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Abstract. We present a novel geometric model for robot mapping based
on shape. Shape similarity measure and matching techniques originating
from computer vision are specially redesigned for matching range scans.
The fundamental geometric representation is a structural one, polygonal
lines are ordered according to the cyclic order of visibility. This approach
is an improvement of the underlying geometric models of today’s SLAM
implementations, where shape matching allows us to disregard pose es-
timations. The object-centered approach allows for compact represen-
tations that are well-suited to bridge the gap from metric information
needed in path planning to more abstract, i.e. topological or qualitative
spatial knowledge desired in complex navigational tasks.

1 Motivation

The problems of self-localization, i.e. localizing the robot within its internal
map, and robot mapping, i.e. constructing the internal map autonomously, are
of high importance to the field of mobile robotics [16]. Coping with unknown or
changing environments requires to carry out both tasks simultaneously, therefore
this has been termed the SLAM problem: Simultaneous Localization and Map-
ping [4]—it has received considerable attention [4, 6, 16]. Successful stochastical
approaches have been developed that tackle representation and handling of un-
certain data which is one key point in SLAM. As todays stochastical models are
powerful, even linking them to a very simple geometric representation already
yields impressive results. Advances in stochastical means have improved the
overall performance leaving the basic spatial representation untouched. As the
internal geometric representation is a foundation for these sophisticated stochas-
tical techniques, shortcomings on the level of geometric representation affect the
overall performance.

We claim that an improved geometric representation enhances the overall
performance dramatically. A compact, object oriented representation based on
shape is an universal yet slender one. It can outperform often-used occupancy
grids in storage as well as in computational resources, since smaller sets of data
need to be processed. Object-centered representations have been judged neces-
sary to represent dynamic environments [16]. Moreover, a more comprehensive
spatial representation can allow to mediate between different aspects of spa-
tial information that are desired or even necessary in applications. We propose



a shape representation of the robot’s surrounding that grants access to metric
information as needed in robot motion or path planning alongside with more
abstract, qualitative or topological knowledge which is desired in navigational
tasks and a well-suited foundation for communication.

2 Related Work

Any approach to master the SLAM problem can be decomposed into two aspects:
handling of map features (extraction from sensor data and matching against the
(partially) existing map) and handling of uncertainty.To address uncertainty
mainly statistical techniques are used. Particle filters or the extended Kalman
filter are used in most current SLAM algorithms [15, 16, 6]. As this paper focusses
exclusively on the map’s geometric representation, we now review related aspects
in detail.

Typically, map features extracted from sensor data (esp. range finder data)
are either the positions of special landmarks [4], simple geometric features like
lines [10, 11, 3], or range finder data is used uninterpreted [16]. Uninterpreted use
results in constructing a bitmap-like representation of the environment termed
occupancy grid [5]. The simplicity of this approach causes its strength, namely
universality: It may be used in unstructured, unprepared environments. However,
major drawbacks also exist. First, matching a scan against the map in order to
localize the robot is formulated as a minimization [10, 16, 6]. Therefore, a good
estimation of the robot’s position is required to prevent minimization getting
stuck in local minima. Second, occupancy grids grow with the environment’s
size, not its complexity. As grids need to fine, it ends up in handling large data
sets. This is not only a problem of storage, but, far more important, it affects
run-time of algorithms as huge amounts of data need to be processed. To keep
path planning in a once constructed map feasible, a topological representation
can be coupled with the metric one [14].

To maintain a map at manageable size from the beginning, representations
based on features or landmarks provide excellent means. These so-called object
maps represent only positions of landmarks and their distinctive features. Thus,
these maps grow with the environment’s complexity (i.e. the number of visible
landmarks), allowing for efficient processing. Using natural landmarks is of spe-
cial interest as environments do not need to be prepared, like, e.g., by installing
beacons [4]. For example, mapping based on line segments has been shown to
improve performance in office environments [11]. A key point in feature-based
approaches is a matching of perceived features against the ones represented in
the map. Wrong matching result in incorrect, hence, useless maps; complex fea-
tures help to prevent such mixups.As features’ presence is required, application
is often limited to special environments only. Choosing simple, omnipresent fea-
tures can easily inhibit a reliable matching of perceived features against the map.
Unreliable feature extraction, e.g. extracting line segments from round objects
causes problems, too, as additional noise gets introduced.



