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Abstract—Digitization is not as easy as it looks. If one digitizes a 3D object even with a dense sampling grid, the reconstructed digital

object may have topological distortions and, in general, there exists no upper bound for the Hausdorff distance. This explains why so far

no algorithm has been known which guarantees topology preservation. However, as we will show, it is possible to repair the obtained

digital image in a locally bounded way so that it is homeomorphic and close to the 3D object. The resulting digital object is always well-

composed, which has nice implications for a lot of image analysis problems. Moreover, we will show that the surface of the original object

is homeomorphic to the result of the marching cubes algorithm. This is really surprising since it means that the well-known topological

problems of the marching cubes reconstruction simply do not occur for digital images of r-regular objects. Based on the trilinear

interpolation, we also construct a smooth isosurface from the digital image that has the same topology as the original surface. Finally, we

give a surprisingly simple topology preserving reconstruction method by using overlapping balls instead of cubical voxels. This is the first

approach of digitizing 3D objects which guarantees topology preservation and gives an upper bound for the geometric distortion. Since

the output can be chosen as a pure voxel presentation, a union of balls, a reconstruction by trilinear interpolation, a smooth isosurface, or

the piecewise linear marching cubes surface, the results are directly applicable to a huge class of image analysis algorithms. Moreover,

we show how one can efficiently estimate the volume and the surface area of 3D objects by looking at their digitizations. Measuring

volume and surface area of digital objects are important problems in 3D image analysis. Good estimators should be multigrid convergent,

i.e., the error goes to zero with increasing sampling density. We will show that every presented reconstruction method can be used for

volume estimation and we will give a solution for the much more difficult problem of multigrid-convergent surface area estimation. Our

solution is based on simple counting of voxels and we are the first to be able to give absolute bounds for the surface area.

Index Terms—r-regular, topology, digitization, 3D, marching cubes, trilinear interpolation, well-composed.

Ç

1 INTRODUCTION

A fundamental task of knowledge representation and
processing is to infer properties of real objects or

situations given their representations. In spatial knowledge
representation and, in particular, in computer vision and
medical imaging, real objects are represented in a pictorial
way as finite and discrete sets of pixels or voxels. The discrete
sets result from a quantization process in which real objects
are approximated by discrete sets. In computer vision, this
process is called sampling or digitization and is naturally
realized by technical devices like computer tomography
scanners, CCD cameras, or document scanners. A
fundamental question addressed in spatial knowledge
representation is: Which properties inferred from discrete
representations of real objects correspond to properties of
their originals, and under what conditions is this the case?
While this problem is well-understood in the 2D case with

respect to topoology [1], [2], [3], [4], [5], [6], it is not as simple
in 3D, as shown in [7]. In this paper, we present the first
comprehensive answer to this question with respect to
important topological and geometric properties of
3D objects. Some of the results presented here can also be
found without proofs in [8], [9], [10].

The description of geometric and, in particular, topolo-
gical features in discrete structures is based on graph theory,
which is widely accepted in the computer science commu-
nity. A graph is obtained when a neighborhood relation is
introduced into a discrete set, e.g., a finite subset of ZZ2 or ZZ3,
where ZZ denotes the integers. On the one hand, graph
theory allows investigation into connectivity and separ-
ability of discrete sets (for a simple and natural definition of
connectivity, see Kong and Rosenfeld [11], for example). On
the other hand, a finite graph is an elementary structure that
can be easily implemented on computers. Discrete repre-
sentations are analyzed by algorithms based on graph
theory and the properties extracted are assumed to
represent properties of the original objects. Since practical
applications, for example, in image analysis show that this is
not always the case, it is necessary to relate properties of
discrete representations to the corresponding properties of
the originals. Since such relations allow us to describe and
justify the algorithms on discrete graphs, their characteriza-
tion contributes directly to the computational investigation
of algorithms on discrete structures. This computational
investigation is an important part of the research in
computer science and, in particular, in computer vision
(Marr [12]), where it can contribute to the development of
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more suitable and reliable algorithms for extracting re-
quired shape properties from discrete representations.

It is clear that no discrete representation can exhibit all

features of the real original. Thus, one has to accept

compromises. The compromise chosen depends on the

specific application and on the questions which are typical

for that application. Real objects and their spatial relations

can be characterized using geometric features. Therefore,

any useful discrete representation should model the

geometry faithfully in order to avoid false conclusions.

Topology deals with the invariance of fundamental geo-

metric features like connectivity and separability. Topolo-

gical properties play an important role since they are the

most primitive object features and our visual system seems

to be well-adapted to cope with topological properties.
However, we do not have any direct access to spatial

properties of real objects. Therefore, we represent real objects,

as commonly accepted from the beginning of mathematics as

bounded subsets of the Euclidean space IR3 and their

2D views (projections) as bounded continuous subsets of

the plane IR2. Hence, from the theoretical point of view of

knowledge representation, we will relate two different

pictorial representations of objects in the real-world: a

discrete and a continuous representation.
Already two of the first books in computer vision deal

with the relation between the continuous object and its
digital images obtained by modeling a digitization process.
Pavlidis [1] and Serra [2] proved independently in 1982 that
an r-regular continuous 2D set S and the continuous analog
of the digital image of S have the same shape in a
topological sense. Pavlidis used 2D square grids and Serra
used 2D hexagonal sampling grids.

An analogous result in 3D case remained an open question

for over 20 years. Only recently one of the authors proved,

together with Stelldinger and Köthe, that the connectivity

properties are preserved when digitizing a 3D r-regular

object with a sufficiently dense sampling grid [7]. But, the

preservation of connectivity is much weaker than topology.

They also found out that topology preservation can even not

be guaranteed with sampling grids of arbitrary density if one

uses the straightforward voxel resonstruction since the

surface of the continuous analog of the digital image may

not be a 2D manifold. Thus, the question of how to guarantee

topology preservation during digitization in 3D remained

unsolved up to now.
In this paper, we provide a solution to this question. We

use the same digitization model as Pavlidis and Serra used,

and we also use r-regular sets (but in IR3) to model the

continuous objects. As already shown in [7], the general-

ization of Pavlidis’ straightforward reconstruction method

to 3D fails since the reconstructed surface may not be a

2D manifold. For example, Figs. 3a and 3b show a continuous

object and its digital reconstruction whose surface is not a

2D manifold. However, as we will show, it is possible to use

several other reconstruction methods that all result in a

3D object with a 2D manifold surface. Moreover, we will show

that these reconstructions and the original continuous object

are homeomorphic and their surfaces are close to each other.

The first reconstruction method, Majority interpolation,
is a voxel-based representation on a grid with doubled
resolution. It always leads to a well-composed set in the
sense of Latecki [13], which implies that a lot of problems in
3D digital geometry become relatively simple.

The second method is the simplest one. We just use balls
with a certain radius instead of cubical voxels. When
choosing an appropriate radius, the topology of an r-regular
object will not be destroyed during digitization.

The third method is a modification of the well-known
Marching Cubes algorithm [14]. The original Marching Cubes
algorithm does not always construct a topologically sound
surface due to several ambiguous cases [15], [16]. We will
show that most of the ambiguous cases cannot occur in the
digitization of an r-regular object and that the only remaining
ambiguous case always occurs in an unambiguous way,
which can be dealt with by a slight modification of the original
Marching Cubes algorithm. Thus, the generated surface is not
only topologically sound, but it also has exactly the same
topology as the original object before digitization.

Moreover, we show that one can use trilinear interpola-
tion and that one can even blend the trilinear patches
smoothly into each other such that one gets smooth object
surfaces with the correct topology.

Each of these methods has its own advantages such that
our results are applicable for a lot of very different image
analysis algorithms.

We also analyze the question of whether these reconstruc-
tion methods are suitable to estimate object properties like
volume and surface area. We show that all the reconstruction
methods can be used for multigrid convergent volume
estimation, but that surface area estimation requires other
methods. We analyze the problem of multigrid convergent
surface area estimation and suggest that one should use
semilocal algorithms since local algorithms do not seem to be
multigrid-convergent and there exists no proof for any global
algorithm. We give an example of a semilocal surface area
estimator and prove that it is multigrid-convergent.

