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Learning Context-Sensitive Shape Similarity
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Abstract—Shape similarity and shape retrieval are very important topics in computer vision. The recent progress in this domain has
been mostly driven by designing smart shape descriptors for providing better similarity measure between pairs of shapes. In this paper,
we provide a new perspective to this problem by considering the existing shapes as a group, and study their similarity measures to the
query shape in a graph structure. Our method is general and can be built on top of any existing shape similarity measure. For a given
similarity measure, a new similarity is learned through graph transduction. The new similarity is learned iteratively so that the neighbors
of a given shape influence its final similarity to the query. The basic idea here is related to PageRank ranking, which forms a foundation
of Google Web search. The presented experimental results demonstrate that the proposed approach yields significant improvements
over the state-of-art shape matching algorithms. We obtained a retrieval rate of 91.61 percent on the MPEG-7 data set, which is the
highest ever reported in the literature. Moreover, the learned similarity by the proposed method also achieves promising improvements

on both shape classification and shape clustering.

Index Terms—Shape similarity, shape retrieval, shape classification, shape clustering, graph transduction.

1 INTRODUCTION

SHAPE matching/retrieval is a very critical problem in
computer vision. There are many different kinds of shape
matching methods, and the progress in improving the
matching rate has been substantial in recent years. However,
nearly all of these approaches are focused on pairwise shape
similarity measure. It seems to be an obvious statement that
the more similar two shapes are, the smaller their difference
is, which is measured by some distance function. Yet, this
statement ignores the fact that some differences are more
relevant while other differences are less relevant for shape
similarity. It is not yet clear how biological vision systems
perform shape matching; it is clear though that shape
matching involves the high-level understanding of shapes.
In particular, shapes in the same class can differ significantly
because of in-class variation, distortion, or nonrigid trans-
formation. In other words, even if two shapes belong to the
same class, the distance between them may be very large if
the distance measure cannot capture the intrinsic property of
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the shape. It appears to us that many published shape
distance measures [1], [ 2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14] are unable to address this issue. For
example, based on the inner distance shape context (IDSC)
[3], the shape in Fig. la is more similar to Fig. 1b than to
Fig. 1c, but it is obvious that shapes Figs. 1a and 1c belong to
the same class. This incorrect result is due to the fact that the
inner distance is unaware that the missing tail and one front
leg are less relevant than much smaller shape details like the
dog’s ear and the shape of the head. No matter how good a
shape matching algorithm is, the problem of more relevant
and less relevant shape differences must be addressed if we
want to obtain human-like performance. This requires
having a model to capture the essence of a shape class
instead of viewing each shape as a set of points, a
parameterized function, or a manifold. In the proposed
approach, each shape is considered in the context of other
shapes in its class, and the class does not need to be known.

Given a database of shapes, a query shape, and a shape
distance function, which does not need to be a metric, we
learn a new distance function that is expressed by shortest
paths on the manifold formed by the known shapes and the
query shape. We can do this without explicitly learning this
manifold. As we will demonstrate in our experimental
results, the new learned distance function is able to
incorporate the knowledge of intrinsic shape differences.
It is learned in an unsupervised setting in the context of
known shapes. For example, if the database of known
shapes contains shapes (a)-(e) in Fig. 2, then the new
learned distance function will rank correctly the shape in
Fig. 1a as more similar to Fig. 1c than to Fig. 1b. The reason
is that the new distance function will replace the original
distance (a)-(c) in Fig. 1 with a distance induced by the
shortest path between (a) and (e) in Fig. 2.

Published by the IEEE Computer Society
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Fig. 1. Existing shape similarity methods incorrectly rank shape (b) as
more similar to (a) than (c).

In the proposed approach, for a given similarity
measure s;, a new similarity s is learned through graph
transduction. Intuitively, for a given query shape ¢, the
similarity s(¢,p) will be high if neighbors of p are also
similar to ¢. However, even if sy(q,p) is very high, but the
neighbors of p are not similar to g, then s(g, p) will be low.
Thus, the new similarity s is context-sensitive, where a
context of a given shape is defined by its neighbors, which
are database shapes that are most similar to it. In this paper,
we adopt a graph-based transductive learning algorithm to
tackle this problem, and it has the following properties:

1. Instead of focusing on computing the distance
(similarity) for a pair of shapes, we take advantage
of the manifold formed by the existing shapes.

2. However, we do not explicitly learn the manifold
nor compute the geodesics [15], which are time-
consuming to calculate. A better similarity is learned
by collectively propagating the similarity measures
to the query shape and between the existing shapes
through graph transduction.

3. Unlike the label propagation [16] approach, which is
semi-supervised, we treat shape retrieval as an
unsupervised problem and do not require knowing
any shape labels.

4. We can build our algorithm on top of any existing
shape matching algorithm and a significant gain in
retrieval rates can be observed on well-known shape
data sets.

MAY 2010

5. The learned distance by our algorithm can also be
used to improve the performance of the existing
shape clustering methods.

Even if the difference between shape A and shape C'is
large, but there is a shape B which has small difference to
both of them, we still claim that shapes A and C are similar
to each other. This situation is possible for most shape
distances since they do not obey the triangle inequality, i.e.,
it is not true that d(4, C)) < d(4, B) + d(B, C) for all shapes
A,B,C [17]. If we have the situation that d(A,C) >
d(A,B) +d(B,C) for some shapes A, B,C, then the pro-
posed method is able to learn a new distance d'(A, C') such
that d'(A,C) < d(A, B) + d(B, C). Further, if there is a path
in the distance space such that d(4,C) > d(A4,By) +--- +
d(Bg, C), then our method learns a new d'(4, C) such that
d(A,C)<d(A,By)+---+d(By,C). Since this path repre-
sents a minimal distortion morphing of shape A to shape C,
we are able to ignore less relevant shape differences, and
consequently, we can focus on more relevant shape
differences with the new distance d'.