To overcome these problems, we propose a representation based on shape
features that is universal as shape can be extracted in any environment, but
already individual features provide distinctive information as shape respects a
wide spatial context. Matching of features is, thus, based on shape matching
which has received much attention in the context of computer vision. The idea
of applying shape matching in the context of robot mapping is not new. In the
fundamental paper by Lu & Milios [10], scan matching has already been con-
sidered similar to model-based shape matching. Thrun considers this connection
underexploited [16]. Recent advances in shape matching provide a good starting
point to bring these fields together.

In the domain of robot mapping two key aspects dictate the applicability
of shape descriptors: partial shape retrieval and the ability to deal with simple
shapes. Firstly, as only partial observations of the environment can be made,
any approach to shape representation that cannot handle partial shapes renders
itself unemployable. This includes, for example, encoding by feature vectors like
Fourier or momentum spectra. Secondly, any robot’s working environment must
be representable in the framework of the chosen shape descriptor. Besides these
confinements, another feature is required: Much shape information perceivable
often is rather poor, like for instance straightaway walls with small protrusions
only. Therefore, shape recognition processes must be very distinctive, even on
rather featureless shapes.

Structural approaches represent shape as a colored graph representing met-
ric data alongside configurational information. Amongst these so-called skele-
ton based techniques, especially shock graphs (cp. [13]) are worth considera-
tion3. Though primarily structural approaches may very well bridge from metric
to more abstract qualitative or topological information (cp. [14]), recognizing
shapes lacking of a rich structure of configuration has not yet proven feasible.
Moreover, robust computation and matching of a skeleton in the presence of
noise and occlusion has not yet been solved. Thus, we propose a boundary based
approach. Considering the discrete structure provided by sensors, using polygo-
nal lines to represent the boundaries of obstacles may be achieved easily. Related
matching techniques rely on a so-called similarity measure. Various measures,
often metrics, have been developed. Arkin et al. ([1]) accumulate differences in
turning angle in straightforward manner; their approach fails to account for noise
adequately. Basically all improvements employ a matching of boundaries to es-
tablish a correspondence prior to summing up dissimilarities of corresponding
parts. Basri et al. propose a physically motivated deformation energy ([2]). More
recently, an alignment-based deformation measure has been proposed by Sebas-
tian et al. which considers the process of transforming one outline into another
([12]). However, common to these approaches is that an equal sampling rate
of the outlines is required to ensure good correspondences of sampling points.
Considering shape information obtained by a range sensor, scanning the same
object from different positions, however, would generate this effect.

3 Skeleton based approaches relate closely to Voronoi based spatial representations
used in the field of robotics (cp. [14, 13]).



An improved performance in similarity measures for closed contours has been
achieved by Latecki & Lakämper who consider a matching on basis of an a-priori
decomposition into maximal arcs (cp. [8]). We will formulate the presented ap-
proach on this basis. However, it is tailored to deal with any kind of open polyline
and addresses the problem of noisy data in a direct manner. The representation
is complemented by a structural representation of robust ordering information.
Applicability of the elementary shape similarity measure has been shown in [9].

3 Structural Shape Representation

Shape information is derived from sensor readings by a range sensor, typically
a laser range finder (LRF). Shape is represented as a structure of boundaries.
Polygonal lines, called polylines, serve as the basic entity. They represent obsta-
cles’ boundaries. Much of the spatial information represented in the map can be
captured by individual polylines which form visual parts (cp. [8]). The variety
of perceivable shapes in a regular indoor scenario already yields a more reliable
matching than other feature-based approaches. At the same time, we are able
to construct a compact representation. However, we exploit even more context
information than represented by a single polyline considering shape as a struc-
ture of polylines. This allows us to cope with environments displaying mostly
simple shapes with almost no extra effort. The structure captured is ordering
information. For any given viewpoint, perceivable objects can be ordered in a
counter-clockwise manner. A first step in the presented approach is to extract
shape information from LRF data.

