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Abstract—In many applications, we are given a finite set of data points sampled from a data manifold and represented as a graph with

edge weights determined by pairwise similarities of the samples. Often the pairwise similarities (which are also called affinities) are

unreliable due to noise or due to intrinsic difficulties in estimating similarity values of the samples. As observed in several recent

approaches, more reliable similarities can be obtained if the original similarities are diffused in the context of other data points, where

the context of each point is a set of points most similar to it. Compared to the existing methods, our approach differs in two main

aspects. First, instead of diffusing the similarity information on the original graph, we propose to utilize the tensor product graph (TPG)

obtained by the tensor product of the original graph with itself. Since TPG takes into account higher order information, it is not a

surprise that we obtain more reliable similarities. However, it comes at the price of higher order computational complexity and storage

requirement. The key contribution of the proposed approach is that the information propagation on TPG can be computed with the

same computational complexity and the same amount of storage as the propagation on the original graph. We prove that a graph

diffusion process on TPG is equivalent to a novel iterative algorithm on the original graph, which is guaranteed to converge. After its

convergence we obtain new edge weights that can be interpreted as new, learned affinities. We stress that the affinities are learned in

an unsupervised setting. We illustrate the benefits of the proposed approach for data manifolds composed of shapes, images, and

image patches on two very different tasks of image retrieval and image segmentation. With learned affinities, we achieve the bull’s eye

retrieval score of 99.99 percent on the MPEG-7 shape dataset, which is much higher than the state-of-the-art algorithms. When the

data points are image patches, the NCut with the learned affinities not only significantly outperforms the NCut with the original affinities,

but it also outperforms state-of-the-art image segmentation methods.

Index Terms—Diffusion process, tensor product graph, affinity learning, image retrieval, image segmentation

Ç

1 INTRODUCTION

ONE of the most important properties of the proposed
tensor product graph (TPG) diffusion is the fact that it

is able to capture the geometry of the data manifold.
Usually, the dimensionality of the feature space (number of
features) is large, but the intrinsic dimensionality of the data
manifold is small. At the same time the shape of the data
manifold is very important, and it is often curved. Formally,
this means that it is not a convex subset of the feature space.
We observe that only if the data manifold is convex are the
euclidean distances an adequate measure of distances
between the data points. Thus, if the data manifold is
curved, the euclidean distances are inadequate. The
proposed TPG diffusion is able to robustly estimate (or
learn) distances between data points that correspond to
geodesic distances on the data manifold. We illustrate this
fact on a toy dataset in Fig. 1. We compare the classification

performance of TPG diffusion to spectral embedding [1],
which is a standard dimensionality reduction method.
The goal of dimensionality reduction methods is to capture
the geometry of the data manifold by embedding it into a
lower dimensional space with the hope that the euclidean
distances in the new space approximate the geodesic
distances on the data manifold. The spectral embedding
computes the embedding based on eigenvalue decomposi-
tion of the data similarity matrix. In contrast, the TPG
diffusion estimates the geodesic distances directly on the
data manifold.

In each half moon in Fig. 1, one point is selected as a
labeled point (marked with a star). We use the simplest
possible classifier, i.e., 1NN classifier. It assigns an (un-
labeled) data point to the closest labeled point (one of the two
stars). The ground truth of each point is known beforehand
(marked with red and blue colors). Table 1 shows the
classification rates for different noise levels for the euclidean
distance, TPG diffusion, and spectral embedding. Even with
no noise the euclidean distance can only correctly classify 76
percent of the data points. This shows that the geodesic
distances on this data manifold are not well approximated
with the euclidean distances. The classification rate of
100 percent of the TPG diffusion clearly demonstrates that
it has no difficulty to learn the geodesic distances. In
contrast, spectral embedding can only achieve 84.83 percent.
(For spectral embedding, we use the two most important
eigenvectors of the similarity matrix to embed the data into
2D.) With the increased amount of noise performance of both
spectral embedding and TPG diffusion drop, but TPG
diffusion still outperforms spectral embedding. Of course,
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if the noise significantly corrupts the manifold structure, as is
the case for noise level of 2.5, none of the methods can do
much better than the baseline euclidean distance.

The noise is generated by displacing all data points with

added Gaussian noise. The level of noise is the ratio

between the Gaussian sigma and the average distance of

each point to its nearest neighbor in the whole dataset. The

classification results reported in Fig. 1 are the mean results

of 10 runs of the experiment.
In order to further motivate the proposed approach, we

consider the popular MPEG-7 shape dataset containing

binary images of 1,400 shapes. The dataset is divided into

70 classes with 20 shapes in each class. In Fig. 2, we show

three shapes from three classes: Device1, Device2, and

Device9. We observe that some shapes from Device1 and

Device2 are more similar to each other than to other shapes

in the same class, which illustrates one of the main

problems of shape-based object recognition. Since shapes

from the same class often exhibit large intraclass variance, a

shape similarity measure must tolerate this variance, but at

the same time it must be discriminative enough to

differentiate shapes from different classes. It seems to be

impossible to solve this problem if two shapes are only

compared in isolation form other shapes.
A solution to this problem has been pointed out in a

sequence of recent papers, [2], [3], [4], [5], where the

pairwise comparisons are augmented by the context of

other shapes. As demonstrated by these papers, considering

the data manifold structure defined by other shapes

significantly improves the performance of ranking/retrie-

val. The basic idea is inspired by the success of Google

PageRank ranking. The data manifold is represented as a

graph with edge weights determined by the initial pairwise

similarity values. Then the pairwise similarities between the

query and each database object are reevaluated in the

context of other database objects, where the context of each

object is a set of other objects most similar to it and the

reevaluation is obtained by propagating the similarity

information following structure of the weighted edge links

in the graph. The reevaluation is closely related to random
walks on the graph, e.g., [6], [7].