Our experimental results clearly demonstrate that the
proposed method can improve the retrieval results of the
existing shape matching methods. We obtained the retrieval
rate of 91.61 percent on part B of the MPEG-7 Core
Experiment CE-Shape-1 data set [18], which is the highest
ever bulls-eye score reported in the literature. We used the
IDSC as our baseline algorithm, which has the retrieval rate
of 85.40 percent on the MPEG-7 data set [3]. Fig. 3 illustrates
the benefits of the proposed distance learning method. The
first row shows the query shape followed by the first
10 shapes retrieved using IDSC only. Only two flies are
retrieved among the first 10 shapes. The results of the
learned distance for the same query are shown in the
second row. All of the top 10 retrieval results are correct.
The proposed method was able to learn that the shape
differences in the number of fly legs and their shapes are
not intrinsic to this shape class.

The remainder of this paper is organized as follows: In
Section 2, we briefly review some well-known shape
matching methods and the semi-supervised learning algo-
rithms. Section 3 describes the proposed approach to

(@) (o) © () (e)

Fig. 2. A key idea of the proposed distance learning is to replace the original shape distance between (a) and (e) with a distance induced by geodesic
paths in the manifold of known shapes. One such path is (a)-(e) in this figure.
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Fig. 3. The first column shows the query shape. The remaining 10 columns show the most similar shapes retrieved from the MPEG-7 data set.

(a) Results of IDSC [3]. (b) Results of the proposed learned distance.
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Retrieval Rates (Bulls-Eye) of Di;lf—eArIthI\)Iethods on the MPEG-7 Data Set
Alg. CSS Vis. Parts Shape Aligning | Distance Prob. Chance | Skeletal | Gen. | Optimized
Contexts Curves Set Approach Prob. Context | Model CSS
[40] (4] (1] [41] [42] [43] [44] [45] (2] [46]
Score | 75.44% | 76.45% 76.51% 78.16% | 78.38% | 79.19% 79.36% | 79.92% | 80.03% | 81.12%
Alg. | Contour | Multiscale Shape Fixed Inner | Symbolic Hier. Triangle | Shape | IDSC [3]
Seg. Rep. L’Ane Rouge Cor. Distance Rep. Procrustes | Area Tree + our
[47] [48] [49] [50] [30] [7] [29] [8] method
Score | 84.33% | 84.93% 85.25% 85.40% | 85.40% | 85.92% | 86.35% | 87.23% | 87.70% | 91.61%

learning shape distances, and relates it to PageRank.
Section 4 relates the proposed approach to the class of
machine learning approaches called label propagation. The
problem of the construction of the affinity matrix is
addressed in Section 5. Section 6.1 gives the experimental
results on several famous shape data sets to show the
advantage of the proposed approach. Conclusion and
discussion are given in Section 7. A preliminary version of
this paper appeared as [19]. In this paper, we introduce two
new applications, shape clustering and retrieval of partially
occluded shapes, and a systematic method for selecting
optimal parameter setting in Section 6.1. We also relate the
proposed approach to PageRank. Moreover, the experi-
mental evaluation has been substantially extended.

2 RELATED WORK

The semi-supervised learning problem has attracted an
increasing amount of interest recently, and several novel
approaches have been proposed. The existing approaches
could be divided into several types, multiview learning [20],
generative model [21], and Transductive Support Vector
Machine (TSVM) [22]. Recently, there have been some
promising graph-based transductive learning approaches
proposed, such as label propagation [16], Gaussian fields and
harmonic functions (GFHF) [23], local and global consistency
(LGC) [24], and the Linear Neighborhood Propagation (LNP)
[25]. Zhou et al. [26] modified the LGC for the information
retrieval. The semi-supervised learning problem is related to
manifold learning approaches, e.g., [27].

The proposed method is inspired by the label propaga-
tion method [16]. The reason we choose the framework of
label propagation is that it allows clamping of labels. In
other words, it fixes the label of labeled data points during
the propagation process. Since the query shape is the only
labeled shape in the retrieval process, the label propagation
allows us to enforce its label during each iteration, which
naturally fits in the framework of shape retrieval. Usually,
GFHEF is used instead of label propagation, as both methods
can achieve the same results [16]. However, in the shape
retrieval, we can use only the label propagation, the reason
is explained in detail in Section 4.

