13 if a11 + a22 > 1,

but we can also have a
(2)
13 > q

(2)
13 . Thus, TPG diffusion

utilizes more information to determine the strength of the
connection between 1 and 3 than just the connections a12
and a23 considered by the diffusion on the original graph.
The difference in the number of connections considered is
even more dramatic for t > 2. TPG diffusion also utilizes
the self-reinforcement in that the strength of the connec-
tions depends on the ratio between the similarity of each
database object to itself and the sum of its similarities to
other objects.

6. Dominant Neighbors

The derivations in the previous section depend on the as-
sumption that the affinity matrix A of graph G is nonnega-
tive and the sum of each row is smaller than one. However,
the original affinity matrix of graph G, let us call it W , usu-
ally does not satisfy these assumptions. In this section we
propose a particular way to transform W to a matrix A that
satisfies them.

In the case of retrieval and ranking, W contains pairwise
similarities between the database objects and between the
query and the database objects. Therefore, we can assume
that all entries in W are positive. It is also natural to assume
that for each object i the self similarity of i to itself is the
largest, i.e., ∀i ∀j ̸= i (wii > wij). We also can assume

that W is symmetric, since if this is not the case we can
replace W = 1

2W WT .
As we observed in the introduction, the pairwise similar-

ities are not accurate, and consequently, the graph contains
many noisy similarities. Since the pairwise similarities are
more accurate for close neighbors, the amount of noisy sim-
ilarities is significantly reduced if we set to zero all edge
weights except the k nearest neighbors (kNN) of each ob-
ject.

However, the selection of kNN is also easily influenced
by errors in the pairwise similarities and the number of suit-
able nearest neighbors k may be different for different ob-
jects. Therefore, to better define the neighbors of a point, we
propose a novel way to construct the neighborhood struc-
ture, which is called Dominant Neighborhood (DN). The
main idea is that the dominant neighborhood DN(i) of a
vertex i should correspond to a maximal clique that satisfies
DN(i) ⊆ kNN(i). As stated in [19], a maximal clique in
a weighted graph, which is called a dominant set, is a subset
of V with maximal average affinity between all pairs of its
vertices, which is equivalent to the fact that the overall sim-
ilarity among internal elements is the highest in that adding
any new element would lower it.

As is the case for kNN(i), we do not want to include
vertex i in its DN(i), therefore, we set the diagonal entries
of W to zero and obtain a matrix W0. In order to select
vertices that belong to a dominant set, we introduce an indi-
cator vector x = (x1, x2, ..., xn) over the vertices V of G. A
vertex j ∈ V is selected as belonging to a maximal clique
if and only if xj > 0. As shown in [19], each dominant
set can be obtained as a local maximizer of the following
quadratic program

maximize f(x) = (x)TW0 x (14)

subject to x ∈ ∆ = {x ∈ Rn : x ≥ 0,
n∑

j=1

xj = 1}.

Pavan and Pelillo [19] also provide an iterative method to
compute local maximizers of (14). Given an initialization
x(1), the corresponding local solution x∗ of (14) can be ob-
tained by the replicator equation [26]:

xj(t+ 1) = xj(t)
(W0 x(t))j

x(t)TW0 x(t)
j = 1, ..., n (15)

It is easy to see that x(t) ∈ ∆ with increasing t, which
means that every trajectory staring in ∆ will remain in
∆. Moreover, since W0 is symmetric, the target function
f(x) = (x)TW0 x is strictly increasing for a given initial
vector x(1) and is guaranteed to converge.

In order to obtain a dominant neighborhood DN(i) of
vertex i, we initialize (15) with the classical kNN(i). More
precisely, we set xj(1) =

1
k if j ∈ kNN(i) and xj(1) = 0

2373

otherwise. After (15) converged to the corresponding local
solution x∗, a vertex j ∈ DN(i) if and only if x∗

j > 0.
As discussed above, the dominant neighborhood of

DN(i) is determined not only by the pairwise relation of
i to other objects, but also the relation between the other
objects, which makes DN(i) more robust to noisy pairwise
similarities than kNN(i). Thus, we use it to first refine the
matrix W to W ∗ so that the neighbors of each data is robust
to noise and outliers. The matrix W ∗ is obtained from W
by setting w∗

ij = wij if j ∈ DN(i) and w∗
ij = 0 other-

wise. Then, W ∗ is transformed into a stochastic matrix. A
is derived from W ∗, where aij = w∗

ij if j ∈ KNN(i) and
aij = 0 otherwise.