2 PRELIMINARIES

The (Euclidean) distance between two points x and y in IRn

is denoted by dðx; yÞ, and the (Hausdorff) distance between
two subsets of IRn is the maximal distance between each
point of one set and the nearest point of the other. Let A �
IRn and B � IRm be sets. A function f : A! B is called
homeomorphism if it is bijective and both it and its inverse are
continuous. If f is a homeomorphism, we say that A and B
are homeomorphic. Let A, B be two subsets of IR3. Then, a
homeomorphism f : IR3 ! IR3 such that fðAÞ ¼ B and
dðx; fðxÞÞ � r, for all x 2 IR3, is called an r-homeomorphism
of A to B and we say that A and B are r-homeomorphic. A
Jordan curve is a set J � IRn which is homeomorphic to a
circle. Let A be any subset of IR3. The complement of A is
denoted by Ac. All points in A are foreground, while the
points in Ac are called background. The open ball in IR3 of
radius r and center c is the set B0

rðcÞ ¼ fx 2 IR3jdðx; cÞ < rg,
and the closed ball in IR3 of radius r and center c is the set
BrðcÞ ¼ fx 2 IR3jdðx; cÞ � rg. Whenever c ¼ ð0; 0; 0Þ 2 IR3,
we write B0

r and Br. We say that A is open if, for each
x 2 A, there exists a positive number r such that B0

rðxÞ � A.
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We say that A is closed if its complement, Ac, is open. The
boundary of A, denoted @A, consists of all points x 2 IR3

with the property that, if B is any open set of IR3 such that
x 2 B, then B \A 6¼ ; and B \Ac 6¼ ;. We define A0 ¼
A n @A and A ¼ A [ @A. Note that A0 is open and A is
closed, for any A � IR3. Note also that B0

rðcÞ ¼ ðBrðcÞÞ
0 and

BrðcÞ ¼ B0
rðcÞ. The r-dilation A� B0

r of a set A is the union of
all open r-balls with center in A, and the r-erosion A� B0

r is
the set of all center points of open r-balls lying inside of A.
We say that an open ball B0

rðcÞ is tangent to @A at a point
x 2 @A if @A \ @B0

rðcÞ ¼ fxg. We say that an open ball B0
rðcÞ

is an osculating open ball of radius r to @A at point x 2 @A if
B0
rðcÞ is tangent to @A at x and either B0

rðcÞ � A0 or
B0
rðcÞ � ðAcÞ0. Since all of the known topology preserving

sampling theorems in 2D require the object to be r-regular
[1], [2], [7], we will use the 3D generalization for our
approach (refer to Fig. 1):

Definition 1. A set A � IR3 is called r-regular if, for each point
x 2 @A, there exist two osculating open balls of radius r to @A
at x such that one lies entirely in A and the other lies entirely
in Ac.

Note that the boundary of a 3D r-regular set is a 2D manifold
surface.

Any set S which is a translated and rotated version of the

set 2�r0ffiffi
3
p ZZ3 is called a cubic r0-grid and its elements are called

sampling points. Note that the distance dðx; pÞ from each point

x 2 IR3 to the nearest sampling point s 2 S is at most r0. The

voxel VSðsÞ of a sampling point s 2 S is its Voronoi region IR3:

VSðsÞ ¼ fx 2 IR3jdðx; sÞ � dðx; qÞ; 8q 2 Sg, i.e.,VSðsÞ is the set

of all points of IR3 which are at least as close to s as to any other

point in S. In particular, note that VSðsÞ is a cube whose

vertices lie on a sphere of radius r0 and center s.

Definition 2. Let S be a cubic r0-grid, and let A be any subset
of IR3. The union of all voxels with sampling points lying
in A is the digital reconstruction of A with respect to S,
Â ¼

S
s2ðS\AÞ VSðsÞ.

This method for reconstructing the object from the set of
included sampling points is the 3D generalization of the
2D Gauss digitization (see [17]) which has been used by
Gauss to compute the area of discs and which has also been
used by Pavlidis [1] in his sampling theorem.

For any two points p and q ofS, we have that VSðpÞ \ VSðqÞ
is either empty or a common vertex, edge, or face of both. If
VSðpÞ \ VSðqÞ is a common face, edge, or vertex, then we say
that VSðpÞ and VSðqÞ are face-adjacent, edge-adjacent, or vertex-
adjacent, respectively. Two voxels VSðpÞ and VSðqÞ of Â are
connected in Â if there exists a sequence VSðs1Þ; . . . ;VSðskÞ,
with k 2 ZZ and k > 1 such that s1 ¼ p, sk ¼ q, and si 2 A (or,

equivalently, VSðsiÞ � Â), for each i 2 f1; . . . ; kg, and VSðsjÞ
and VSðsjþ1Þ are face-adjacent, for each j 2 f1; . . . ; k� 1g. A

(connected) component of Â is a maximal set of connected

voxels in Â.

Definition 3. Let S be a cubic r0-grid, and let T be any subset of S.

Then, we say that
S
t2T VSðtÞ is well-composed if @ð

S
t2T VSðtÞÞ

is a surface in IR3 or, equivalently, if, for every point

x 2 @ð
S
t2T VSðtÞÞ, there exists a positive number r such that

the intersection of @ð
S
t2T VSðtÞÞ andB0

rðxÞ is homeomorphic to

the open unit disk in IR2, ID ¼ fðx; yÞ 2 IR2jx2 þ y2 < 1g.
Well-composed digital reconstructions can be characterized

by two local conditions depending only on voxels of points

of S. Let s1; . . . ; s4 be any four points of S such thatT4
i¼1 VSðsiÞ is a common edge of VSðs1Þ; . . . ;VSðs4Þ. We say

that the set fVSðs1Þ; . . . ;VSðs4Þg is an instance of the critical

configuration (C1) with respect to
S
t2T VSðtÞ if two of these

voxels are in
S
t2T VSðtÞ and the other two are in

ð
S
t2T VSðtÞÞ

c, and the two voxels in
S
t2T VSðtÞ (respectively

ð
S
t2T VSðtÞÞ

c) are edge-adjacent, as shown in Fig. 2a. Now,

let s1; . . . ; s8 be any eight points of S such that
T8
i¼1 VSðsiÞ is

a common vertex of VSðs1Þ; . . . ;VSðs8Þ. We say that the set

fVSðs1Þ; . . . ;VSðs4Þg is an instance of the critical configuration

(C2) with respect to
S
t2T VSðtÞ if two of these voxels are inS

t2T VSðtÞ (respectively ð
S
t2T VSðtÞÞ

c) and the other six are

in ð
S
t2T VSðtÞÞ

c (respectively
S
t2T VSðtÞ), and the two

voxels in
S
t2T VSðtÞ (respectively ð

S
t2T VSðtÞÞ

c) are vertex-

adjacent, as shown in Fig. 2b. The following theorem from

[13] establishes an important equivalence between well-

composedness and the (non)existence of critical configura-

tions (C1) and (C2):

Theorem 4 ([13]). Let S be a cubic r0-grid and let T be any subset

of S. Then,
S
t2T VSðtÞ is well-composed iff the set of voxels

fVðsÞjs 2 Sg does not contain any instance of the critical
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Fig. 1. For each boundary point of a 2D/3D r-regular set there exists an

outside and an inside osculating open r-disc/ball.

Fig. 2. (a) Critical configuration (C1). (b) Critical configuration (C2). For

the sake of clarity, we show only the voxels of foreground or background

points.

Fig. 3. The digital reconstruction (b) of an r-regular object (a) may not be

well-composed, i.e., its surface may not be a 2D manifold, as can be

seen in the magnification.



configuration (C1) nor any instance of the critical configura-
tion (C2) with respect to

S
t2T VSðtÞ.

3 DIGITAL RECONSTRUCTION OF rr-REGULAR SETS

Let A � IR3 be an r-regular object, let S be a cubic r0-grid,
and consider the digital reconstruction Â of A with
respect to S. Assume that no sampling point of S lies on
@A. This assumption is not a restriction as there always
exists an � > 0 such that the �-opening A� B� is ðr� �Þ-
regular with r� � > r0 and A� B� has the same digital
reconstruction as A. In what follows, we will locally
characterize the topology and geometry of Â.

Consider any cube in IR3 whose (eight) vertices are points
of S whose corresponding voxels share a common vertex.
By the above assumption, each vertex of such a cube is
either inside (i.e., a foreground point) or outside (i.e., a
background point) A. So, there are at most 256 distinct
configurations for a cube with respect to the binary “status”
of its vertices. However, it has been shown [18] that, up to
rotational symmetry, reflectional symmetry, and comple-
mentarity (switching foreground and backgroud points),
these 256 configurations are equivalent to the 14 canonical
configurations in Fig. 5. In well-composed sets, only Cases 1
to 7 can occur.