Since a large number of shape similarity methods have
been proposed in the literature, we focus our attention on
methods that reported retrieval results on the MPEG-7
shape data set (part B of the MPEG-7 Core Experiment

CE-Shape-1) [18]. This allows us to clearly demonstrate the
retrieval rate improvements obtained by the proposed
method. Belongie et al. [1] introduced a novel 2D histogram
representation of shapes called Shape Contexts (SC). Ling
and Jacobs [3] modified the Shape Context by considering
the geodesic distance between contour points instead of the
euclidean distance, which significantly improved the
retrieval and classification of articulated shapes. Latecki
and Lakdmper [4] used visual parts represented by
simplified polygons of contours for shape matching. Tu
and Yuille [2] proposed the feature-driven generative
models for probabilistic shape matching. In order to avoid
problems associated with purely global or local methods,
Felzenszwalb and Schwartz [8] described a dynamic and
hierarchical curve matching method. Other hierarchical
methods include the hierarchical graphical models in [28]
and hierarchical procrustes matching [7]. Alajlan et al.
proposed a mutiscale representation of triangle areas for
shape matching, which also included partial and global
shape information [29]. Daliri and Torre defined a symbolic
descriptor based on Shape Contexts, and then used edit
distance for final matching in order to overcome the
difficulty caused by deformation and occlusions [30]. The
methods above all focused on designing improved shape
descriptors for single shapes and their comparison for pairs
of shapes. Although the recent methods made some
progress, the improvement is not obvious, as shown in
Table 1 of Section 6.1. In this table, we summarize all the
reported retrieval results on MPEG-7 database, and the
retrieval rates of the recent publications are all around
85 percent. There are two main reasons that limit the
progress in shape retrieval: 1) The case for large deforma-
tion and occlusions still cannot be handled well. 2) The
existing algorithms cannot distinguish the more relevant
and less relevant shape differences pointed out in Section 1.

There has been a significant body of work on distance
learning [31]. Xing et al. [32] propose estimating the matrix W
of a Mahalanobis distance by solving a convex optimization
problem. Bar-Hillel et al. [33] also use a weight matrix W to
estimate the distance by relevant component analysis (RCA).
Athitsos et al. [34] proposed a method called BoostMap to
estimate a distance that approximates a certain distance.
Hertz’s work [35] uses AdaBoost to estimate a distance
function in a product space, whereas the weak classifier
minimizes an error in the original feature space. All of these
methods’ focus is a selection of suitable distance from a
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given set of distance measures. Our method aims at
improving performance of a given distance measure.

3 LEARNING NEw DISTANCE MEASURES

We first describe the classical setting of similarity retrieval.
It applies to many retrieval scenarios like key word,
document, image, and shape retrieval. Given is a set of
objects X = {z1,...,z,} and a similarity function sim: X x
X — R" that assigns a similarity value (a positive value) to
each pair of objects.

We assume that z; is a query object (e.g., a query shape),
and {z,...,z,} is a set of known database objects (or a
training set). Then, by sorting the values sim(z,z;) in
decreasing order for ¢ =2,...,n, we obtain a ranking of
database objects according to their similarity to the query,
i.e., the most similar database object has the highest value
and is listed first. Sometimes, a distance measure is used in
place of the similarity measure, in which case the ranking is
obtained by sorting the database objects in increasing order,
i.e., the object with the smallest value is listed first. Usually,
the first N < n objects are returned as the most similar to
the query ;.

As discussed above, the problem is that the similarity
function sim is not perfect, and for many pairs of objects, it
returns wrong results, although it may return correct scores
for many pairs. We introduce now a method to learn a new
similarity function simy that drastically improves the
retrieval results of sim for the given query ;.

Let w;; = sim(z;,x;), for i,j=1,...,n, be a similarity
matrix, which is also called an affinity matrix. We also
define an n x n probabilistic transition matrix P as a
rowwise normalized matrix w

Wij
RJ ;CL:1 Wik ) (1)
where Pj; is the probability of transit from node ¢ to node j.

We seek a new similarity measure s. Since s only needs
to be defined as similarity of other elements to query z;, we
denote f(z;) = s(x1,x;) for i =1,...,n. A key function is f
and it satisfies

flxi) = Z:Rj f(x;). (2)

Thus, the similarity of x; to the query z;, expressed as f(x;),
is a weighted average over all other database objects, where
the weights sum to one and are proportional to the
similarity of the other database objects to z;. In other
words, we seek a function f: X — [0, 1] such that f(z;) is a
weighted average of f(z;), where the weights are based on
the original similarities w; ; = sim(z;,x;). Our intuition is
that the new similarity f(x;) = s(z1,2;) will be large iff all
points x; that are very similar to z; (large sim(x;,z;)) are
also very similar to query z; (large sim(z1,;)). Note that
function f reaches equilibrium and an arbitrary function
does not satisfy the equality.

The recursive expression (2) is closely related to
PageRank. As stated in [36], a slightly simplified version
of simple ranking R of a Web page u in PageRank is
defined as

R(u) =Y ~—R(v), (3)

veB, TV

where B, is a set of pages that point to u, N, is the number
of links from page v, and c is a normalization factor.

Consequently, (2) differs from PageRank (3) by the
normalization matrix, which is defined in (1) in our case,
and is equal to §- for PageRank. The PageRank recursive
equation takes a simple average over neighbors (a set of
pages that point to a given Web page), while we take a
weighted average over the original input similarities.
Therefore, our equation admits recursive solution analog
to the solution of the PageRank equation. Before we present
it, we point out one more relation to recently proposed label
propagation [16].

We obtain the solution to (2) by the following recursive
procedure:

firi(@:) = > Py fila) (4)
=1
fori=2,...,n, and we set
fear(z) = 1. (5)

We define a sequence of newly learned similarity functions
restricted to z; as

stmy (1, ;) = fi(w;). (6)

Thus, we interpret f; as a set of normalized similarity values
to the query z;. Observe that simy(z1,2;) = wy,.