7. Experimental Results
To demonstrate the advantages of our approach, we test

our algorithm on both shape and image retrieval tasks. On
all test datasets, the proposed method achieves excellent re-
sults, which are better than the state-of-art methods. Since
our iterative algorithm to compute the TPD diffusion is
guaranteed to converge, we only need to ensure that the
number of iterations is not too small. It is set to 200 for
all test datasets.

If pairwise distances are provided for a given dataset, we
transform the distances to similarities with the method in-
troduced in [25]. Once we obtain a similarity matrix W , we
first use DN to obtain the matrix A. Then, we run the pro-
posed, iterative algorithm to compute the TPD diffusion. It
returns the new affinity matrix A∗ representing the learned
similarities, which are then used for ranking, i.e., if vertex
i represents the query objects, the most similar objects to
it are obtained by sorting in descendent order the row i of
matrix A∗.

7.1. MPEG7 Dataset

The proposed framework is tested for shape classifi-
cation on a commonly used MPEG7 CE-Shape-1 part B
database [12]. The dataset contains 1400 silhouette images
from 70 classes, where each class has 20 different shapes
(some shapes are shown in Figs. 1 and 2). The retrieval
rate is measured by the bull’s eye score: every shape in the
database is submitted as a query and the number of shapes
from the same class in the top 40 is counted. The bull’s eye
score is then defined as the ratio of the number of correct
hits to the best possible number of hits (which is 20×1400).

As shown in Table 1 the proposed affinity learning
method can successfully improve on the state-of-the-art
methods. We selected two different shape similarity meth-
ods: Aspect Shape Context (ASC) [15] and Articulated In-
variant Representation (AIR) [5] as the input pairwise dis-
tance measure. kNN with k = 10 was used to initialize
(15). We observe that the affinities learned by our method
improve the original retrieval score of ASC by over 8%. We

0 5 10 15 20 25 30 35 40
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

recall

P
re

ci
si

on

ASC
ASC + LCDP (100 iterations)
ASC + LCDP (7 iterations)
ASC + Proposed Method

Figure 5. Precision/Recall curves on MPEG-7 shape dataset.

reach nearly perfect bull’s eye score 99.99% on MPEG7
Dataset by using AIR for shape similarity. This is the best
ever reported score on this popular shape dataset.

In order to visualize the gain in retrieval rates (precision)
by our method, we plot the percentage of correct results
among the first k most similar shapes for k = 1, ..., 40 in
Fig. 5, where we use ASC for shape similarity. We ob-
serve that not only does the proposed method increase the
bulls eye score, but also consistently achieves the best re-
trieval rates. Recall that each class has 20 shapes, which is
the reason for the precision curves to increase for k > 20.
In order to illustrate the problem with the stopping time of
the graph classical diffusion computed by matrix power, we
show two curves for LCDP [27], one when it is stopped after
7 iterations and the second one when it is stopped after 100
iterations, which clearly illustrates the problem of diffusing
relevant information. In contrast, the proposed algorithm is
robust to the number of iterations.
7.2. Nister and Stewenius (NS) dataset

In this section, we demonstrate the performance of the
proposed approach on image retrieval. We compare it
to other diffusion based methods and to a recently pro-
posed method, Contextual Dissimilarity Measure (CDM)
[8], which can significantly improve the similarity com-
puted by bag-of-features. CDM learns affinities following
a different principles than the proposed method. CDM is
motivated by an observation that a good ranking is usually
not symmetrical in image search. CDM makes two images
similar when they both obtain a good ranking position when
using each other as a query.

We selected the Nister and Stewenius (N-S) dataset [21]
composed of 10,200 images. A few example images from
N-S dataset are shown in Fig. 6. The N-S dataset con-
sists of 2,550 objects or scenes, each of which is imaged
from 4 different viewpoints. Hence there is only 4 images
in each class and total of 2,550 image classes, which makes
this dataset very challenging for any manifold learning ap-
proach, and in particular, for any diffusion based approach.

To obtain the pairwise distance relation between images
for our algorithm, we implemented a baseline method de-

2374

Table 1. Retrieval rates (bull’s eye) of different context shape retrieval methods on the MPEG-7 shape dataset.
IDSC IDSC IDSC Perc. R. Perc. R. ASC ASC ASC AIR AIR

+LP +Mutual graph + LCDP + LCDP + DN + DN
[14] [2] [9] [23] [23] [15] [15] + TPG Diffusion [5] + TPG Diffusion

85.40% 91.61% 93.40% 88.39% 95.60% 88.30% 95.96% 96.47% 93.67% 99.99%

Table 2. Retrieval results on N-S Dataset. The highest possible score is 4.
Baseline Classic Diffusion Classic Diffusion Diffusion Maps CDM TPG Diffusion TPG Diffusion

[8] with t = 2 with t = 5 [3] [8] with Classic kNN with DN
3.22 3.42 0.245 1.01 3.57 3.58 3.61

Figure 6. Some images from Nister and Stewenius (N-S) dataset.