In order to analyze the local topology changes due to
digitization, we need to define certain paths and surface
patches spanned between sampling points and the regions
inside which these can be localized:

Definition 5. Let x; y be two points in IR3. Further, let
s > dðx; yÞ. Then, the intersection Psðx; yÞ of all closed s-balls
containingx and y,Psðx; yÞ ¼

T
fBsðvÞjx; y 2 BsðvÞg, is called

s-path region between x and y. Now, let x; y; z be three points in
IR3 and assume that s > 1

2 maxfdðx; yÞ; dðx; zÞ; dðy; zÞg. Then,
the intersection Psðx; y; zÞ of all closed s-balls containing x, y,
and z, Psðx; y; zÞ ¼

T
fBsðvÞjx; y; z 2 BsðvÞg, is called the

s-surface region between x, y, and z. Further, a nonempty
convex set B such that at no point x 2 @B exists an inside
osculating r-ball, is called an r-simple-cut set.

As we will show below (Lemma 8), under certain condi-
tions, Psðx; yÞ is an r-simple-cut set.

Theorem 6. Let A be an r-regular set and x; y be two different
points in A with dðx; yÞ < 2r. Further, let L be the straight
line segment from x to y. Then, the function f mapping each
point of L to the nearest point in A is well-defined, continuous
and bijective, and the range of f is a simple path from x to y.

Proof. Each point L \A is its own nearest point in A. Due to
r-regularity, there exists for each point inL nA exactly one
nearest point in@A since each of these points has a distance
smaller than r to the boundary. Thus, f must be a
continuous function since, if f would not be continuous
at some point, this point would have more than one nearest
point in @A. Note that any point of L lies on the normal
vector of @A in its nearest boundary point. Now, suppose
one point p of @Awould be the nearest point to at least two
different points l1 and l2 ofL. Then, l1 and l2 both lie on the
normal of @A in p. This implies that any point in L
including x and y lies on this normal. Since the normal
vectors of length r of an r-regular set do not intersect, the

distance between x and y has to be at least 2r which
contradicts dðx; yÞ < 2r. Thus, f is bijective. Since every
bijective continuous function of a compact metric space is
continuous in both directions, f must be a homeomorph-
ism and range is a simple path from x to y. tu

Definition 7. Let A be an r-regular set and x; y be two different
points inAwith dðx; yÞ < 2r. Further, let L be the straight line
segment from x to y. Then, the range of the function f mapping
each point ofL to the nearest point inA is called the direct path
from x to y regarding A.

Lemma 8. Let A be an r-regular set and x; y be two points both
insideA or both outsideAwith dðx; yÞ < 2r. Then, Psðx; yÞ is a
simple-cut set for any s with 1

2 � dðx; yÞ � s < r, the direct path
from x to y regarding A lies inside A \ Psðx; yÞ and the direct
path fromx toy regardingðA� B"Þc lies insideAc \ Psðx; yÞ, for
a sufficiently small " > 0.

Proof. First, let x; y 2 A. Since dðx; yÞ < 2r,Psðx; yÞ is a simple

cut set for any s with 1
2 � dðx; yÞ � s < r. Now, suppose

there exists a point p on the direct path lying outside of

Psðx; yÞ. Then, the outside osculating open r-ball of A in p

must cover either x or y, which implies that they cannot lie

on @A or inside A. Thus, the direct path has to be inside

Psðx; yÞ. If x; y 2 Ac, the analog is true by looking at the

ðr� "Þ-regular set ðA� B"Þc for a sufficiently small " > 0

since there alway exists an " such that x and y remain

outside A� B" and s < ðr� "Þ. tu
Lemma 9. LetA be an r-regular set and letB be an s-simple-cut set

with s < r. Further, letB0 \A0 6¼ ; andB \Ac 6¼ ;. Then, the
intersection @A \ @B of the boundaries is a Jordan curve.

Proof. Let c1 and c2 be two arbitrary points inB \A and letP
be the direct path from c1 to c2. Then,P lies inside ofB due
to Lemma 8 and B � Psðc1; c2Þ. This implies that B \A
must be one connected component. Now, consider the two
points c1 and c2 lying inB \Ac. Then, the direct path does
not necessarily lie in Ac, since this set is open, but in Ac.
Thus, for any open superset of the intersection of all r-balls
containing c1 and c2, there exists a path from c1 to c2 inside
this superset having a minimal distance to the direct path
inAc. Due to the higher curvature, not onlyB \Ac but also
ðB \AcÞ0 is such a superset. Thus, both B \A and B \Ac

have to be one component and, thus, the intersection of the
boundaries, I ¼ @A \ @B, must also be one component. It
remains to be shown that I is a Jordan curve. Since I
separates @B in one part inside ofA and one part outside of
A, it is a Jordan curve iff there exists no point whereB and
A meet tangentially. Such a point would imply that either
the inside or the outside osculating ball of A at this point
coversB. Both cases are impossible since thenB0 \A0 ¼ ;
or B \Ac ¼ ;. Thus, @A \ @B is a Jordan curve. tu

Definition 10. Let A be an r-regular set and let x; y; z be three

arbitrary points inside of A0 � Br. Then, the inner surface

patch Isðx; y; zÞ of x; y; z regarding A is the set defined by

mapping each point of the triangle T spanned by points x; y; z to

itself if it lies inside ofA and mapping it to the nearest boundary

point in @A otherwise. Now, let x; y; z be three arbitrary points

inside of Ac � Br. Then, the outer surface patch Osðx; y; zÞ
of x; y; z regardingA is the set defined by mapping each point of
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the triangleT between the points to itself inside of ðA� B"Þc and

mapping them to the nearest boundary point @ðA� B"Þc

otherwise, with " being half the minimal distance from the

sampling points inAc to @A.

Lemma 11. Let A be an r-regular set and x; y; z be three points

inside A with maxfdðx; yÞ; dðx; zÞ; dðy; zÞg < 2r. Then,

Psðx; y; zÞ is a simple cut set for any s with 1
2 � dðx; yÞ � s <

r and the inner surface patch is homeomorphic to a disc, lies

inside A \ Psðx; yÞ, and is bounded by three paths, one going

from x to y inside of Psðx; y; zÞ \ Psðx; yÞ, another going from

y to z inside of Psðx; y; zÞ \ Psðy; zÞ, and the third going from

z to x inside of Psðx; y; zÞ \ Psðz; xÞ. The analog is true for

x; y; z lying outside of A and the outer surface patch.

Proof. The mapping used in Definition 10 is a direct

generalization of the mapping in Definition 7 and it is a

homeomorphism for the same reasons if x; y; z lie insideA

and maxfdðx; yÞ; dðx; zÞ; dðy; zÞg < 2r. Its boundaries are

equal to the direct paths between each two of the three

points. If x; y; z lie outside of A, the proof is analogous. tu
The problem of topology preserving digitization is that

several of the 14 cases are ambiguous, which means that

there are more than one possibilities to reconstruct the

object locally. This is not true for sufficiently dense sampled

r-regular objects, as shown by the following theorems:

Theorem 12. Configurations 12 to 14 in Fig. 5 cannot occur in the

digital reconstruction of an r-regular object with a cubic r0-grid

with 2r0 < r.

Proof. We only have to show that the configuration shown in

Fig. 5 (12 to 14) does not occur. In the following, let the red

sampling points in Fig. 5 (12 to 14) be in the foreground and

the white sampling points in the background. Further, let

the sampling points p1; p2; . . . p8 be numbered as shown in

Fig. 5 (12 to 14). Suppose to the contrary, such a

configuration occurs in the digital reconstruction of an

r-regular objectA. Further, suppose the point c in the center

of the configuration is in the foreground. Since the distance

from c to p2 is r0, there exists a foreground path between

these points lying completely insidePsðc; p2Þ. On the other

side, the three background points p1; p4; p6 each have a

distance being smaller than 2r. Thus, due to Lemma 11,

there exists a surface patch between them lying completely

outside A. This patch lies inside Psðp1; p4; p6Þ with its

surface boundary lying inside the union of Psðp1; p4Þ,
Psðp1; p6Þ, and Psðp4; p6Þ. Fig. 6b shows that Psðc; p2Þ goes

through the s-surface region without intersecting the

bounding s-path regions. Since both c and p2 lie outside

Psðp1; p4; p6Þ, the path from c to p2 must go through the

surface patch and, thus, there has to exist a point lying both

in A and Ac. It follows that c cannot be in the foreground.