Steps (4) and (5) are used in label propagation, which is
described in Section 4. However, our goal and our setting are
different. Although label propagation is an instance of semi-
supervised learning, we stress that we remain in the
unsupervised learning setting. In particular, we deal with
the case of only one known class, which is the class of the
query object. This means, in particular, that label propaga-
tion has a trivial solution, in our case lim; .., f;(z;) = 1 for all
t=1,...,n,ie., all objects will be assigned the class label of
the query shape. Since our goal is ranking of the database
objects according to their similarity to the query, we stop the
computation after a suitable number of iterations ¢t = 7. As is
the usual practice with iterative processes that are guaran-
teed to converge, the computation is halted if the difference
[l fis1 — fi]| becomes very slow, see Section 6.1 for details.

If the database of known objects is large, the computation
with all n objects may become impractical. Therefore, in
practice, we construct the matrix w using only the first M < n
most similar objects to the query z; sorted according to the
original distance function sim. Our experimental results in
Section 6.1 demonstrate that the replacement of the original
similarity measure sim with simp results in a significant
increase in the retrieval rate. The pseudocode of our
algorithm is shown in Fig. 4.

4 RELATION TO LABEL PROPAGATION

Label propagation belongs to a set of semi-supervised
learning methods where it is usually assumed that class
labels are known for a small set of data points. We have an
extreme case of semi-supervised learning since we only
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while: ¢t < T.
for : =2,...,n,
feei (@) = Z?:l Py fe(z;)
end

frra(z) = 1.

end

Input: The n x n row-wise normalized similarity matrix P with the

query x1, fi(x1) =1, and fi(x;) =0 fori=2, ... n.

Qutput: The learned new similarity values to the query z;: fr.

Fig. 4. The pseudocode for the proposed algorithm.

assume that the class label of the query is known. Thus, we
have only one class that contains only one labeled element
being the query ;. In our approach, we have a sequence of
labeling functions f; : X — [0, 1] with fy(z1) = land fy(z;) =
0 for i=2,...,n, where fi(z;) can be interpreted as
probability that point z; has the class label of the query z;.

Label propagation is formulated as a form of propaga-
tion on a graph, where a node’s label propagates to
neighboring nodes according to their proximity. The key
idea is that its label propagates “faster” along a geodesic
path on the manifold spanned by the set of known shapes
than by direct connections. While following a geodesic path,
the obtained new similarity measure learns to ignore less
relevant shape differences. Therefore, when learning is
complete, it is able to focus on more relevant shape
differences. We review now the key steps of label
propagation and relate them to the proposed method
introduced in Section 3.

Let {(z1,y1) ... (z1,y1)} be the labeled data, y € {1...C},
and {zi1...214,} the unlabeled data, usually ! < u. Let
n = [+ u. We will often use L and U to denote labeled and
unlabeled data, respectively. The Label propagation sup-
poses the number of classes C' is known, and all classes are
present in the labeled data [16]. A graph is created where
the nodes are all the data points, and the edge between
nodes i,;j represents their similarity w;; Larger edge
weights allow labels to travel through more easily. Also,
we define an [ x C label matrix Y;, whose ith row is an
indicator vector for y;, i € L : Y. = 6(y; ). The label propa-
gation computes soft labels f for nodes, where fisann x C
matrix whose rows can be interpreted as the probability
distributions over labels. The initialization of f is not
important. The label propagation algorithm is as follows:

1. Initially, set fy(z;) =y for i=1,...,1 and fo(z;)
arbitrarily (e.g., 0) for z; € X,.
Repeat until convergence:
2. Set fi(wi) =35, Py fiw), Va; € X,
3. Set fiii(x;) =vy; for i =1,...,1 (the labels of the
labeled objects should be fixed).
In step 2, all nodes propagate their labels to their
neighbors for one step. Step 3 is critical since it ensures
persistent label sources from labeled data. Hence, instead

of letting the initial labels fade way, we fix the labeled
data. This constant push from labeled nodes helps to push
the class boundaries through high-density regions so that
they can settle in low-density gaps. If this structure of data
fits the classification goal, then the algorithm can use
unlabeled data to improve learning.

Let f= (;LL) Since fr is fixed to Yz, we are solely
interested in fy. The matrix P is split into labeled and
unlabeled submatrices

p_ |:PLL

P
Pyr, o } ' @

Pyy

As proven in [16], the label propagation converges, and the
solution can be computed in closed form using matrix
algebra:

fo =~ Pyw) ' PrrYr. 8)

However, as the label propagation requires all classes to be
present in the labeled data, it is not suitable for shape
retrieval. As mentioned in Section 3, for shape retrieval, the
query shape is considered as the only labeled datum and all
other shapes are the unlabeled data. Moreover, the graph
among all of the shapes is fully connected, which means the
label could be propagated on the whole graph. If we iterate
the label propagation infinite times, all of the data will have
the same label, which is not our goal. Therefore, we stop the
computation after a suitable number of iterations ¢t = 7.

5 THE AFFINITY MATRIX

In this section, we address the problem of the construction
of the affinity matrix W. There are some methods that
address this issue, such as local scaling [37], local liner
approximation [25], and adaptive kernel size selection [38].