Figure 7. Sample images from our subset of Caltech 101 dataset.

scribed in [8]. The image descriptor is a combination of
Hessian-Affine region detector [17] and SIFT descriptor
[16]. A visual vocabulary is obtained using the k-means
algorithm on the sub-sampled image descriptors.

The results are shown in Table 2. The retrieval rate is
measured by the average number of correct images among
the four first images returned. Thus, the maximum value is
4 and the higher the value the better is the result. Each im-
age has been submitted as a query. The fact that our method
can significantly improve the retrieval result of the baseline
method (from 3.22 to 3.61) clearly shows the benefits of uti-
lizing higher order relations by the TPG diffusion. We also
observe that the result of our method is better than CDM.
Finally, the usage of DN improves on the result obtained
with classic kNN . We did not have much choice to set the
neighborhood size k for this dataset. kNN with k = 3 was
used to initialize (15).

Since each image class has only 4 images, it is very dif-
ficult to correctly propagate the similarity relations. There-
fore, the classic diffusion [3] can only improve the baseline
result for a very small number of iterations. The best re-
trieval rate of the classic diffusion is for t = 2, i.e., when
the original similarity matrix is raised to power t = 2. Al-
ready for t = 5, the retrieval rate is much lower than the rate
of the baseline. We also report the retrieval result obtained
after embedding the data by Diffusion Maps [3], which are
significantly lower than the rate of the baseline. This jus-
tifies our observation that although Diffusion Maps are ex-
cellent for embedding into Euclidean spaces, the distances

obtained after the embedding cannot be used for retrieval
tasks.

7.3. Caltech 101 dataset

Besides N-S dataset, we also test our algorithm on a well
known Caltech 101 dataset [4]. The Caltech-101 dataset
contains 101 classes (including animals, vehicles, flowers,
etc.) with high shape variability. The number of images per
category varies from 31 to 800. Most images are medium
resolution, i.e. about 300 × 200 pixels. We selected 12
classes from Caltech-101, which contain total 2788 images.
Example images are shown in Fig.7. Different from experi-
ments on N-S dataset, we just use pure SIFT descriptor [16]
to calculate the distance between images. The SIFT features
are extracted from 16 × 16 pixel patches densely sampled
from each image on a grid with step size of 8 pixels. To
get the codebook, we use standard K-means clustering and
fix the codebook size to 2048. Each image is represented
by multiple assignment [8] and Spatial Pyramid Matching
[13]. The distance between two images is obtained by the
χ2 distance between the two vectors.

Table 3. Retrieval rates on 12 image classes from Caltech-101. The
best possible rate is 1.

Baseline Classic Dif. Classic Dif. Dif. Maps TPG Dif.
with t = 5 with t = 50 [3] with DN

0.801 0.859 0.267 0.534 0.903

The results are shown in Table 3. It is clear that with
adjusted number of iterations according to the ground truth,
which is t = 5, the classic diffusion process is able to re-
veal the relation between images. However, as discussed
above, it is very sensitive to number of iterations, which we
illustrate with its retrieval rate for t = 50 . Besides, the
results of Diffusion Maps [3] demonstrates that the relation
between objects after embedding by Diffusion Maps [3] is
not suitable for retrieval. In our algorithm, to initialize (15),
kNN with k = 400 was used. Again TPG diffusion is able

2375

to significantly improve the retrieval rate of the input pair-
wise distance measure. In particular, this demonstrates that
TPG diffusion is robust to large variance in the number of
images in each class.

8. Conclusion
The proposed framework for shape and image re-

trieval can be applied whenever original pairwise dis-
tances/similarities cannot perfectly rank the database ob-
jects. The key advantage of the proposed Tensor Product
Graph diffusion is the utilization of higher order similar-
ity relations, which are both local and long range. Usually
higher order relations lead to a substantially higher compu-
tation cost. However, we are able to introduce an iterative
algorithm to compute TPG diffusion that has the same space
and time complexity as the classical diffusion on the orig-
inal graph. We also provide a formal proof that the itera-
tive algorithm and the TPG diffusion converge to the same
solution. Hence the proposed TPG diffusion explores the
benefits of higher order relations without the price of higher
computational cost.

Acknowledgments
The work was supported by the NSF under Grants IIS-

0812118, BCS-0924164, OIA-1027897, the AFOSR Grant
FA9550-09-1-0207, and the DOE Award 71498-001-09.
The idea of the dominant neighborhood was inspired by our
discussions with HaiRong Liu.