3.1 Grouping and Simplification of Polylines

Let us assume that the range data is mapped to locations of reflection points
in the Euclidean plane, using a local coordinate system. Now, these points are
segmented into individual polylines. For this grouping a simple heuristic may be
employed: An object transition is said to be present wherever two consecutive
points measured by the LRF are further apart than a given distance threshold.
We used a threshold of 20cm in our experiments, however, the precise choice is
not crucial and possible differences are regarded (cp. section 4.2).

Polylines extracted this way still carry all the information (and noise) re-
trieved by the sensor. To make the representation more compact and to cancel
out noise, we employ a technique called Discrete Curve Evolution (DCE) intro-
duced by Latecki & Lakämper ([7]) to make the data more compact without
loosing valuable shape information and to cancel out noise. DCE is a context-
sensitive process that proceeds iteratively: Irrelevant vertices get removed until
no irrelevant ones remain. Though the process is context-sensitive, it is based
on a local relevance measure for a vertex v and its two neighbor vertices u, w4:

K(u, v, w) = |d(u, v) + d(v, w) − d(u, w)| (1)
4 Context is respected as in the course of simplification the vertices’ neighborhood

changes.
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Fig. 1. Extracting polylines from a scan. Raw scan points (a) are grouped to polylines
(b), then simplified by means of DCE. The threshold used in figure (c) is 1 and 5 in (d).
The two additional rectangles show magnifications of marked parts. The grid denotes
1 meter distance.

Hereby, d denotes the Euclidean distance. The process of DCE is very simple
and proceeds in a straightforward manner. The least relevant vertex is removed
until least relevance exceeds a given simplification threshold. Consequently, as
no relevance measure is assigned to end-points, they remain fixed. The choice
of a specific simplification threshold is not crucial; refer to Figure 1 for results.
Proceeding this way we obtain a cyclic ordered vector of polylines.

4 Matching Shapes

To match two shapes means to match two ordered set of polylines against each
other. Hence, we need to seek the best correspondence of individual polylines that
preserves the structure, i.e. that does not violate the order. Shape similarity is
the key point to quantify quality of a correspondence.

4.1 Similarity of Polylines

The similarity measure utilized in our approach is based on a measure intro-
duced by Latecki & Lakämper; we will briefly summarize the approach and
indicate changes necessary in this context—for details refer to [8]. To compute
the basic similarity measure between two polygonal curves, we establish the best
correspondence of maximal left- or right-arcuated arcs5. To achieve this, we first
decompose the polygonal curves into maximal subarcs which are likewise bent.
Refer to Figure 2 (c) for an illustration. Since a simple 1-to-1 comparison of
maximal arcs of two polylines is of little use, due to the fact that the curves
may consist of a different number of such arcs and even similar shapes may have
different small features, we allow for 1-to-1, 1-to-many, and many-to-1 corre-
spondences. The main idea here is that on at least one of the contours we have
a maximal arc that corresponds to a part of the other contour that is composed

5 The original work is based on convex and concave arcs, respectively. As we deal with
open polylines here, the terms convex or concave would be meaningless.



of adjacent maximal arcs. The best correspondence can be computed using Dy-
namic Programming, where the similarity of the corresponding visual parts is
as defined below. The similarity induced from the optimal correspondence of
polylines C and D will be denoted S(C,D).

Basic similarity of arcs is defined in tangent space, a multi-valued step func-
tion representing angular directions and relative lengths of line-segments only.
It was previously used in computer vision, in particular, in [1]. Denoting the
mapping function by T , the similarity gets defined as follows:

Sa(C,D) = (1 + (l(C) − l(D))2) ·
∫ 1

0

(TC(s) − TD(s) + ΘC,D)2ds (2)

where l(C) denotes the arc length of C. The constant ΘC,D is chosen to minimize
the integral (cp. [8]) (it respects for different orientation) and is given by

ΘC,D =
∫ 1

0

TC(s) − TD(s)ds. (3)

More appropriately, this measure should be denoted a dissimilarity measure as
identical curves yield 0, the lowest possible measure. This measure differs from
the original work in that it is affected by an absolute change of size rather
than by a relative one. It should be noted that this measure is based on shape
information only, neither the arcs’ position nor their orientation are considered.
This is possible due to the wide context information of polylines.