However, in the case of shape similarity retrieval, a
distance function is usually defined, e.g., [1], [3], [4], [8]. Let
D = (D;;) be a distance matrix computed by some shape
distance function. Our goal is to convert it to a similarity
measure in order to construct an affinity matrix W. Usually,
this can be done by using a Gaussian kernel:
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Fig. 5. (a) A comparison of retrieval rates between IDSC [3] (blue circles) and the result improved by the proposed method (red stars) for MPEG-7.
(b) A comparison of retrieval rates between visual parts in [4] (blue circles) and the result improved by the proposed method (red stars) for MPEG-7.
(c) A comparison of retrieval rates between Gen. Model [2] (blue circles) and the result improved by the proposed method (red circles) for MPEG-7.

ij

D%
Wij = exp (‘ 02”) (9)

Previous research has shown that the propagation results
highly depend on the kernel size o;; selection [25]. In [23], a
method to learn the proper o;; for the kernel is introduced,
which has excellent performance. However, it is not
learnable in the case of few labeled data. In shape retrieval,
since only the query shape has the label, the learning of o;;
is not applicable. In our experiment, we use an adaptive
kernel size based on the mean distance to K-nearest
neighborhoods [39]:

0ij = a - mean({knnd(z;), knnd(z;)}), (10)

where mean({knnd(z;), knnd(z;)}) represents the mean
distance of the K-nearest neighbor distance of the sample
zj,x; and o is an extra parameter. Both K and o are
determined empirically.

6 EXPERIMENTAL RESULTS

In this section, we show that the proposed approach can
significantly improve the performance of the existing shape
retrieval, shape classification, and shape clustering methods.

6.1 Improving Shape Retrieval/Matching

6.1.1 Improving MPEG-7 Shape Retrieval

The IDSC [3] significantly improved the performance of
shape context [1] by replacing the euclidean distance with

shortest paths inside the shapes, and obtained the retrieval
rate of 85.40 percent on the MPEG-7 data set. The proposed
distance learning method is able to improve the IDSC
retrieval rate to 91.61 percent. For reference, Table 1 lists
several reported results on the MPEG-7 data set. The
MPEG-7 data set consists of 1,400 silhouette images
grouped into 70 classes. Each class has 20 different shapes.
The retrieval rate is measured by the so-called bulls-eye
score. Every shape in the database is compared to all other
shapes, and the number of shapes from the same class
among the 40 most similar shapes is reported. The bulls-eye
retrieval rate is the ratio of the total number of shapes from
the same class to the highest possible number (which is
20 x 1,400). Thus, the best possible rate is 100 percent. From
the retrieval rates collected in Table 1, we can clearly
observe that our method made a significant progress on this
database, and the second highest result is 87.70 percent
obtained by Shape Tree [8].

In order to visualize the gain in retrieval rates by our
method as compared to IDSC, we plot the percentage of
correct results among the first k most similar shapes in Fig. 5a,
i.e., we plot the percentage of the shapes from the same class
among the first k-nearest neighbors for £ =1, ...,40. Recall
that each class has 20 shapes, which is why the curve
increases for k > 20. We observe that the proposed method
not only increases the bulls-eye score, but also the ranking of
the shapes forall k =1, ..., 40.

We use the following parameters to construct the affinity
matrix: @ = 0.25 and the neighborhood size is K = 14. As
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Fig. 6. The first column shows the query shape. The remaining 10 columns show the most similar shapes retrieved by IDSC (odd row numbers) and

by our method (even row numbers).

stated in Section 3, in order to increase computational
efficiency, it is possible to construct the affinity matrix for
only part of the database of known shapes. Hence, for each
query shape, we first retrieve 300 of the most similar
shapes, and construct the affinity matrix W for only those
shapes, i.e., W is of size 300 x 300 as opposed to a 1,400 x
1,400 matrix if we consider all MPEG-7 shapes. Then, we
calculate the new similarity measure simy for only those
300 shapes. Here, we assume that all relevant shapes will be
among the 300 most similar shapes. Thus, by using a larger
affinity matrix, we could improve the retrieval rate but at
the cost of computational efficiency. For each query, the
average running time of our method on MEPG-7 is about
30 seconds in Matlab. For comparison, the running time of
the original IDSC is about one minute for each query.

In addition to the statistics presented in Fig. 5, Fig. 6
illustrates also that the proposed approach improves the
performance of IDSC. A very interesting case is shown in
the first row, where, for IDSC only, one result is correct for
the query octopus. It instead retrieves nine apples as the
most similar shapes. Since the query shape of the octopus is
occluded, IDSC ranks it as more similar to an apple than to
the octopus. In addition, since IDSC is invariant to rotation,
it confuses the tentacles with the apple stem. Even in the
case of only one correct shape, the proposed method learns
that the difference between the apple stems is very relevant,
although the tentacles of the octopus exhibit a significant
variation in shape. We restate that this is possible because
the new learned distances are induced by geodesic paths in
the shape manifold spanned by the known shapes.

Consequently, the learned distances retrieve nine correct
shapes. The only wrong result is the elephant, where the
nose and legs are similar to the tentacles of the octopus.

As shown in the third row, six of the top 10 IDSC
retrieval results of lizard are wrong since IDSC cannot
discover the more relevant differences between lizards and
sea snakes. All retrieval results are correct for the new
learned distances since the proposed method is able to learn
the less relevant differences between lizards and the more
relevant differences between lizards and sea snakes. For the
results of deer (fifth row), three of the top 10 retrieval
results of IDSC are horses. Compared to it, the proposed
method (sixth row) eliminates all of the wrong results so
that only deer are in the top 10 results. It appears to us that
our new method learned to ignore the less relevant small
shape details of the antlers. Therefore, the presence of the
antlers became a relevant shape feature here. The situation
is similar for the bird and hat, with three and four wrong
retrieval results, respectively, for IDSC, which are elimi-
nated by the proposed method.