One of the standard ways of propagating the similarity
information is by a diffusion process on a weighted graph
[6], [8]. In Fig. 3a, we show part of the MPEG-7 affinity
matrix A representing the three shape classes: Device1,
Device2, and Device9. The affinities are computed based on
pairwise shape comparison with aspect shape context
(ASC) [9]. Fig. 3b show the affinities after the classic
diffusion on the MPEG-7 graph represented by A. While
the original affinity matrix in Fig. 3a is sparse in that some
shapes in the same class do not exhibit high similarities,
the diffusion is able to propagate the similarity information
and relate objects in the same classes. However, in doing so
the distinction between classes Device1 and Device2 has
been lost. In contrast, the proposed TPG diffusion is able to
propagate the within class similarities and still preserves
the between class separation as shown in Fig. 3c. This
demonstrates that the diffusion on TPG is able to better
propagate the inner class affinities while at the same time
preserving the intraclass differences.

Compared to the existing methods, our approach differs
in two main aspects. First, instead of propagating the
similarity information on the original graph, we propose to
utilize the tensor product graph obtained by the tensor
product of the original graph with itself. Since TPG takes
into account a higher order information compared to the
original methods, it comes as no surprise that we obtain
better retrieval performance. Higher order information has
been utilized in many applications before, e.g., [10], [11], but
it comes at the price of higher order computational
complexity and storage requirements. The key feature of
the proposed approach is that the information propagation
on TPG can be computed with the same computational
complexity and the same amount of storage as the
propagation on the original graph. We utilize a graph
diffusion process to propagate the similarity information on
TPG, but we never compute it directly on TPG. Instead, we
derive a novel iterative algorithm to compute it directly on
the original graph, which is guaranteed to converge. After
its convergence we obtain new edge weights that can be
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TABLE 1
The 1NN Classification Rates with Respect to

Two Labeled Data Points on the Dataset in Fig. 1

Fig. 2. Three example shapes form each of the three shape classes from
the MPEG-7 shape dataset.

Fig. 1. Toy example dataset with added Gaussian noise. Two labeled data points are marked with stars.



interpreted as new, learned similarities. They are then used
for final retrieval ranking.

Fig. 4 compares the retrieval results of the learned
similarities to those of original similarities. The queries are
shown in the first column. The first row shows retrieval
results of an original shape similarity measure ASC [9] on the
MPEG-7 dataset. The results after the proposed diffusion on
TPG are shown in the second row. As can be seen, the
proposed similarity learning with diffusion on TPG is able to
correct wrong retrieval results of the original similarities.

We demonstrate the benefits of learned affinities on two
very different applications. First, in Section 4 we focus on
shape and image retrieval and demonstrate that the
learned similarities lead to better retrieval results. This
demonstrates that the distances corresponding to the
learned similarities better estimate the true geodesic
distances on the data manifold. Besides shape retrieval,
we also show that learned similarities lead to improved
clustering results. As a special and particularly challenging
case we study image segmentation. Popular, unsupervised
segmentation algorithms, such as Normalized Cut (NCut)
[12] and Mean Shift [13], can be viewed as clustering
methods. In Section 5, we demonstrate that the NCut
image segmentation algorithm with the learned affinities
not only significantly outperforms the NCut with the
original affinities, but it also outperforms state-of-the-art
image segmentation methods. The benefits of learned
similarities are not limited to the two applications. For
example, K nearest neighbor (KNN) classifiers perform
better when distances are closer to the intrinsic distances
on the data manifold.

We present the related work in the next section. The
construction of TPG and the proposed approach to learning

affinities by diffusion on TPG are introduced in Section 3. The
diffusion process on TPG is described in Section 3.1 and the
proposed lower complexity iterative algorithm to compute it
in Section 3.2, where their equivalence is also proven.

2 RELATED WORK

Information propagation on a weighed graph representing
a given dataset has been considered in the context of image
retrieval. Zhou et al. [2] proposed to improve ranking of
retrieved objects by utilizing the data manifold structure. In
other words, the context information of similar database
objects is used to improve ranking results. Recently, Bai
et al. [5] proposed to utilize the context information for
shape retrieval with Label Propagation, which was origin-
ally designed for semi-supervised learning. Kontschieder et
al. [4] proposed a different way to utilize the context
information to improve the performance. A graph diffusion
process is utilized for retrieval in Yang et al. [3], where a
Locally Constraint Diffusion Process (LCDP) is proposed.
LCDP has been used in [9] and [14] to improve their results.
Graph diffusion has also been utilized for manifold
embedding [8]. However, the distances relations among
data after embedding are not suitable for retrieval, which is
demonstrated in our experimental results. Furthermore, Bai
et al. [15] introduce novel retrieval methods, cotransduc-
tion, motivated by cotraining. It fuses different similarity/
dissimilarity measures to better determine the relation
between objects.