Analogously, c cannot be in the background since Psðc; p1Þ
intersects Psðp2; p3; p5Þ in the same way as can be seen in

Fig. 6c. Thus, Cases 12 to 14 cannot occur in the digital

reconstruction of an r-regular object if 2r0 < r. tu

Theorem 13. Configurations 9 to 11 in Fig. 5 cannot occur in the

digital reconstruction of an r-regular object with a cubic

r0-grid with 2r0 < r.

Proof. We only have to show that the configuration shown
in Fig. 5 (9 to 11) is impossible since this is a general-
ization of the three mentioned cases. The proof is
analogous to the previous one. The surface patch
between the points p1, p6, p8, and p3 which can be
defined by combining the two triangular surface patches
between p1, p6, and p8, respectively, p1, p3, and p8 has to
be hit by the direct path from p2 to p7 (which both lie
outside the region Psðp1; p6; p8Þ [ Psðp1; p3; p8Þ) as can be
seen in Fig. 6a. Thus, Cases 9 to 11 cannot occur in the
digital reconstruction of an r-regular object if 2r0 < r. tu
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Fig. 4. The surface of an object only needs to have an arbitrarily small,

but nonzero curvature in order to make occurrences of the critical

configuration (C1) possible in the digital reconstruction.

Fig. 5. There are 256 distinct configurations for neighboring sampling
points that are either inside or outside a digitized set. However, up to
rotational symmetry, reflectional symmetry, and complementarity
(switching foreground and backgroud points), these 256 configurations
are equivalent to the above 14 canonical configurations. Configurations
9 to 11 (respectively, 12 to 14) can be summarized in special cases with
“don’t care” sampling points p4 and p5 (respectively, p7 and p8).

Fig. 6. Cases 9 to 14 in a dense digitization would imply the existence of

a foreground path intersecting the background.



Theorem 14. In the digital reconstruction of an r-regular objectA

with a cubic r0-grid such that 2r0 < r, Case 8 always occurs in

pairs, one configuration having six background voxels and the

other having six foreground voxels (refer to Fig. 7a).

Proof. Since Case 8 is the only remaining case with a

chessboard configuration, i.e., four sampling points on

one facet such that one pair of opposing sampling points

lies inside and the other outside of A, Case 8 has to occur

in pairs. There are two possibilities: Both configurations

have a different number of foreground voxels (see Fig. 7a)

or they have the same number (see Fig. 7b). We only have

to show that both configurations cannot have the same

number of foreground voxels. Without loss of generality,

let them have each six background and two foreground

voxels, see Fig. 7b. The proof for the other case (two

background and six foreground voxels) is the same, we

simply look at the digital reconstruction of ðA� B"Þc for a

sufficiently small " > 0 in order to get the first case. The

proof is analogous to the previous ones. The surface patch

between the points p1, p5, p9, p12, p8, and p4, which can be

defined by combining triangular surface patches, each

definedbyLemma11,hastobehitbythedirectpathfromp6

top7, as can be seen in Fig. 6a. Thus, this combination of two

Case 8 configurations cannot occur in the digital recon-

struction of an r-regular object if 2r0 < r. tu
Theorem 13 tells us that Â cannot contain an instance of the
criticalconfiguration(C2)asthepresenceofaninstanceof (C2)
would imply the occurrence of the canonical configuration 9
in Fig. 5 during the reconstruction of A. In addition,
Theorem 12 and Theorem 14 tell us that Â has an instance of
the critical configuration (C1) iff the canonical configuration 8
in Fig. 5 occurs during the reconstruction of A. Furthermore,
each instance of (C1) is defined by the voxels of the four points
of S in the common face of two cubes having complementary
types of the canonical configuration 8, as shown in Fig. 7a. As
already shown in [7], configuration 8 can even occur in r-
regular images with an arbitrarily big r with respect to the
sampling constant r0 (see Fig. 4). This implies that the digital
reconstruction of an r-regular set cannot be guaranteed to be
well-composed just by restricting the sampling density—in
contrast to the 2D case. Since the surfaces of non-well-
composed sets are not 2D manifolds and since the surface of
anr-regularobject isalwaysa2Dmanifold,onehastoconsider
otherreconstructionmethodsthanthestraightforwardwayof
reconstructing the object by taking the union of voxels
corresponding to the sampling points (i.e., digital reconstruc-
tion). There are a lot of other methods known to reconstruct a

3D object given the set of sampling points lying inside of the
original object. Some of them reconstruct the volume, like
voxel-based reconstruction methods, some reconstruct the
surface of the volume, e.g., the marching cubes algorithm [14].
With the knowledge of which configurations cannot occur in
the digitization of an r-regular image by using an r0-grid with
2r0 < r, we can derive a sampling theorem which can be
applied to a large variety of such reconstruction methods,
which we call topology preserving.

Definition 15. A reconstruction method is called topology
preserving if it behaves in the following way (see Fig. 8):

. Any cube defined by the sampling points of config-
uration 1 contains no boundary part or the recon-
structed object. The cube lies completely inside or
outside of the reconstructed object regarding the
sampling points lying inside or outside of it.

. Any cube defined by the sampling points of config-
uration 2 to 7 and any double cube defined by the
sampling points of the pair of two complementary
configurations of type 8 is divided by the boundary of
the reconstructed object into two parts, each being
homeomorphic to a ball (i.e., the boundary part inside
the cube is homeomorphic to a disc) such that the part
representing the foreground of the reconstruction
contains all the sampling points of the configuration
which are inside the original set and none of the
sampling points which are outside the original set.

Theorem 16. Let A be an r-regular object and S be a cubic r0-grid
with 2r0 < r. Then, the result of a topology preserving
reconstruction method is r-homeomorphic to A.

Proof. Due to Theorems 13, 12, and 14, the only cases which
can occur in the digitization of an r regular object with a
cubic r0-grid with 2r0 < r are Cases 1 to 8, with Case 8
always occurring in complementary pairs. Now, consider
a configuration of Cases 2 to 7 and let C denote the cube
defined by the eight sampling points. In these cases, the
intersection of @C and the boundary of a topology
preserving reconstruction is a Jordan curve. Now, each
face Fi of the cube can be constructed by two triangles.
Since the cube with diameter 2r0 < r intersects @A, each of
its boundary points lies inside of A0 � B0

r . Thus, both the
inner and the outer surface patch are defined. We define a
new surface patch for such a triangle between three
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Fig. 7. Case 8 only occurs in (a) complementary and not in (b) equal
pairs.

Fig. 8. The surface of the result of a topology preserving reconstruction
method is homeomorphic to a disc inside any of the cubes of Cases 2 to
7 and the double-cube of Case 8. The cube of Case 1 does not intersect
the surface.



sampling points in the following way: If all three sampling
points p1; p2; p3 lie inside of A, we take the inner surface
patch. Analogously, if all three sampling points lie outside
ofA, we take the outer surface patch. If only one sampling
point p1 lies inside of A, we use the mapping of the inner
surface patch for each point lying inside the smaller
triangle 4ðp1;

p1þp2

2 ; p1þp3

2 Þ and the mapping of the outer
surface patch otherwise, see Fig. 9 for an illustration. In
order to get a connected surface, we further add the
straight line connections between the inner and the outer
surface patch for any point lying on the straight line from
p1þp2

2 to p1þp3

2 . If one sampling point lies outside and the
other two inside ofA, we define the mapping analogously.
This leads to a surface patch between the three points
which is always homeomorphic to a disc. Furthermore,
since any of the added straight line connections follows a
normal of @A and, thus, cuts @A exactly once, the
intersection of the surface patch with @A is a simple curve.
By combining the surface patches of the cube faces, we get
a surface homeomorphic to the cube surface intersecting
@A in a Jordan curve. For Case 8, we simply look at the
union of the cube pair. This box also cuts the surface of the
topology preserving reconstruction in one Jordan curve,
see Fig. 10(8)a+b. By using surface patches in the same way
as above, we get a surface homeomorphic to the box

intersecting @A in a Jordan curve. If we have a cube of
Case 1, we also can take the above surface patch
construction since it only consists of triangles lying
completely inside, respectively, outside of A and, thus,
the surface patches are well-defined. The resulting
combined surface does not intersect @A at all. Thus, we
have partitioned the whole space into regions separated by
the surface patches. The original object is homeomorphic
to the result of the topology preserving reconstruction
inside each of the regarded cubes/cube pairs. The
combination of the local homeomorphisms (each being
an ð2r0 þ "Þ-homeomorphism) leads to a global r-home-
omorphism from A to the reconstructed set. tu

Now, we are able to define reconstruction methods which
guarantee to preserve the original topology of an r-regular
object if one uses a cubic r0-grid with 2r0 < r, see Fig. 16.