An additional explanation of the learning mechanism of
the proposed method is provided by examining the count of
the number of violations of the triangle inequality that
involve the query shape and the database shapes. In Fig. 7a,
the curve shows the number of triangle inequality violations
after each iteration of our distance learning algorithm. The
number of violations is reduced significantly after the first
few hundred iterations. We cannot expect the number of
violations to be reduced to zero since cognitively motivated
shape similarity may sometimes require triangle inequality
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Fig. 7. (@) The number of triangle inequality violations per iteration. (b) Plot of differences | f;+1 — f:|| as a function of ¢.

violations [17]. Observe that the curve in Fig. 7a correlates
with the plot of differences | f;;1 — f|| as a function of ¢
shown in (b). In particular, both curves decrease very slowly
after about 1,000 iterations, and at 5,000 iterations, they are
nearly constant. Therefore, we selected 7" = 5,000 as our
stop condition. Since the situation is very similar in all of
our experiments, we always stop after 7' = 5,000 iterations.

Besides the inner distance shape context [3], we also
demonstrate that the proposed approach can improve the
performance of visual parts shape similarity [4] and feature-
driven generative model method [2]. We select these two
methods since they are very different approaches than
IDSC. In [4], in order to compute the similarity between
shapes, first, the best possible correspondence of visual
parts is established (without explicitly computing the visual
parts). Then, the similarity between corresponding parts is
calculated and aggregated. The settings and parameters of
our experiment are the same as for IDSC as reported in the
previous section except that we set a = 0.4. The accuracy of
this method has been increased from 76.45 percent to
86.69 percent on the MPEG-7 data set, which is more than
10 percent. This makes the improved visual part method
one of the top scoring methods in Table 1. For feature-
driven generative model method [2], the accuracy has been
increased from 80.03 percent to 89.29 percent when we set
a = 0.25 and the other parameters are also the same as for
IDSC. The detailed comparisons of the retrieval accuracy
are given in Figs. 5b and 5c, respectively.

Besides the MPEG-7 data set, we also present experi-
mental results on the Kimia’s 99 data set [9]. The data set
contains 99 shapes grouped into nine classes. In this data set,
some images have protrusions or missing parts. Fig. 8 shows
two sample shapes for each class of this data set. As the
database only contains 99 shapes, we calculate the affinity
matrix based on all of the shapes in the database. The
parameters used to calculate the affinity matrix are: « = 0.25

N ankErIe-\
SNamitrtve -

Fig. 8. Sample shapes from Kimia’'s 99 data set [9]. We show two
shapes for each of the nine classes.

and the neighborhood size is K =4. We changed the
neighborhood size since the data set is much smaller than
the MPEG-7 data set. The retrieval results are summarized
as the number of shapes from the same class among the first
top 1-10 shapes (the best possible result for each of them is
99). Table 2 lists the numbers of correct matches of several
methods. Again, we observe that our approach could
improve IDSC significantly, and it yields a nearly perfect
retrieval rate, which is the best result in Table 2.

6.1.2 Improving Face Retrieval

We used a face data set from [51], where it is called Face
(all). It addresses a face recognition problem based on the
shape of head profiles. It contains several head profiles
extracted from side-view photos of 14 subjects. There exist
large variations in the shape of the face profile of each
subject, which is the main reason why we select this data
set. Each subject is making different face expressions, e.g.,
talking, yawning, smiling, frowning, laughing, etc. When
the pictures of subjects were taken, they were also
encouraged to look a little to the left or right, randomly.
At least two subjects had glasses that they put on for half of
their samples. A few sample pictures are shown in Fig. 9.

The head profiles are converted to sequences of curvature
values, and normalized to the length of 131 points, starting
from the neck area. The data set has two parts, training with
560 profiles and testing with 1,690 profiles. The training set
contains 40 profiles for each of the 14 classes. As reported in
[51], we calculated the retrieval accuracy by matching the
1,690 test shapes to the 560 training shapes. We used a
dynamic time-warping (DTW) algorithm with a warping
window [52] to generate the distance matrix, and obtained
the first nearest neighbor (INN) retrieval accuracy of
88.9 percent By applying our distance learning method,
we increased the 1NN retrieval accuracy to 95.04 percent.
The best reported result in [51] has the first INN retrieval
accuracy of 80.8 percent. The retrieval rate, which represents
the percentage of the shapes from the same class (profiles of
the same subject) among the first k-nearest neighbors, is
shown in Fig. 10b.

The accuracy of the proposed approach is stable,
although the accuracy of DTW decreases significantly
when k increases. In particular, our retrieval rate for k& = 40
remains high, 88.20 percent, while the DTW rate dropped
to 60.18 percent. Thus, the learned distance allowed us to
increase the retrieval rate by nearly 30 percent. Similar to
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TABLE 2
Retrieval Results on Kimia’s 99 Data Set [9]

Algorithm Ist 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SC [1] 97 91 88 8 84 77 715 66 56 37

Gen. Model [2] 99 97 99 98 96 96 94 83 T5 48
Path Similarity [5] 99 99 99 99 96 97 95 93 &9 73
Shock Edit [9] 99 99 99 98 98 97 96 95 93 82
IDSC [3] 99 99 99 98 98 97 97 98 94 79
Triangle Area [29] 99 99 99 98 98 97 98 95 93 80
Shape Tree [8] 99 99 99 99 99 99 99 97 93 86
Symbolic Rep. [30] 99 99 99 98 99 98 98 95 96 94
IDSC [3] + our method 99 99 99 99 99 99 99 99 97 99

g8 Ekle Elle 8

Fig. 9. A few sample images of the Face (all) data set.
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Fig. 10. (a) Conversion of the head profile to a curvature sequence. (b) Retrieval accuracy of DTW (blue circles) and the proposed method (red

stars).

the above experiments, the parameters for the affinity
matrix are o = 0.4 and K = 5.