Content-based image retrieval is getting more attention
recently. The classic methods [16], [17] use the bag of
feature image representation for image retrieval. Jegou et al.
[18] refine the affinity among the objects by enforcing the
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Fig. 4. First row: The query and the retrieval results with the original ASC shape similarity measure on the MPEG-7 shape dataset. Second row: The
same query and the retrieval results with similarities learned by the proposed diffusion on TPG.

Fig. 3. (a) The original affinities of 60 shapes belonging to three different shape classes of the MPEG-7 shape dataset. (b) The affinities learned with
the classic diffusion on the original graph. (c) The affinities learned with the proposed TPG diffusion. While the structure of three clusters is clearly
visible in (c), the first two shape classes form a single cluster in (b). (The self-similarities in (a) are set to zero for better visualization.)



neighborhood relation to be symmetric. To reduce the
complexity of current algorithms, Jegou et al. [19] propose a
novel features extraction approach. Differently from the
current methods, we improve the image retrieval results by
utilizing the higher order information of the TPG. The
iterative algorithm for diffusion process on TPG was
presented by the authors in a conference paper [20].

The proposed application of tensor graph diffusion to
image segmentation is most closely related to [21]. How-
ever, there are two key differences. First, we learn new
affinities on a Tensor Product Graph that allows us to utilize
higher order relations. This is able to better reveal the
intrinsic relation between data. Second, we utilize hierarch-
ical segmentations in our framework. Thus, the neighbor-
hood information can be integrated into the affinity learning
procedure. As proven by many other papers [22], [23], [24],
[25], [26], this information complements purely local
information to a great advantage. We use the finest level
of hierarchical image segmentation as the basic unit instead
of pixels. The superpixels are not only more informative
than pixels [27] but also reduce the time complexity and
memory requirement. Once new affinities of image regions
are learned, we utilize the classical Normalized Cuts (NCut)
algorithm by Shi and Malik [12] to obtain the final
segmentation results.

3 AFFINITY LEARNING

In this section, we describe a novel context-sensitive affinity
learning algorithm. It is introduced as a diffusion process
on a Tensor Product Graph. However, the size of TPG is
quadratic as compared to the original graph, which makes
the diffusion on the TPG impractical on large datasets due
to both high computation time and high memory require-
ment. To solve this problem, we propose a novel iterative
algorithm on the original graph (Section 3.2), and prove that
it is equivalent to the diffusion process on TPG. Conse-
quently, both the time complexity and memory require-
ments of the iterative algorithm are comparable to other
affinity learning methods like diffusion on the original
graph [6] or LGC [2], [7].

The most popular representations of data manifolds
given by a set of data points is an edge-weighted graph
G ¼ ðV ;AÞ, where V ¼ fv1; . . . ; vng is the set of vertices
representing the data points and A is the graph adjacency
matrix Aði; jÞ ¼ ðaijÞ for i; j ¼ 1; . . . ; n. The edge weight aij
from vi to vj represents a pairwise similarity (or equiva-
lently affinity) between data points vi to vj.

It is well known that a graph diffusion process is able to
reveal the intrinsic relation between objects [8], [6].
Probably the simplest realization of a diffusion process on
a graph is by computing powers of the graph matrix, i.e.,
the edge weights at time t are given by At. Usually, the time
is discrete and t corresponds to the iteration number.
However, this process, which we call classic diffusion, is
sensitive to the number of iterations [28]. For example, if
the sum of each row of A is smaller than one, as we
assume, then the classic diffusion converges to zero matrix,
in which case determining a right stopping time t is critical.
In order to make the graph diffusion process independent
from the number of iteration, accumulation between

different numbers of iterations is widely used [28].

Following this strategy, we consider the graph diffusion

process defined as

AðtÞ ¼
Xt
i¼0

Ai: ð1Þ

We assume that A is nonnegative and the sum of each row

is smaller than one. A matrix A that satisfies these

requirements can be easily created from a stochastic matrix.

The assumption that the sum of each row of A < 1 is

equivalent to the fact that the maximum of the rowwise

sums of matrix A < 1. It is known that the maximum of the

absolute values of the eigenvalues is bounded by the

maximum of the rowwise sums. Therefore, we obtain that

the maximum of the absolute values of the eigenvalues of A

is smaller than one. Consequently, (1) converges to a fixed

and nontrivial solution given by limt!1A
ðtÞ ¼ ðI �AÞ�1,

where I is the identify matrix.

3.1 Diffusion Process on Tensor Product Graph

The Tensor Product Graph GG ¼ G�G is defined as

GG ¼ ðV � V ;AAÞ. Thus, each vertex of GG is a pair of vertices

in G, and consequently, it is indexed with a pair of indices.