4 WELL-COMPOSED DIGITIZATION BY MAJORITY

INTERPOLATION

As shown in [13], a lot of difficult problems in 3D digital
geometry are much easier if the images are well-composed,
e.g., there exists only one type of connected component, a
digital version of the Jordan-Brouwer-theorem holds and the
Euler characteristic can be computed locally. Unfortunately,
most 3D binary images are not well-composed. In contrast to
the 2D case, where the digital reconstruction of an r-regular
shape is always well-composed, no such criterion is known
for the 3D case. In [7], it is proven that r-regularity is not
enough to imply well-composedness. To deal with this
problem, there are two different approaches known: First, as
suggested by two of the authors together with Siqueira et al.
in a previous paper, nondeterministic changing of the voxels
at positions where well-composedness is not fulfilled [19]
and, second, interpolating voxels on a grid with higher
resolution in a well-composed way. There is a method known
for the 2D case using this approach [20], which can be directly
generalized to three dimensions in order to guarantee
3D well-composedness.

The advantage of the first approach is that it does not need
to increase the number of sampling points. The disadvantage
is that changes can propagate, which makes it impossible to
guarantee the preservation of topology. The second approach
is purely local and deterministic and, thus, control of
topology is possible, but it has the disadvantage that it
requires increasing the sampling density. In the case of the
mentioned method [20] the resolution has to be tripled in any
dimension, i.e., there are 27 times as many sampling points
used as in the original grid. We show that this is also possible
by only doubling the resolution in any direction, i.e., using
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Fig. 9. In order to construct a surface between three sampling points being not all in the foreground (a), we combine (b) the inner and (c) the outer

surface patch such that (d) the result is cut by @A into exactly two parts.

Fig. 10. The 22 different cases of Majority Interpolation (14 cases plus
complementary cases). The complementary occurences (8)a and (8)b of
Case 8 can be combined such that the surface inside the double cube is
homeomorphic to a disc (8)a+b.



eight times as many voxels and give a guarantee for topology
preservation for digitizations of r-regular objects.

Definition 17. Let A � IR3 be a binary object and S a cubic
sampling grid. Further, let S0 denote the grid of doubled
resolution in any dimension containing S. A new sampling
point in S0 n S lying directly between two old ones is called a
face point since it lies on the common face of the two voxels of
the sampling points. A new sampling point lying directly
between four face points is called the edge point since it lies
on the common edge of four old sampling points and a new
sampling point lying directly between six edge points is called
the corner point since it lies on the common corner of eight
old sampling points. Now, the majority interpolation (MI) of
A on S is the union of voxels of all sampling points s 2 S0
fulfilling one of the following properties:

. s is an old sampling point inside of A or

. s is a face point and both neighboring old sampling
points are inside of A or

. s is an edge point and at least four of the eight
neighboring old sampling and face points are inside
of A or

. s is a corner point and at least 12 of the 26 neighboring
old sampling face and edge points are inside of A.

The MI surface is the boundary of the MI. The complement
majority interpolation (CMI) of A is defined as the comple-
ment of the MI of Ac and, analogously, the CMI surface.

Theorem 18. The majority interpolation of any set A � IR3 is
well-composed.

Proof. It only needs to be shown that the MI is well-
composed for every local configuration of eight neigh-
boring old sampling points. The proof simply follows
with checking all cases, see Fig. 10. Thus, the resulting
digital binary image is well-composed. tu

Note that, for all cases except Case 12b, a simpler definition of
MI is possible: A new sampling point simply is regarded as
foreground if more than half of the neighboring two, four,
respectively, eight old sampling points, i.e., at least two, three,
respectively, five sampling points are in the foreground. Only
in Case 12b does this lead to a different result which is not
well-composed. But, if one deals with the digitization of an
r-regular image with a cubic r0-grid (2r0 < r), this simplifica-
tion always leads to a well-composed set since then Case 12b
cannot occur.

Theorem 19. The MI algorithm is a topology preserving
reconstruction method and, thus, the result of the MI algorithm
is r-homeomorphic to the original object ifA is r-regular and the
sampling grid is a cubic r0-grid with 2r0 < r.

Proof. We only have to check if in any of the eight cases the
result of the Majority interpolation algorithm fulfills the
requirements for a topology preserving reconstruction
method. Since majority interpolation is not dual (i.e., the
reconstruction of the complement of a set is different
from the complement of the reconstruction of a set), we
also have to check the complementary cases of the eight
configurations. Only configurations 1 to 4 differ from
their complements, so here we have to consider
Subcases a and b. As Fig. 10 shows, the requirements
are fulfilled in every of the 8þ 4 cases. tu

Corollary 20. The CMI algorithm is a topology preserving
reconstruction method and, thus, the result of the CMI
algorithm is r-homeomorphic to the original object if A is
r-regular and the sampling grid is a cubic r0-grid with 2r0 < r.

5 BALL UNION

The MI approach needs eight times as many voxels as
sampling points in order to guarantee topology preserva-
tion. We will now show that this is not necessary if one uses
balls instead of cubical voxels: An object with correct
topology can also be constructed by using the union of balls
with an appropriate radius at the positions of the original
sampling points. This idea is related to splat rendering in
computer graphics [21]. The radius of the balls has to be
chosen such that the result inside any of the eight cube
configurations fulfills the criterion of a topology preserving
reconstruction. Thus, since in the case of configuration 1,
when all eight sampling points are inside the sampled
object, the whole cube has to be covered by the balls; their
radius has to be at least r0. Otherwise, the radius has to be
smaller than the distance of two neighboring sampling
points since a ball centered in one of the points must not
cover the other. This upper bound for the radius is
2ffiffi
3
p r0 	 1:155r0. For any ball radius in between these values,
we will show that the result is topologically the same. For
our illustrations, we use the mean value m ¼ 1

2þ 1ffiffi
3
p 	 1:077

Definition 21. Let A � IR3 be a binary object and S a cubic

sampling grid. The ball union (BU) of A on S is the union of

all balls BmðsÞ with s 2 S \A and r0 < m < 2ffiffi
3
p r0.

Theorem 22. The BU algorithm is a topology preserving
reconstruction method and, thus, the result of the BU algorithm
is r-homeomorphic to the original object if A is r-regular and
the sampling grid is a cubic r0-grid with 2r0 < r.

Proof. Changing m in between the given interval does not
change the topology of the BU result for any of the
configurations since a topology change would require that
at least two of the eight, respectively, 12 sampling points
have a distance d to each other withdor 2dbeing inside this
interval. Thus, we only have to check the eight configura-
tions for one such m. Fig. 11 shows the reconstruction for
the different configurations, with m ¼ 1

2þ 1ffiffi
3
p . As can be

seen, the requirements of a topology preserving recon-
struction are fulfilled for any configuration. tu

6 MARCHING CUBES: POLYGONAL SURFACE

REPRESENTATION

One of the most common reconstruction methods is the
marching cubes algorithm, introduced in 1987 by Lorensen
and Cline [14]. This algorithm analyzes local configurations
of eight neighboring sampling points in order to reconstruct a
polygonal surface. Although not mentioned in the initial
publication [14], the algorithm does not always produce a
topologically consistent surface and might produce holes in
the surface. In order to deal with these problems, one has to
introduce alternative configurations and decide in a nonlocal
way which of the ambiguous configurations fit together [15],
[16]. Thus, a lot of research has been done on how to deal with
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these ambiguous cases and to guarantee that the resulting
surface is topologically consistent [15], [16], [22], [23], [24],
[25], [26]. But, topological consistency only means that the
result is always a manifold surface—none of the proposed
modifications of the marching cubes algorithm guarantees
that the reconstructed surface has exactly the same topology
as the original object before digitization.