6.1.3 Improving Leaf Retrieval

The Swedish leaf data set comes from a leaf classification
project at Linkoping University and Swedish Museum of
Natural History [53]. Fig. 11 shows some representative
examples. The data set contains isolated leaves from
15 different Swedish tree species, with 75 leaves per species.
We followed the experimental setting for the Inner-Distance
Shape Contexts used in [3], with 25 leaves of each species
being used for training, and the other 50 leaves being used for
testing. The INN accuracy reported in [3] is 94.13 percent,
but the result we obtained with their software' is 91.2 percent.

1. http://vision.ucla.edu/~hbling/code.

As shown in Fig. 12, the retrieval rate of the Swedish leaf is
significantly improved by the proposed approach, espe-
cially, the INN recognition rate is increased from 91.2 to
93.8 percent. The parameters for the affinity matrix are o =
0.2and K = 5.

6.2 Improving 1NN Shape Classification

The k-nearest neighbor algorithm is among the simplest of
all machine learning algorithms. An object is classified by a
majority vote of its neighbors, with the object being assigned
to the class most common among its & nearest neighbors. k&
is a positive integer, typically small. If & = 1, then the object
is simply assigned to the class of its nearest neighbor. The
proposed distance learning algorithm could improve the
recognition rate of 1NN classification. The retrieval results
of Face (all) and Swedish leaf databases have shown the
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Fig. 11. Typical images from the Swedish leaf database [53], one image per species. Note that some species are quite similar, e.g., the first, third,

and ninth species.

improvement. Besides, we divided the MPEG-7 data set into
two sets: training set and testing set. For each class,
10 shapes are chosen as the training samples and the
remaining 10 shapes are then used for testing. The results
are shown in Table 3. We observe that the performance on
these data sets has improved. The improvements on
Swedish leaf and MPEG-7 are not so significant as on the
Face data set, which might be related to the number of the
training samples per class, which for the Swedish leaf and
MPEG-7 data sets are much fewer than the Face data set.
The parameters for all of the three data sets are the same as
in the retrieval setting.

6.3 Improving Retrieval of Partially Occluded
Shapes

It is well known that occlusion could potentially influence
the performance of shape similarity approaches [54]. Since
there is no standard test data set for occluded query shapes,
we extended the MPEG-7 data set. In order to illustrate that
the proposed approach has the potential to solve this
problem, we selected several shapes and manually removed
some of their parts. Then, the modified shapes are
submitted as queries to the whole MPEG-7 data set for
shape retrieval. The original distance matrix is obtained by
IDSC. Fig. 13 shows the results of our experiments. The
retrieval results in the odd rows are obtained by IDSC, and
the results in the even rows are obtained by the proposed
approach. It is clear that, although part occlusion influences
the original IDSC a lot, our method can still improve the
retrieval results. For example, we can interpret the results in
the second row as 100 percent correct, while the original
IDSC retrieved several incorrect shapes in the first row. We
also observe that IDSC was unable to find the original fly
from which the occluded fly query was made. Our method
retrieved this fly as the first most similar shape to the query
in the second row. The original retrieval IDSC results of the
crown are even worse; only one result is correct, and most
of the shapes belong to the class “fountain.” Though the

0 10 20 30 40 50

Fig. 12. Retrieval accuracy of IDSC (blue circles) and the proposed
method (red stars).

results of the proposed approach are not perfect, it still
improves the performance a lot. Moreover, our query
elephant is nearly half occluded, therefore, four of the top
10 results belong to the class “running person.” The
proposed approach could correctly retrieve all elephants.
We also were able to obtain 100 percent correct retrieval for
the occluded dog. The parameters for the part-occluded
shapes are the same to them in the experiments on the
whole MPEG-7 data set.

6.4 Improving Shape Clustering

Besides the shape retrieval, the learned distance by the
proposed approach can also be used for improving the
performance of shape clustering. The difficulty of the shape
clustering is also related to the shape similarity, which may
have high variance of differences in the same class and,
sometimes, small differences in different classes. Analogous
to shape retrieval, the learned distance can improve the
shape clustering results a lot.

In this paper, we choose Affinity Propagation [55] for
shape clustering. Compared to other classic clustering
algorithms, such as k-means, the main advantage of Affinity
Propagation is that it does not require the prior knowledge of
the number of clusters. As mentioned above, two shapes in
the same class may be very different from each other and the
distribution of differences is different for different classes. If
the number of clusters is fixed before clustering, it may ruin
the results because of the outliers. Therefore, Affinity
Propagation is more suitable for the task of shape clustering
as the outliers or unusual shapes which are totally different
from other shapes in the same class will be automatically
classified to separate clusters and will not affect other
clusters. The details of Affinity Propagation are given in [55].