The adjacency matrix of GG is defined as AA ¼ A�A, where

� is the Kronecker product [29], [30]. In particular, for �; �,

i; j ¼ 1 . . . ; n, we have

AAð�; �; i; jÞ ¼ Að�; �Þ �Aði; jÞ ¼ a�;� � ai;j:

Thus, if A 2 IRn�n, then AA ¼ A�A 2 IRnn�nn. An example

is shown in Fig. 5.
We define the diffusion process on TPG as

AAðtÞ ¼
Xt
i¼0

AAi: ð2Þ

Since the edge weights of TPG relate four tuples of original

vertices, GG contains high order information than the input

graph. The higher order information is helpful for revealing

the intrinsic relation between objects, which is obtained by

the diffusion process on TPG.
As is the case for (1), the process (2) also converges to a

fixed and nontrivial solution:

lim
t!1

AAðtÞ ¼ lim
t!1

Xt
i¼0

AAi ¼ ðI �AAÞ�1: ð3Þ

To show this, we only need to show that the sum of each

row of AA is smaller than 1, i.e.,
P

�;j AAð��; ijÞ < 1, where

�; j both range from 1 to n. This holds, since
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Fig. 5. An example of a tensor product graph. We do not show the self-
connections (loops), but each node has a loop in GG.



X
�j

AAð��; ijÞ ¼
X
�j

a��aij ¼
X
�

a��
X
j

aij < 1: ð4Þ

Consequently, (3) provides a closed form solution for the
diffusion process on TPG. However, our goal was to utilize
TPG to learn new affinities on the original graph G, i.e., to
obtain a new affinity matrix A� of size n� n. The matrix A�

containing the learned affinities is defined as

A� ¼ vec�1ððI �AAÞ�1 vecðIÞÞ; ð5Þ

where I is an n� n identity matrix and vec is an operator
that stacks the columns of a matrix one after the next into a
column vector. Formally, for a given m� n matrix B:

vecðBÞ ¼ ðb11; . . . ; bm1; b12; . . . ; bm2; . . . ; b1n; . . . ; bmnÞT :

Since vec : IRm�n ! IRmn is an isomorphism, its inverse
exists, and we denote it with vec�1.

To summarize, for the input affinity matrix A, the new
learned affinities are given by matrix A�, defined in (5).
However, the affinity learning with the proposed diffusion
process on TPG (2) is impractical for large graphs due to
high storage and computing cost. The diffusion on the
original graph G requires Oðn2Þ storage (number of the
matrix elements) and its computation cost is determined by
the cost of matrix inversion, which is Oðn3Þ for Gauss-
Jordan elimination or about Oðn2:4Þ for the Coppersmith-
Winograd algorithm. In contrast, the diffusion on TPG
requires Oðn4Þ storage and its computation cost is Oðn6Þ for
Gauss-Jordan elimination or about Oðn4:8Þ for the Copper-
smith-Winograd algorithm. Therefore, we propose a novel
iterative algorithm in Section 3.2 to compute (2). Its storage
and computation cost is comparable to the diffusion on the
original graph, since it is executed on the original graph.

3.2 Iterative Algorithm for Diffusion on TPG

We define Qð1Þ ¼ A and

Qðtþ1Þ ¼ A QðtÞ AT þ I; ð6Þ

where I is the identity matrix. We iterate (6) until conver-
gence. Let us denote the limit matrix byQ� ¼ limt!1Q

ðtÞ. The
proof of the convergence of (6) and a closed form expression
for Q� both follow from the following key equation:

lim
t!1

QðtÞ ¼ Q� ¼ A� ¼ vec�1ððI �AAÞ�1 vecðIÞÞ: ð7Þ

The remainder of this section is devoted to proving this
equation. Since Q� ¼ A�, we obtain that the iterative
algorithm on the original graph G defined by (6) yields
the same affinities as the TPG diffusion process on GG.

In order to prove (7), we first transform (6) to

Qðtþ1Þ ¼ A QðtÞ AT þ I ¼ AðA Qðt�1Þ AT þ IÞAT þ I
¼ A2 Qðt�1Þ ðAT Þ2 þA I AT þ I ¼ � � �
¼ At A ðAT Þt þAt�1 I ðAT Þt�1 þ � � � þ I

¼ At A ðAT Þt þ
Xt�1

i¼0

Ai I ðAT Þi:

ð8Þ

Since (by our assumption) the sum of each row of A < 1, we

have limt!1A
t A ðAT Þt ¼ 0 and, consequently,

Q� ¼ lim
t!1

Qðtþ1Þ ¼ lim
t!1

Xt�1

i¼0

Ai I ðAT Þi: ð9Þ

We observe that the following identity holds:

vecðA S AT Þ ¼ ðA�AÞvecðSÞ ¼ AA vecðSÞ; ð10Þ

where we recall that � is the Kronecker product. As a

consequence we obtain, for every i ¼ 0; 1; 2; . . . ,

vecðAi I ðAT ÞiÞ ¼ AAivecðIÞ: ð11Þ

Our proof of (11) is by induction. Suppose

vecðAk I ðAT ÞkÞ ¼ AAkvecðIÞ;

holds for i ¼ k, then for i ¼ kþ 1 we have

vecðAkþ1 I ðAT Þkþ1Þ ¼ vecðA ðAk I ðAT ÞkÞ AT Þ
¼ AA vecðAk I ðAT ÞkÞ ¼ AA AAkvecðIÞ ¼ AAkþ1vecðIÞ:

From (11) and from the fact that vec of a sum of matrices is

sum of their vecs, we obtain

vec
Xt�1

i¼0

ðAÞi I ððAÞT Þi
 !