References
[1] X. Bai, B. Wang, X. Wang, W. Liu, and Z. Tu. Co-

transduction for shape retrieval. In ECCV, 2010. 2371
[2] X. Bai, X. Yang, L. J. Latecki, W. Liu, and Z. Tu. Learn-

ing context sensitive shape similarity by graph transduction.
IEEE Trans. on PAMI, 2010. 2369, 2371, 2375

[3] R. Coifman and S. Lafon. Diffusion maps. Applied and
Computational Harmonic Analysis, 21:5–30, 2006. 2371,
2375

[4] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of
object categories. IEEE PAMI, 28:594–611, 2006. 2375

[5] R. Gopalan, P. Turaga, and R. Chellappa. Articulation-
invariant representation of non-planar shapes. In ECCV,
2010. 2374, 2375

[6] Y. Huang, Q. Liu, and D. Metaxas. Video object segmenta-
tion by hypergraph cut. In CVPR, 2009. 2369

[7] H. Jegou, M. Douze, and C. Schmid. Improving bag-of-
features for large scale image search. IJCV, 87:191–212,
2010. 2371

[8] H. Jegou, C. Schmid, H. Harzallah, and J. Verbeek. Accu-
rate image search using the contextual dissimilarity measure.
IEEE PAMI, 2010. 2371, 2374, 2375

[9] P. Kontschieder, M. Donoser, and H. Bischof. Beyond pair-
wise shape similarity analysis. In ACCV, 2009. 2369, 2371,
2375

[10] S. Lafon and A. B. Lee. Diffusion maps and coarse-graining:
A unified framework for dimensionality reduction graph
partitioning, and data set parameterization. IEEE PAMI,
28:1393–1403, 2006. 2370, 2371

[11] P. Lancaster and L. Rodman. Algebraic Riccati Equations.
Clarendon Press, Oxford, 1995. 2371

[12] L. J. Latecki and R. Lakämper. Shape similarity measure
based on correspondence of visual parts. IEEE Trans. PAMI,
22(10):1185–1190, 2000. 2374

[13] S. Lazebnik, C. Schimid, and J. Ponce. Beyong bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, 2006. 2375

[14] H. Ling and D. Jacobs. Shape classification using the inner-
distance. IEEE Trans. PAMI, 29:286–299, 2007. 2375

[15] H. Ling, X. Yang, and L. J. Latecki. Balancing deformability
and discriminability for shape matching. In ECCV, 2010.
2369, 2371, 2374, 2375

[16] D. Lowe. Distinctive image features from scale-invariant key
points. IJCV, 60:91–110, 2004. 2375

[17] K. Mikolajczyk and C. Schmid. Scale and affine invariant
interest point detectors. IJCV, 60(1):63–86, 2004. 2375

[18] D. Nister and H. Stewenius. Scalable recognition with a vo-
cabulary tree. In CVPR, 2006. 2371

[19] M. Pavan and M. Pelillo. Dominant sets and pairwise clus-
tering. IEEE Trans. PAMI, 2007. 2370, 2373

[20] J. Sivi and A. Zisserman. Video google: A text retrieval
approach toobject matching in videos. In ICCV, 2003. 2371

[21] H. Stewenius and D. Nister. Object recognition benchmark.
http://vis.uky.edu/ stewe/ukbench/. 2374

[22] M. Szummer and T. Jaakkola. Partially labeled classification
with markov random walks. In NIPS, 2001. 2369, 2370,
2371

[23] A. Temlyakov, B. C. Munsell, J. W. Waggoner1, and
S. Wang. Two perceptually motivated strategies for shape
classification. In CVPR, 2010. 2371, 2375

[24] C. van Loan. The ubiquitous kronecker product. J. of Com-
putational and Applied Math., 123:85–100, 2000. 2371

[25] J. Wang, S.-F. Chang, X. Zhou, and T. C. S. Wong. Ac-
tive microscopic cellular image annotation by superposable
graph transduction with imbalanced labels. In CVPR, 2008.
2374

[26] J. Weibull. Evolutionary game theory. MIT Press, 1997.
2373

[27] X. Yang, S. Köknar-Tezel, and L. J. Latecki. Locally
constrained diffusion process on locally densified distance
spaces with applications to shape retrieval. In CVPR, 2009.
2369, 2371, 2374

[28] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and
B. Scholkopf. Learning with local and global consistency.
In NIPS, 2003. 2369, 2371

[29] D. Zhou, J. Huang, and B. Schlkopf. Learning with hyper-
graphs: Clustering, classification, and embedding. In NIPS,
2007. 2369

[30] D. Zhou, J. Weston, A.Gretton, Q.Bousquet, and
B.Scholkopf. Ranking on data manifolds. In NIPS,
2003. 2369, 2370, 2371

2376