To evaluate the performance of the proposed approach on
shape clustering, we applied the algorithm to three standard
data sets: Kimia’s 99 [9], shown in Fig. 8, and Kimia’s 216 [9],
which is a subset of the MPEG-7 data set. Fig. 14 shows two
sample shapes for each class of Kimia’s 216 shape data set.
The third data set is the whole MPEG-7 data set. The score of
the test is the ratio of the number of correct pairs of objects to
the highest possible number of correct pairs and the best
result would be 1. This score could represent the perfor-
mance of shape clustering. If two shapes are clustered into
one class and they have the same class label, it will be
considered as a correct cluster result. Otherwise, if they do
not have the same class label, the cluster result is wrong.
Obviously, if two shapes are clustered into two different
clusters, but they have the same true label, the proposed
approach would not take it as a correct result. Finally, if the
clustering algorithm could accurately cluster the MPEG-7
data set into 70 classes and each class contains the correct
shapes, the score would be 1. Otherwise, it would be less
than 1. The nearer to 1, the better the clustering algorithm.
The IDSC [3] is used to obtain the input distance matrix for
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TABLE 3
Results of 1NN Classification Improvement
Original Distance | Learned Distance
Face (all) 88.9% 95.4%
Swedish leaf 91.2% 93.8%
MPEG-7 database 94.7% 95.7%

K Aks+4EMNe

¥ kX ra KR4

S YRR R

##k'?(

R T R R T B
W ELE D BN TN RN
TELETEEYD T XY X
R OE TR VIV IV T

B \

RN A A A

Fig. 13. The first column shows the query shape. The remaining 10 columns show the most similar shapes retrieved by IDSC (odd row numbers) and

by our method (even row numbers).
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Fig. 14. Sample shapes from Kimia’s 216 data set [9]. We show two shapes for each of the 18 classes.

each of three data sets. The shape clustering results based on
the original distance by IDSC [3] and the learned distance by
our algorithm are shown in Table 4 . Notice that the learned
distance achieved a significant improvement on all data sets,
and the numbers of the clusters are almost equal to the
numbers of classes on Kimia’s two data sets. We believe that
some other methods, such as [15], can also be improved with
our method. Here, we did not compare with the shape
clustering method in [15] since they need to fix the number of
cluster centers before clustering.

The number of iterations 7" is 1,000 for MPEG-7 data set
and 300 for two Kimia’s data sets. The parameters to

calculate the affinity matrix for MPEG-7 are the same as for
the retrieval. Besides, for Kimia's 99 shape database, the
parameters are KX =5 and « =0.33, and for Kimia’s 216
shape database, the parameters are K =7 and a = 0.32.

6.5 Choice of Parameters

There are three main free parameters for the proposed
approach, «, K for affinity matrix, and the number of
iterations 7. In order to show the proposed approach is
applicable in a reasonable range for parameters, we test the
performance of the proposed approach on a range of
parameter values. For 7', as in Fig. 7b, it has been shown
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TABLE 4
Clustering Results on the Kimia’s 99 Data Set [9], Kimia’s 216 Data Set [9], and MPEG-7 Data Set

Kimia’s 99 dataset

Kimia’s 216 shape dataset

MPEG-7 dataset

Number of Classes 9

18 70

Original Dist. | Learned Dist.
Number of Clusters 16 10

69% 95%

Accuracy

Original Dist.

Learned Dist. | Original Dist. | Learned Dist.
174 58

54% 86%

25 19
85% 97%

that, after several hundred iterations, the f is stable, which
means that the approach is stable for 7. Thus, we only
consider the influence of the other two parameters. We
randomly divide the whole MPEG-7 data set into two sets
consisting of 700 shapes, in which each class contains
10 objects. One of them is chosen and bulls-eye score is
calculated for each different pair of parameters. The new data
set consists of 700 silhouette images grouped into 70 classes.
Each class has 10 different shapes. For each query, the
number of shapes from the same class among the 20 most
similar shapes is reported. The bulls-eye retrieval rate is the
ratio of the total number of shapes from the same class to the
highest possible number (which is 10 x 700). The results are
shown in Table 5.

In the above experiments, a ranges from 0.1 to 0.4 with an
increase of 0.05 in each step and K ranges from 3 to 9 with an
increase of 2 in each step. The best parameter is o« = 0.25 and
K =17. As the new data set is half of the MPEG-7, it is
reasonable to double the K for the whole datasetto K’ = 14in
the new data set. It is obvious that, in a proper range, the
proposed approach is stable for the two parameters.

As manually choosing parameters is not proper for real
application, we use a supervised learning framework to
learn the parameters and obtain good results. We directly
use the best learned parameters in the above experiments
and then we perform the experiments on whole MPEG-7
data set based on these parameters.

7 CONCLUSION AND DISCUSSION

In this work, we adapted a graph transductive learning
framework to learn new distances with the application to

TABLE 5
The Bulls-Eye Score for New Data Set
Based on Different Pairs of Parameters

K=3|K=5|K=7T|K=9
a=0.1 | 83.9% |88.11% | 89.26% | 89.84%
a=0.15 | 84.33% | 88.67% | 89.66% | 90.31%
a=0.2 |85.77% | 90.29% | 91.34% | 91.84%
a=0.25|88.71% | 92.17% | 92.57% | 92.56%
a=0.3 |89.69% | 91.16% | 91.41% | 91.16%
a=0.35189.03% | 90.39% | 90.3% | 90.2%
a=04 |88.74% | 89.99% | 89.97% | 89.84%

shape retrieval, shape classification, and shape clustering.
The key idea is to replace the distances in the original
distance space with distances induced by geodesic paths in
the shape manifold. The merits of the proposed technique
have been validated by significant performance gains in all
presented experimental results. However, like semi-super-
vised learning, if there are too many outlier shapes in the
shape database, the proposed approach may not be able to
improve the results. Our future work will focus on addres-
sing this problem. We also observe that our method is not
limited to 2D shape similarity but can also be applied to 3D
model retrieval, which will also be part of our future work.
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