¼
Xt�1

i¼0

AAivecðIÞ: ð12Þ

Finally, from (9) and (12) we derive

vecðQ�Þ ¼ lim
t!1

vec
Xt�1

i¼0

Ai I ðAT Þi
 !

¼ lim
t!1

Xt�1

i¼0

ðAAi vecðIÞÞ

¼ lim
t!1

Xt�1

i¼0

AAi

 !
vecðIÞ ¼ ðI �AAÞ�1 vecðIÞ:

ð13Þ

This proves our key (7). Hence, the iterative algorithm (6)

on G yields the same affinities as the TPG diffusion process

on GG.
Since our iterative algorithm works on the original

graph G, both its storage and computational cost require-

ments are significantly lower than those of the TPG

diffusion process. It requires Oðn2Þ storage and its

computation cost is determined by the cost of matrix

multiplication, which is Oðn3Þ for direct implementation or

about Oðn2:4Þ for the Coppersmith-Winograd algorithm.

Consequently, if the number of iterations is t ¼ T , then its

computational cost is OðTn3Þ or OðTn2:4Þ, correspondingly.
Graph G in Fig. 5 provides a simple example to illustrate

the fact that the diffusion on the TPG considers the

information from more edge weights than the diffusion on

the original graph. For simplicity, we compare only the

second iteration, i.e., we compare Að2Þ to Qð2Þ and focus on

the edge weight between 1 and 3. Since there are no edges

between 1 and 3 in G, we have a13 ¼ a31 ¼ 0. Therefore, in

Að2Þ we have a
ð2Þ
13 ¼ a12 � a23. The corresponding weight of

the edge between 1 and 3 in Qð2Þ is given by

q
ð2Þ
13 ¼ a12 � a23 � ða11 þ a22Þ þ a12 � a33 � a33;
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while a
ð2Þ
13 only depends on the edge weights a12 and a23, q

ð2Þ
13

also depends on the self-similarities a11; a22; a33. In parti-

cular, we can have a
ð2Þ
13 < q

ð2Þ
13 if a11 þ a22 > 1, but we can also

have a
ð2Þ
13 > q

ð2Þ
13 . Thus, TPG diffusion utilizes more informa-

tion to determine the strength of the connection between

1 and 3 than just the connections a12 and a23 considered by

the diffusion on the original graph. The difference in the

number of connections considered is even more dramatic

for t > 2. TPG diffusion also utilizes self-reinforcement in

that the strength of the connections depends on the ratio

between the similarity of each database object to itself and

the sum of its similarities to other objects.

4 PERFORMANCE EVALUATION WITH IMAGE

RETRIEVAL RATES

To demonstrate the advantages of the learned distances, we

show that they lead to significant improvement of data

manifold distances, which we measure using shape and

image retrieval rates. We emphasize that the proposed

approach is not a stand-alone image retrieval method. It is

an affinity (or distance) learning algorithm. In Section 5,

we demonstrate that learned affinities also improve image

segmentation results. Our goal is to demonstrate that the

learned affinities yield better results than the original

affinities. This implies that the learned affinities better

estimate the true geodesic distances on the underlying data

manifolds. In particular, this means that the learned

affinities can improve any distance-based image retrieval

method, e.g., [31]. On all test datasets, the proposed method

achieves excellent results, which are significantly better

than baseline results obtained with original affinities.
Since our iterative algorithm to compute the TPD

diffusion is guaranteed to converge, we only need to ensure

that the number of iterations is not too small. It is set to 200

for all test datasets.
If pairwise distances are provided for a given dataset, we

transform the distances to similarities with the method

introduced in [32]. It applies a Gaussian to distances with

variable sigma, which is determined by distances to

neighbor data points. We denote the thus obtained

similarity matrix with W . Then we row-wise normalize W

to a stochastic matrix so that sum of each row is one.

Finally, we obtain the input affinity matrix A by aij ¼ wij if

j 2 kDNðiÞ and aij ¼ 0 otherwise, where kDN denotes a

dominant neighborhood defined in [20]. kDN can be

viewed as a more robust version of k nearest neighborhood

kNN . Differently from kNN , kDN may contain less than

k nearest neighbors. The parameter k is determined

experimentally for each dataset presented below.

4.1 MPEG-7 Dataset

The proposed framework is tested for shape retrieval on a

commonly used MPEG7 CE-Shape-1 part B database [33].