The ambiguous cases of the marching cubes algorithm are
exactly the cases which cannot occur in a 3D well-composed
image. Thus, using the above-presented majority interpola-
tion algorithm to generate a well-composed image and then
applying marching cubes on this new set of points would lead
to a polygonal surface representation with no ambiguous
cases. But, this would require doubling the resolution in any
dimension which leads to approximately four times as much
triangular surface patches as in the original resolution.
Fortunately, this is not necessary: Since Cases 9 to 14 cannot
occur in the sufficiently dense digitization of an r-regular
image and, since the only remaining ambiguous Case 8
always occurs in a defined way, a slight modification of the
original marching cubes algorithm is all we need to guarantee
a reconstructed surface without any holes. Only the triangu-
lation of the eighth case has to be changed: As already stated
by Dürst [15], it is sufficient to add the two triangles making
up the quadrilateral (the four intersection points along the
edges of the ambiguous face, see Fig. 12(8) and Fig. 12(8)MC).
Nielson and Hamann [16] mentioned that this method may
lead to edges being part of more than two triangles and, thus,
nonmanifold surfaces, but this does not happen for the only
possible occurrence of Case 8. Since we need only one
quadrilateral in such a configuration, we simply have to
differentiate between the complementary parts of configura-
tion 8 and add the quadrilateral (i.e., two triangles) only to the
list of triangles of one of the two parts. In the following, this
slight modification of the original marching cubes algorithm
will be called modified marching cubes (MMC).

Theorem 23. The result of the MMC algorithm is r-homeomorphic
to the surface of the original object if A is r-regular and the
sampling grid is a cubic r0-grid with 2r0 < r.

Proof. As can be seen in Fig. 12, the MMC surface divides, in
any of the eight cases, the cube/double-cube region into
two parts, one containing all foreground and one

containing all background sampling points (except of
the first case). If one fills the foreground part, one gets a
volume reconstruction method which is topology pre-
serving. Since the marching cubes result is just the
surface of such a reconstruction, Theorem 16 implies that
the MMC result has to be r-homeomorphic to the surface
of the original object. tu

7 TRILINEAR INTERPOLATION

If one wants to reconstruct a continuous object from a discrete
set of sampling points, one often uses interpolation. The
simplest interpolation method in 3D is the trilinear inter-
polation, which can be seen as the combination of three linear
interpolations, one for each dimension. In our case, only the
binary information is given if a sampling point is inside or
outside of the sampled object. Thus, we take the values 1 for
the foreground and �1 for the background sampling points
and interpolate the gray-scale values in between. Then,
thresholding with 0 will lead to a continuous representation
of the sampled object. The interpolation result consists of
smooth and nice looking patches. As we will show, the result
of the trilinear interpolation of the sampled version of an r-
regular object has the same topology as the original if the
sampling grid is an r0-grid with 2r0 < r.

Definition 24. Let A � IR3 be a binary object and S a cubic

sampling grid. Then, the trilinear interpolation (TI) ofA on S

is the zero level set of a function u : IR3 ! IR with u being 1 at

any sampling point inside ofA,u being�1 at any sampling point

outside of A, and u being trilinearly interpolated between the

eight sampling points of the surrounding cubeCk (see Fig. 13 for

the different possible cases).

Theorem 25. The TI algorithm is a topology preserving

reconstruction method and, thus, the result of the TI algorithm

is r-homeomorphic to the original object if A is r-regular and

the sampling grid is a cubic r0-grid with 2r0 < r.

Proof. Since the trilinear interpolation inside of a cube
configuration solely depends on the values at the cube
corners, we only have to check the eight possible

configurations. As can be seen in Fig. 13, the require-
ments of a topology preserving reconstruction are
fulfilled for any configuration. tu

8 SMOOTH SURFACE REPRESENTATION

While the surfaces of the above reconstruction methods are
only continuous but not necessarily differentiable at any
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Fig. 11. Cases 1 to 8 with complementary subcases for ball union.

Fig. 12. Cases 1 to 8 for the MMC algorithm and Case 8 for the original

Marching Cubes algorithm.



point, they cannot be used if one needs to compute local

surface properties like tangents, curvature, etc. Therefore, we

need to reconstruct a smooth surface. Depending on the

application, the surface should beC1,C2,C3, . . . , or evenC1.

In this section, we will show how to construct such surfaces

based on the trilinear interpolation. Again, the resulting

reconstructed objects will have the same topology as the

original objects of is is r-regular with sufficiently big r.

The idea is to smoothly blend between the trilinear

patches (see Fig. 15) by using a partition of unity of weight

functions. A set f’kgk2NN of at most countably many C1

functions from IR3 to IR is called a partition of unity on IR3 if it

satisfies two conditions. First, for each k 2 IN, ’k is a

nonnegative and compactly supported function, i.e., ’kðpÞ 

0 for every p 2 IR3, and fsuppð’kÞgk2NN is a locally finite

cover of IR3, where suppð’kÞ is the closure of the set

fp 2 IR3j’kðpÞ 6¼ 0g. Second,
P

k2NN ’kðpÞ ¼ 1, for every

p 2 IR3. A partition of unity is typically used to blend

locally defined functions into one global function. More

specifically, suppose that we have a partition of unity

f’kgk2NN on IR3 and we want to smoothly blend overlapping

patches of functions fk : suppð’kÞ ! IR into each other. This

leads to a globally defined function f : IR3 ! IR in terms

of the set ffkgk2NN of local patches and f’kgk2NN as

fðpÞ ¼
P

k2NN ’kðpÞfkðpÞ, for all p 2 IR3. Since the trilinear

interpolation leads to smooth (i.e., C1) zero level sets, the

smoothness of the resulting surface does solely depend on

f’kgk2NN.

The above partition of unity approach has long been a
key ingredient of finite element meshless methods [27] and
it has more recently been used for reconstructing surfaces
from point sets [28] and for approximating iso-surfaces
from multiple grids [29].

Without loss of generality, let S ¼ ZZ3 be the cubic

sampling grid (i.e., r0 ¼
ffiffi
3
p

2 ) and A be an r-regular set with

2r0 > r. Our goal is to define a function f : IR3 ! IR, which

locally approximates the trilinear interpolation TI and

which is as smooth as necessary. In order to blend the

trilinear patches into each other, their domains have to

overlap, thus, instead of using the nonoverlapping cubes Ck
as in the definition of the trilinear interpolation, we choose

bigger cubes C1
k ¼ fp 2 IR3 j jp1 � sk;1j � 1

2þ d; jp2 � sk;2j �
1
2þ d; jp3 � sk;3j � 1

2þ dg with sk being the sampling points

and 0 < d < 1
2 being the amount of overlap.

Our construction is similar to the ones in [28] and [29], as
they also subdivide the Euclidean space into cubes and assign
a weight function and a shape function with each cube.
However, the constructions in [28] and [29] differ from ours in
two important ways. First, the support of a weight function in
[28] and [29] is a ball centered at the center of the cube
assigned with the function and each shape function is either a
general quadric, a bivariate quadratic polynomial in local
coordinates or a piecewise quadric surface [28], or a radial
basis function (RBF) interpolant [29]. Second, the zero level
set f�1ð0Þ of f built by either construction is not guaranteed to
be homeomorphic to the surface one wants to reconstruct
from a point set [28] nor to the iso-surface one wants to
approximate from multiple grids [29].

There are different types of intersections of the cubes Ck
(see Fig. 14):

. Center regions are the cubic regions of points which
lie in only one cube. They have three sides of length
1� 2d. The Center region inside a cube Ck is noted
as C2

k .
. Face regions are the cuboidal regions of points which

lie in exactly two cubes. They have two sides of
length 1� 2d and one side of length 2d.

. Edge regions are the cuboidal regions of points
which lie in exactly four cubes. They have one side
of length 1� 2d and two sides of length 2d.
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Fig. 13. Cases 1 to 8 for trilinear interpolation.

Fig. 14. The intersections of neighboring cubes define (a) Vertex, (b) Edge, (c) Face, and (d) Center regions.

Fig. 15. Left: Examples of trilinear interpolation without blending. Right: The same examples with with C1-blending.



. Vertex regions are the cubic regions of points which
lie in exactly eight cubes. They have three sides of
length 2d.