When comparing polylines, the amount of noise and the size of shape features
present are often challenging. Applying DCE to a degree that would certainly
remove all noise would remove many valuable shape features as well. DCE makes
vertex removal decisions in the context of a single object. A better noise iden-
tification can be made in the context of comparing corresponding polylines. We
encapsulate the basic similarity measure S in another process that masks out
noise in the context of corresponding polylines. It is similar to the initial curve
evolution employed. When comparing two polylines C and D, we evolve each
line by removing vertices if the similarity improves. Obviously, a counter weight
is needed to prevent elimination of all differing shape features. This counter
weight, a cost for removing a vertex from a polyline is defined on the basis of a
noise model of the LRF. Vertices whose removal only results in a small contour
shift can likely be caused by noise and may be removed with low cost, whereas
bigger changes are inhibited by high costs. The cost function R for removing a
set of vertices (respectively r for removing a single vertex v with neighbors u
and w) from a polyline P is defined on the basis of area difference:

RP ({v1, . . . , vn}) :=
n∑

i=1

rP\{v1,...,vi−1}vi, rQ(v) :=
(

h

c

)2
v

u wc

h

The similarity measure S? is defined on the basis of the basic similarity S con-
sidering the optimal set of vertices to mask out.

S?(C,D) := min
C?⊆C,D?⊆D

{S(C \ C?, D \ D?) + RC(C?) + RD(D?)} (4)
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Fig. 2. (a) Two polylines from sensing an example scene with a simulated laser range
finder. The upper polyline is free of noise, the lower one suffers from distortions of the
magnitude of the shape features present. Using similarity measure S?, noise can be
masked out when comparing the objects. Only the subsets shown in (b) are effective
in the comparison; the determined similarity is enhanced by a factor of more than 10.
Decomposition into maximal arcs and determined correspondence are shown in (c).

Computation is formulated as a greedy algorithm6. A prerequisite here is to use
a hughly distinctive basic similarity measure. An example is depicted in Figure
2. When comparing the two polylines shown in Figure 2 (a), vertices are removed
if the removal cost is lower than the gain in shape similarity (i.e. the decrease
of S). This results in removing small distortions from the lower polyline, while
retaining the features of both (cp. Figure 2 (b)).

4.2 Matching Polylines

The actual matching of two structural shape representations extracted from
different scans is computed by finding the best correspondence of polylines which
respects the cyclic order. Shape similarity is the key to measuring the quality of
a matching. Additionally, we must take into account that (a) not all polylines
may match as features’ visibility changes and (b) that due to grouping differences
(cp. section 3.1) not necessarily 1-to-1 correspondences exist. Noise or change of
view point, for example, may lead to a different grouping. Moreover, since every
correspondence of polylines induces an alignment that would align both scans
involved, we demand all alignments induced to be very similar. This criterion
is helpful to correctly match featureless shapes, e.g. short segments as obtained
when scanning a chairs’ legs. The clue in our approach is the exploitation of the
correspondence of salient visual parts to correctly identify featureless parts even
if no a-priori alignment is available. An estimation of the alignment is necessary
to utilize an efficient matching algorithm. We will show (in Section 4.3) how
to compute an estimate using shape similarity. Clearly, it can be derived from
odometry if odometry data is available. Let us now assume that such an estimate
exists. Further, let B = (B1, B2, . . . , Bb) and B′ = (B′

1, B
′
2, . . . , B

′
b′) be two

cyclic ordered vectors of polylines. Denoting correspondence of Bi and B′
j
7 by

6 Computing the true minimum may lead to combinatorial explosion, the greedy im-
plementation avoids this problem and yields similar results.