The dataset contains 1,400 silhouette images from 70 classes,

where each class has 20 different shapes. The retrieval rate is

measured by the bull’s eye score: Every shape in the

database is submitted as a query and the number of shapes

from the same class in the top 40 is counted. The bull’s-eye

score is then defined as the ratio of the number of correct hits

to the best possible number of hits (which is 20� 1;400).
As shown in Table 2, the proposed affinity learning

method can successfully improve on the state-of-the-art

methods. We selected two different shape similarity

methods: Aspect Shape Context [9] and Articulated Invar-

iant Representation (AIR) [34] as the input pairwise distance

measure. kDN with k ¼ 10 was used. We observe that the

affinities learned by our method improve the original

retrieval score of ASC by over 8 percent. We reach a nearly

perfect bull’s-eye score 99.99 percent on MPEG7 Data Set by

using AIR for shape similarity. This is the best ever reported

score on this popular shape dataset.
In order to visualize the gain in retrieval rates by our

method, we plot the percentage of correct shapes (from the

same class) among the first K most similar shapes for K ¼
1; . . . ; 40 in Fig. 6, where we use ASC for shape similarity.

We observe that not only does the proposed method

increase the bull’s-eye score, but it also consistently

achieves the best retrieval rates. Recall that each class has

20 shapes, which is the reason for the precision curves to

increase for k > 20. In order to illustrate the problem with

the stopping time of the graph classical diffusion computed

by matrix power, we show two curves for LCDP [3], one

when it is stopped after seven iterations and the second one

when it is stopped after 100 iterations, which clearly

illustrates the problem of diffusing relevant information.

In contrast, the proposed algorithm is robust to the number

of iterations.
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TABLE 2
Retrieval Rates (Bull’s-Eye) of Different Context Shape Retrieval Methods on the MPEG-7 Shape Data Set

Fig. 6. The curves show the percentage of correct shapes (from the
same class) among the first K most similar shapes for K ¼ 1; . . . ; 40 on
the MPEG-7 shape dataset.



4.2 Nister and Stewenius (N-S) Dataset

In this section, we demonstrate the performance of the
proposed approach on image retrieval. We compare it to
other diffusion-based methods and to a recently proposed
method, Contextual Dissimilarity Measure (CDM) [18],
which can significantly improve the similarity computed
by bag-of-features. CDM learns affinities following a
different principles than the proposed method. CDM is
motivated by an observation that a good ranking is usually
not symmetrical in image search. CDM makes two images
similar when they both obtain a good ranking position
when using each other as a query.

We selected the Nister and Stewenius (N-S) dataset [36]
composed of 10,200 images. A few example images from
N-S dataset are shown in Fig. 7. The N-S dataset consists of
2,550 objects or scenes, each of which is imaged from four
different viewpoints. Hence, there are only four images in
each class and a total of 2,550 image classes, which makes
this dataset very challenging for any manifold learning
approach and, in particular, for any diffusion-based
approach.

To obtain the pairwise distance relation between images
for our algorithm, we implemented a baseline method
described in [18]. The image descriptor is a combination of a
Hessian-Affine region detector [37] and a SIFT descriptor
[38]. A visual vocabulary is obtained using the k-means
algorithm on the sub-sampled image descriptors.

The results are shown in Table 3. The retrieval rate is
measured by the average number of correct images among
the four first images returned. Thus, the maximum value is
4 and the higher the value the better the result. Each image
has been submitted as a query. The fact that our method can
significantly improve the retrieval result of the baseline
method (from 3.22 to 3.61) clearly shows the benefits of
utilizing higher order relations by the TPG diffusion. We
also observe that the result of our method is better than
CDM. Finally, the usage of dominant neighborhood slightly
improves on the result obtained with classic kNN . We did
not have much choice for setting the neighborhood size k
for this dataset. kNN and kDN with k ¼ 3 was used.

Since each image class has only four images, it is very
difficult to correctly propagate the similarity relations.
Therefore, the classic diffusion [8] can only improve the
baseline result for a very small number of iterations. The
best retrieval rate of the classic diffusion is for t ¼ 2,
i.e., when the original similarity matrix is raised to power

t ¼ 2. Already, for t ¼ 5, the retrieval rate is much lower
than the rate of the baseline. We also report the retrieval
results obtained after embedding the data by Diffusion
Maps [8], which are significantly lower than the rate of the
baseline. This justifies our observation that although
Diffusion Maps are excellent for embedding into euclidean
spaces, the distances obtained after the embedding cannot
be used for retrieval tasks.

4.3 Caltech 101 Dataset

Besides the N-S dataset, we also test our algorithm on a well-
known Caltech 101 dataset [39]. The Caltech-101 dataset
contains 101 classes (including animals, vehicles, flowers,
etc.) with high shape variability. The number of images per
category varies from 31 to 800. Most images are of medium
resolution, i.e., about 300� 200 pixels. We selected 12 classes
from Caltech-101, which contain total 2,788 images. Example
images are shown in Fig. 8. Differently from experiments on
the N-S dataset, we just use pure SIFT descriptor [38] to
calculate the distance between images. The SIFT features are
extracted from 16� 16 pixel patches densely sampled from
each image on a grid with step size of 8 pixels. To get the
codebook, we use standard K-means clustering and fix the
codebook size to 2,048. Each image is represented by
multiple assignment [18] and Spatial Pyramid Matching
[40]. The distance between two images is obtained by the
�2 distance between the two vectors.