The partition of unity blending functions ’k are defined
as the product of three one-dimensional partition of unity
functions

’kðpÞ ¼ �ðp1 � sk;1Þ � �ðp2 � sk;2Þ � �ðp3 � sk;3Þ;

where sk is the sampling point in the center of Ck and � :

IR! IR is given by

�ðtÞ ¼

1 ifjtj � 1
2� d

0 ifjtj 
 1
2þ d

h 1�
jtj�ð1

2
�dÞ

2d

� �
h 1�

jtj�ð1
2
�dÞ

2d

� �
þh

jtj�ð1
2
�dÞ

2d

� � else;

8>>>>>><
>>>>>>:

where h : ð0; 1Þ ! IRþ is a bounded strictly monotonic
increasing function starting in the origin, i.e., limx!0

hðxÞ ¼ 0. Possible choices for h are:

. hðxÞ ¼ x for linear blending: This leads to a
C1-continuous surface,

. hðxÞ ¼ 2x3 � 3x2 þ 1 for cubic blending: This leads
to a C3-continuous surface,

. hðxÞ ¼ e 1
x�1e�1=x þ e 1

x�1 for C1-blending. This leads to
a C1 and, thus, smooth surface.

Due to the definition of’k, it is 1 inside of the Center regionC2
k

and it is 0 outside of C1
k . Inside a face region, it is constant in

any direction parallel to the regarded face and similarly
inside any edge region it is constant in edge direction.

Lemma 26. Let d ¼ 0:2. Then, the zero level set of the smoothed

function f is homeomorphic to the zero level set of the trilinear

interpolation inside any cube Ck.

The proof can be found in the Appendix.

Corollary 27. The smooth blending is a topology preserving

reconstruction method and the result of the TI algorithm is

r-homeomorphic to the original object if A is r-regular and the

sampling grid is a cubic r0-grid with 2r0 < r.

9 VOLUME AND SURFACE ESTIMATION

In the previous sections, we showed different methods to

reconstruct a sampled object with only a small geometric

and no topological error. In this section, we will discuss

how appropriate these reconstruction methods are measur-

ing the volume and the surface of the original object.
The estimation of object properties like volume and

surface area given only a digitization is an important

problem in image analysis. In this section, we will show that

both can be computed with high accuracy if the original

object is r-regular. At first, we show that the above

reconstruction methods can be directly used for volume

estimation and we give absolute bounds for the difference

between the reconstructed and the original volume.
LetA0 be the digital reconstruction of an r-regular objectA

with a cubic r0-grid S with 2r0 < r. Without loss of generality,

let S ¼ ZZ3 (A and S can always be transformed such that this

is true). Now, let fcig ¼ ZZ3 � ð12 ; 1
2 ;

1
2Þ be the set of corner points

of voxels centered in si 2 S. Then, each r0-ball Br0 ðciÞ has

exactly eight sampling points si on its surface. The voxels of

these eight sampling points contain ci as corner point. Now,

let C � fcig be the set of corner points whose eight sampling

points are not all inside or all outside the object A. Then, the

union U of all r0-balls with centers in C supercovers the

boundary @A since the r-homeomorphism constructed in the

proof of Theorem 16 is equal to the the identity outside of U .

Moreover, U covers not only the surface of the digital

reconstruction, but also the surface of any topology preser-

ving reconstruction method for the same reasons. Thus, the

original set and all the different reconstruction methods

differ only inside of U and, since VVðUÞ � n�r02 with n being

the number of points inC, the difference between the original

volume and the volume of one of the reconstructions, i.e.,

the volume reconstruction error is at most n�r02. With

limr0!0 VVðUÞ ¼ 0, it follows that this volume estimation

method is multigrid convergent for any r-regular image.
Multigrid convergence of a function fr0 on a digital

representation of an object with sampling grid size r0 means

that limr0!0 fr0 is equal to the value for the continuous object.
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Fig. 16. Digitization of an r-regular object (a) with a cubic 1
2 r-grid. (b) Digital reconstruction (note that the surface is not a manifold inside the circle),

(c) ball union, (d) trilinear interpolation, (e) majority interpolation, and (f) modified marching cubes.



Surface estimation is not as simple as volume estimation.
Kenmochi and Klette showed that local surface estimation
methods are not multigrid convergent [30]. This is quite
reasonable since any local surface area estimation method
(local means that the size of the area around a local cube
which is used for approximating the surface locally is fixed
relatively to the sampling grid size) based on binary images
allows only a finite number of different surface patches,
while even the number of different orientations of planar
surfaces is infinite.

This means we need a nonlocal method in the sense that
the size of the area around a local cube which is used for
approximating the surface locally has to increase with
increasing sampling density.

In the literature, two main approaches for global surface
area estimation exist. While Klette and Zunic [31] use a
digital plane segmentation process without giving a proof
of multigrid convergence, Sloboda and Zatko [32] define a
multigrid convergent method based on the relative convex
hull of the discrete object, but no efficient algorithm exists to
compute the relative convex hull.

The first and, as far as we know up to now, the only
approach giving a multigrid convergent algorithm was
introduced by Coeurjolly et al. [33]. They estimate the surface
normals and use this to compute a surface area approxima-
tion. They prove that their algorithm is multigrid convergent
if the size of the local area which is used to estimate a surface
normal vector decreases withOð

ffiffiffi
�
p
Þ, where � is a measure for

the grid size. Thus, their approach is local in the sense that the
used area converges to zero relative to the object size, but it is
global in the sense that it converges to infinity relatively to the
grid size, since lim�!0

Oð
ffiffi
�
p
Þ

� ¼ 1. We will call such methods
semilocal. Note that, in their experiments, Coeurjolly et al.
used a fixed minimal size for the used local area such that
their implementation is not multigrid convergent.

We think that using a semilocal approach for surface area
estimation is the right choice. In this paper, we will show that
semilocal surface area estimation can be done in a much more
simple way than proposed by Coeurjolly et al. by simply
counting certain sampling points. While in [33], the estima-
tion of surface normals was used to approximate the surface
area, we will measure the volume of a thick representation of
the surface. The idea is that, with the thickness of this volume
going to zero, the surface can be approximated by dividing
the volume by the thickness. The volume can be estimated by
counting voxels. Since the volume estimation has to converge
faster than the size reduction of the surface, we have to
increase the sampling density faster than decreasing the
thickness of the surface representation. That is why our
approach is semilocal. The basic property which makes our
approach possible, the connection between surface area and
volume, is given by the following lemma:

Lemma 28. Let A be an r-regular object. Then, the surface
area AAð@AÞ is equal to lims!0

1
2sVVð@A� BsÞ, where @A�

Bs can be seen as a thick representation of the surface @A

with thickness 2s.

Proof. Let fTkg be a polygonal surface approximation of @A
such that each polygon Tk is a triangle such that the
distance between any two of the three triangle points
tk;1; tk;2; tk;3 2 @A is bounded by s (this can be done by

using the MMC algorithm). Now, let nk;1; nk;2; nk;3 be the

normal vectors of @A in tk;1; tk;2; tk;3 and letVk andWk be the

triangles which one gets by projectingTk along the normals

onto the two planes being parallel to the plane containing

Tk with distance s. Further, let Pk be the convex hull of the

six corner points of Vk and Wk. Then, Pk is a prismoid and

its volume is VVðPkÞ ¼ s
3 ðAAðVkÞ þ 4AAðTkÞ þAAðWkÞÞ. The

union of the prismoids approximates VVð@A� BsÞ, thus:X
k2NN

VVðPkÞ ¼
X
k2NN

s

3
ðAAðVkÞ þ 4AAðTkÞ þAAðWkÞÞ

� �

¼ s

3
ð
X
k2NN

AAðVkÞ þ 4
X
k2NN

AAðTkÞ þ
X
k2NN

AAðWkÞÞ:

For s! 0, the vectors of any triangle Tk become
parallel and, thus, AAðVkÞ ! AAðTkÞ and AAðWkÞ ! AAðTkÞ.
This leads to

lim
s!0

1

2s
VVð@A� BsÞ ¼ lim

s!0

X
k2NN

VVðPkÞ
2s

¼ lim
s!0

1

6

X
k2NN

AAðVkÞ þ 4
X
k2NN

AAðTkÞ þ
X
k2NN

AAðWkÞ
 !

¼ lim
s!0

1

6
6
X
k2NN

AAðTkÞ
 !