7 To be more precise: correspondences of either Bi and {B′
j , B

′
j+1, . . . , B

′
j′} or

{Bi, B
′
i+1, . . . , B

′
i′} and B′

j since we consider correspondences of types 1-to-many
and many-to-1, too.



the relation ∼, the task can be formulated as minimization.∑
(Bi,B

′
j)∈∼

(S?(Bi,B
′
j) + D(Bi,B

′
j)) +

∑
B∈B̃

P (B) +
∑

B′∈B̃′

P (B′) != min (5)

Hereby, B̃ (rsp. B̃′) denotes the set of unmatched polylines. P is a penalty
function for not matching a polyline. This is necessary, as not establishing any
correspondences would yield the lowest possible value 0 suggesting maximum
similarity. The penalty function is chosen to linearly grow with the polyline’s
size modeling a higher likelihood for smaller polylines to appear or disappear8.
D denotes the aforementioned alignment measure quantifying the deviation of
the estimated alignment from the one induced by the correspondence Bi ∼ B′

j .
The best correspondence can so be computed by applying an extended Dynamic
Programming scheme. The extension regards the ability to detect 1-to-many
and many-to-1 correspondences and results in a linear extra effort such that the
overall complexity is O(n3). The basic idea here is to consider in each step of
the computation if it is advantageous to establish a grouping with the latest
correspondence determined so far, if the summed up (dis-)similarity values and
skipping penalties can be decreased.

4.3 Matching in the Absence of Odometry

The outlined matching is capable of tracking complex shapes even if no esti-
mate of the induced alignment is available.We will detail now how to obtain an
alignment estimate purely by shape similarity. If we had two corresponding poly-
lines, hence, the induced alignment, we could use this as the estimation in the
matching. Observing that many shapes can be matched only in consideration of
shape similarity, the matching can be employed to obtain this correspondence.
Thus, the matching can be computed in a two pass process. Within the first
matching pass the consideration of induced alignments’ similarity is ineffective.
Then, the most reliable correspondence is selected. Finally, the actual matching
is computed using the alignment induced by the selected matching. To quan-
tify reliability, a measure based on shape similarity and shape complexity has
been proposed [9]. A polyline’s shape complexity may be expressed by summing
up inner points’ relevance measures (cp. equation 1). If a polyline has no inner
points, complexity is given by half its length. Terming this complexity measure
C, the reliability is defined as

Q(P,Q) = C(P ) + C(Q) − S?(P,Q). (6)

The idea is to express reliability as high similarity of complex shapes (cp. [9]
for details). An exemplary result is presented in Figure 3 where two scans are
matched against each other only concerning shape (a). Based on the most reli-
able correspondence the estimated alignment is computed. Accordingly aligned
8 When comparing polylines affected by similar noise, similarity values grow linearly

with the polylines’ size, too.
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Fig. 3. The two scans depicted in (a) (numbered 1–8 and A–K) are matched only wrt.
shape, the most reliable match (marked ?) is selected. The induced alignment helps to
determine the final matching. The correspondences found and the two scans aligned
according to the estimation are shown in (b). Observe that the scans’ origins are farer
apart than 1m (grid denotes 1m distance) and no odometry has been used.

scans and the matching is shown in (b). The presented technique can cope with
differences in the scans’ position of more than 1m without the help of any means
of estimating the robot’s current position. Observe, that this is a dramatical
improvement compared to the precision required by standard scan matching
approaches which typically rely on a hill climbing strategy [6].

5 Conclusion and Outlook

We have presented a comprehensive geometric model for robot mapping based
on shape information. Shape matching has been tailored to the domain of scan
matching. The matching is powerful enough to disregard pose information and
cope with significantly differing scans. This improves performance of today’s
scan matching approaches dramatically. Based on the presented shape process-
ing, we plan to propose a complete robot mapping architecture. This is the topic
of a forthcoming paper. We believe mapping based on shape to be particularly
promising. For example, shape matching can also be exploited to map align-
ment. Equation 3 already provides the rotational difference. We are aware that
statistical methods are needed to guarantee robust performance, but did not
include any as we concentrated on geometric models exclusively. So, future work
comprises also the coupling with a state-of-the-art stochastical model besides
attacking the problem of cycle detection.
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