The results are shown in Table 4. It is clear that with an
adjusted number of iterations according to the ground truth,
which is t ¼ 5, the classic diffusion process is able to reveal
the relation between images. However, as discussed above,
it is very sensitive to number of iterations, which we
illustrate with its retrieval rate for t ¼ 50. Besides, the results
of Diffusion Maps [8] demonstrate that the relation between
objects after embedding by Diffusion Maps [8] is not suitable
for retrieval. In our algorithm, kDN with k ¼ 400 was used.
Again, TPG diffusion is able to significantly improve the
retrieval rate of the input pairwise distance measure. In
particular, this demonstrates that TPG diffusion is robust to
large variance in the number of images in each class.
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Fig. 7. Some images from the Nister and Stewenius (N-S) dataset.

TABLE 3
Retrieval Results on the N-S Dataset

The highest possible score is 4.

Fig. 8. Sample images from our subset of the Caltech 101 dataset.

TABLE 4
Retrieval Rates on 12 Image Classes from Caltech-101

The best possible rate is 1.



4.4 INRIA Holidays Dataset

The INRIA Holidays Dataset [41] contains 1,491 high

resolution images, 500 queries, and 991 corresponding

relevant images of mainly personal holiday photos. Some

example images are shown in Fig. 9. The dataset is

composed of 500 image groups, each of which represents

a distinct scene. The first image of each group is the query

image and the correct retrieval results are the other images

of the group.
The authors of the dataset also provide a set of 4.45M

precomputed SIFT descriptors and a visual dictionary with

200K visual words learned on Flickr60K. We used them to

compute the baseline similarity between the images using

the same function as in [42] and [31], which corresponds to

the bag-of words model with an additional inverse

document frequency weighting term.
We use the standard mean average precision (mAP) to

evaluate the performance, which is the mean of the average

precision scores for each query. For each query, we are able to

obtain a precision/recall curve. Then, the average precision

score for this query is defined as the average value of

precision value over the interval from recall equaling 0 to 1. It

is equal to the area under the precision/recall curve.
The performance of the baseline similarity is mAP ¼

50:3%. With setting K ¼ 20, the learned similarities improve

the results to mAP ¼ 68:5%. It is still not as good as some of

the state-of-art retrieval results, [41], [31]. However, as we

emphasize, we do not propose a stand-alone image retrieval

algorithm. We propose a generic affinity learning approach,

which is able to learn better similarities.

5 IMAGE SEGMENTATION PERFORMANCE

In this section, we demonstrate that the learned affinities can

significantly improve image segmentation. Here the data

points are image regions, which are also called superpixels,

and their initial affinities reflect their color similarity.

5.1 Hierarchical Graph Construction

The data points in this application represent superpixels
obtained by different scales of a hierarchical image
segmentation. We generate L hierarchical oversegmentation
results by varying the segmentation parameters of method
[26], which are the input parameters to a Canny edge
detector. V h

l represents the regions at level h of the
lth oversegmentation. In particular, V 1

l denotes the regions
of oversegmentation l at the finest level. Since we use the
hierarchical segmentation, the constructed graph G ¼
ðV ;AÞ has a total of n nodes representing all segmentation
regions in the set:

V ¼ V 1
1 [ V 1

2 [ � � � [ V 2
1 [ V 2

2 [ � � � [ V H
L :

The edges are connected by different criteria according to
the node types. Edge weight aij 2 A is nonzero if two
regions i and j satisfy one of the following conditions:

. Regions i and j are at the finest level of some
segmentation l, i.e., i, j 2 V 1

l , and they share a common
boundary, which we denote as i 2 NeighborlðjÞ.

. Regions i and j are at the finest level in two different
segmentations l1, l2, i.e., i 2 V 1

l1
j 2 V 1

l2
, and they

overlap, which we denote as Overlapði; jÞ.
. In the same l segmentation and region, j is the parent

of region i, i.e., i 2 V h
l and j 2 V hþ1

l , which we will
denote j ¼ ParentlðiÞ.

In these cases, edge weight aij 2 A is defined as

aij ¼
exp �k�ci��cjk

�

� �
; i 2 NeighborlðjÞ;

exp �k�ci��cjk
�

� �
; Overlapði; jÞ;

�; j ¼ ParentlðiÞ;

8>><
>>: ð14Þ

where �ci represents the mean color of region i and �

controls the relation between regions in different layers. The
larger � is, the more information can be propagated
following the hierarchical structure of regions. The smaller
� is, the more sensitive the edge weight is to the color
differences. In all our experiments, we set � ¼ 0:0001 and
� ¼ 60.

5.2 Final Segmentation

The graph G ¼ ðV ;AÞ constructed in Section 5.1 is the input
to the iterative algorithm in Section 3.2. The learned
affinities in matrix A� are the input to a final image
segmentation presented in this section. We consider the
segmentation as a labeling problem in which one label k 2
f1; . . . ; Kg is assigned to each node i.

Let~yk ¼ ½yik� be an n� 1 partitioning (or indicator) vector
with yik ¼ 1 if i belongs to the kth cluster and 0 otherwise.
The clustering criterion follows the standard Normalized
Cuts [12] procedure:

maximize SðY Þ ¼ 1

K

XK
k¼1

~yTk A
�~yk

~yTk D~yk
; ð15Þ

subject to Y Y T ¼ I, where Y ¼ ½~y1; . . . ;~yK �.D ¼ diagð½d1; . . . ;
dn�Þ is the degree matrix where di ¼

Pn
j¼1 A

�ði; jÞ. The
optimal solution of SðY Þ is the subspace spanned by the
K largest eigenvectors of the matrix B [21]:

B ¼ D�1
2A�D�

1
2: ð16Þ

B is an n� n matrix which contains information for all the
regions. Following the standard procedure we obtain a
K dimensional vector in the subspace spanned by the
K largest eigenvectors for each image region given as node
in V .

Since to obtain the final image segmentation we only
need one set of superpixels, we select the set of superpixels
V 1
lm

with the largest number of regions on the finer
segmentation level. Finally, we run standard K-means
clustering on the K dimensional vectors representing the
regions in V 1

lm
. The obtained K cluster labels are assigned to

the regions in V 1
lm

to obtain the final segmentation result.
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Fig. 9. Example images on the INRIA Holiday Dataset.



Below we report on extensive evaluation to illustrate
the benefits of learned similarities for unsupervised image
segmentation. We show both qualitative and quantitative
segmentation results on two publicly available natural
image databases: the Berkeley Segmentation Dataset (BSDS)
[43] and the MSRC Object Recognition Dataset (MSRC) [44].

For qualitative evaluation, two different measures are
used. The earliest and most obvious measure is Probabilistic
Rand Index (PRI) [45], which counts the number of pixel
pairs whose labels are consistent between the segmentation
and the ground truth. PRI is also the most natural measure
since it measures the accuracy of the segmentation label
assignment. Variation of Information (VOI) [46] defines the
distance between two segmentations as the average condi-
tional entropy of one segmentation given the other, and
thus roughly measures the amount of randomness in one
segmentation which cannot be explained by the other. We

choose these two measurements since all the other papers
have been evaluated according to them. A segmentation
result is viewed as better if PRI is larger and VOI is smaller.

We use two segmentation results with different para-
meters for each dataset. We use three levels of segmentation
results, from finest to coarse. To get the optimal perfor-
mance of our algorithm, we follow others’ strategy [21] to
determine the number of segments by comparing to the
labeled image.

5.3 Berkeley Segmentation Dataset

The Berkeley Segmentation Dataset consists of 300 natural
images, each of which has been hand segmented by
multiple human subjects. We compare the performance of
our method to several publicly available image segmenta-
tion methods, which we refer to as NC [12], MS [13], gpb-
owt-UCM [25], F-H [47], NTP [48], Saliency [49], TBES [50],
and LAS [21]. The reported results of these methods are
cited from the above papers, respectively. We also report
the results of TPG without using the hierarchical structure.
Table 5 summarizes the performance of our method and
compares it to other methods. Our segmentation obtains
best score on PRI, which means that our segmentation label
assignment is most accurate. Its scores according to VOI is
among top three results. Fig. 10 illustrates some represen-
tative segmentation results.

5.4 MSRC Object Recognition Dataset

The MSRC Object Recognition Database consists of
591 images of objects grouped into 20 categories. We
evaluate the performance using the cleaned up ground-
truth labeling provided by Malisiewicz and Efros [51]. This
dataset is highly challenging because, in many cases, the
ground-truth segmentation only draws a boundary around
the salient object in the image, casting everything else as
background. The results and comparison with TBES
segmentation are shown in Table 6. The other algorithms
did not report their results on this dataset. The proposed
algorithm reaches excellent performance, and outperforms
TBES on PRI and VOI measures. Some representative
segmentation results of our algorithm are shown in Fig. 12.

We also test our algorithm on the original dataset, which
contains void regions in the ground-truth labeling [44].
Some examples of cleaned up ground-truth images and the
noisy ones with void regions are shown in Fig. 11. The void
regions (white regions) often have irregular shape and are
randomly located in the images. The PRI and VOI scores of
the proposed algorithm on the noisy ground truth are
0.7724 and 1.5758, respectively. Since the ground truth is
noisy, the results are lower than the ones we obtain based
on the cleaned ground-truth image. However, the PRI score
is still better than TBES (Table 6) on the cleaned ground-
truth images.

36 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 1, JANUARY 2013

Fig. 10. Representative examples on the BSDS dataset. The images in
the odd columns are original images and the images in the even
columns are the segmentation results. The color in each region is the
average color over the pixels in the region.

TABLE 5
Quantitative Comparison of Our Algorithm to
Other Segmentation Methods over the BSDS

A segmentation result is viewed as better if PRI is larger and VOI is
smaller.

TABLE 6
Quantitative Comparison of Our Algorithm

with TBES Segmentation on MSRC Dataset



6 CONCLUSION

The key advantage of the proposed Tensor Product Graph
diffusion is the utilization of higher order similarity
relations, which are both local and long range. Usually,
higher order relations lead to a substantially higher
computation cost. However, we are able to introduce an
iterative algorithm to compute TPG diffusion that has the
same space and time complexity as the classical diffusion
on the original graph. We also provide a formal proof that
the iterative algorithm and the TPG diffusion converge to
the same solution. Hence, the proposed TPG diffusion
explores the benefits of higher order relations without the
price of higher computational cost. As shown in our
experimental results, the new affinities learned with the
TPG diffusion lead to good performance in image retrieval
and in image segmentation.
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