¼ lim
s!0

X
k2NN

AAðTkÞ ¼ AAð@AÞ: ut

Now, we can use the measurement of volumes for
surface area estimation. In order to get a multigrid
convergent method for surface estimation, we must
measure the volume of a thick representation of the surface
and we must guarantee that 1) the thickness parameter s
converges to zero and 2) the estimation accuracy of its
volume also converges to zero. This is possible by choosing
limr0!0 s ¼ 0 and limr0!0

r0

s ¼ 0, i.e., r converges faster to zero
than s. The last remaining problem is to estimate the
volume of a thick representation of the surface by using
only the information which sampling points are inside the
object and which sampling points are outside. This is done
as follows: We know that the union U of all r0-balls with
centers in C covers @A. Thus, the sþ r0-dilation of C covers
@A� Bs, i.e., the thick representation of @A of thickness 2s.
Otherwise, since @A� Br0 � C for any r-regular set A with
r0 < r, we know that @A� Bðr0þðs�r0ÞÞ covers the ðs� r0Þ-
dilation of C. Thus, the volume of @A� Bs can be
approximated by counting the sampling points inside C �
Bs (see Fig. 17). With N :¼ ] si

�� jsi � cjj � s; cj 2 C� �
, it

follows that, for the volume of the thick representation:

VVð@A� BsÞ ¼ lim
r0!0

2ffiffiffi
3
p r0

3 �N:

Thus,

AAð@AÞ ¼ lim
s!0

1

2s
VVð@A� BsÞ

¼ lim
s!0;r

0
s!0

1

2s

2ffiffiffi
3
p r03 �N ¼ lim

s!0;r
0
s!0

r03ffiffiffi
3
p

s
�N:

Thus, the output of the following algorithm converges to
the true surface area:
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(1) Let A be an r-regular set; n ¼ 0
(2) do
(3) r0 ¼ 1

2

� 	n
; s ¼ 3

4

� 	n
.

(4) Compute the intersection of the sampling points si of
the r0-grid 2ffiffi

3
p r0 � ZZ3 with A.

(5) Compute the set C of center points cj of the cubic
neighborhood configurations Cj which consist of both
foreground and background sampling points.

(6) Count the number N of sampling points si with
distance smaller than s to some cj 2 C.

(7) AAn ¼ r03ffiffi
3
p

s
�N ;n ¼ nþ 1

(8) loop until convergence of AAn.
(9) return AAn.

The presented method is local relative to the regularity
constraint r, i.e., relative to the object size, but it is global
relative to the size of the sampling grid. That’s why we call
our approach semilocal. We think that the idea of a semilocal
method is the best choice for dealing with the problem of
surface area estimation since local methods are not multi-
grid convergent and it seems to be difficult to prove the
convergence of global methods. Our solution to the problem
of multigrid convergent surface area estimation is extremely
simple. In order to find the sampling points with distance
smaller than s (Step (6) of the algorithm), one can use a
linear-time algorithm for Euclidean distance transform [34].
Then, the above algorithm only needs linear time for a
given sampling resolution relative to the number of
sampling points.

Although the class of r-regular objects is very general, a lot
of objects of interest are not r-regular for any r. Nevertheless,
our algorithm is multigrid convergent if the surface of an
object is almost everywhere differentiable since then the
percentage of the surface which behaves r-regularly (i.e.,
there exists an outside and an inside osculating r-ball) goes to
100 percent for r! 0. Note that this is true for nearly any
object of interest.

Theorem 29. Let A be a continuous object with bounded
curvature except a set E that is a finite union of curves of finite
length (sharp edges). Then, the above surface area estimation
algorithm converges to AAð@AÞ, i.e., the mulitgrid convergence
is true for A.

Proof. Let Bt ¼ @A n ðE � BtÞ be the surface of A without a
t-neighborhood ofE. Then,Bt is a finite union of compact
surface patchesA1 [ � � � [An. The patches are disjoint, and
their curvature is bounded by some constant u. Taking
r ¼ minðt; uÞ, Bt is an r-regular surface, i.e., for every
surface interior point x 2 Bt, there exist two different
r-balls that intersect Bt in exactly x. This implies the
convergence of the above algorithm to AAðBtÞ. If t goes to
zero, the error due to the wrong surface area measurement
inside @A \ ðE �BtÞ converges to zero and the surface

area ofBt goes to the surface area ofA. Thus, the algorithm
converges to AAð@AÞ. tu

10 CONCLUSIONS

We have analyzed the problems of topology preservation
during digitization of r-regular objects in 3D. We showed
that, with a sufficient sampling density, several foreground-
background-configurations of neighboring sampling points
are not possible. We used this to derive the first sampling
theorem for topology preserving digitization in 3D. Since
this theorem is not restricted to a certain method for digital
reconstruction, we introduced several different methods
which all fulfill the requirements of the sampling theorem,
see Fig. 16. That makes our theorem directly applicable to a
large variety of approaches.

The first presented method is suitable for voxel-based
approaches. Since the straightforward voxel reconstruction
cannot be guaranteed to be topologically correct, we
introduced Majority Interpolation, a method to interpolate
new voxels at doubled resolution such that the topology is
always well-defined and, in the case of r-regular objects,
even identical to the original topology. Since the resulting
digital object is always well-composed, several 3D digital
geometry problems are much simpler.

We also modified the Marching Cubes algorithm such
that the generated surface has exactly the same topology as
the original surface. This is the first modification of the
Marching Cubes algorithm which guarantees a surface with
exactly the same topology as the original object instead of
only a topologically sound surface.

In addition to that, we showed that the trilinear
interpolation also fulfills the requirements of the theorem
and that it is even possible to blend between the trilinear
patches in order to get a surface which is smooth every-
where without changing the topology.

Finally, we showed that one can simply use balls with an
appropriate radius instead of cubical voxels and it is also
guaranteed that the topology is exactly the same as for the
original object.

Further on, we showed that each of these methods can be
used for multigrid convergent volume estimation of
r-regular objects. We discussed why it is not possible to
use our reconstruction methods for surface area estimation.
We introduced a semilocal surface area estimation algo-
rithm which we proved to be multigrid-convergent.

APPENDIX

PROOF OF LEMMA 26

Proof. To prove the lemma, we will construct a home-
omorphism of the space IR3, which maps the zero level
sets onto each other, for any Center, Face, Edge, and
Vertex region separately.
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Fig. 17. C � Bs appoximates @A with increasing n.



Inside a Center region C2
k , the blending function ’k is

1 and all other ’i are zero. Thus, f is equal to the
trilinear interpolation and the homeomorphism is given
by the identity.

Inside a Vertex region the homeomorphism can also

be chosen as the identity if it is guaranteed that the zero

level set never touches a Vertex region. Suppose the

sampling point inside a Vertex region has value 1. Then,

the smallest possible value of the trilinear interpolant

inside the Vertex region is achieved at the point ðd; d; dÞ if

all surrounding sampling points have the value �1. This

value is 2 � ð1� dÞ3 � 1 ¼ 0:024 > 0. Analogously, for a

background sampling point (value �1), the trilinear

interpolation inside the Vertex region is always smaller

than or equal to �0:024. Since f is at any point a convex

combination of trilinear interpolants which all have the

same sign inside a Vertex region, the zero level set of f

cannot go through any such region.
Inside an Edge region ’ is constant in edge direction.

In this direction, any trilinear interpolation is linear.
Since all trilinear interpolants inside the Edge region
along such a direction have the same signs at their
endpoints (where the Edge region meets the Vertex
regions), any convex combination of them is also a linear
function along such a direction with the same signs at the
endpoints. Thus, by defining a homeomorphic mapping
along any such line, we get a homeomorphism mapping
the zero level set of f onto the zero level set of the
trilinear interpolant.

Inside a Face region, f is a blending between two
trilinear interpolation patches. For any plane that is
parallel to the face, the weights for these two patches are
constant and, thus, f is equal to a bilinear interpolation
between the weighted sums of values at four corner points.
In any case, except for configuration 8, the zero level set is a
hyperbolic arc as shown by Lopes and Brodlie [18] and,
thus, always has the same shape such that a home-
omorphism can easily be constructed. It remains to prove
the case of an ambiguous face of configuration 8. In this
case, the zero level set on the plane which is incident with
the face consists of two crossed straight lines and, for all
other planes, it consists of two hyperbolic arcs separating
two diagonal corner points such that the plane being
incident with the face separates the other planes into two
groups which separate different pairs of diagonal corner
points. Such a saddle surface has exactly the same
topology as the surfaces of the trilinear interpolations,
which allows us to construct a homeomorphism. tu
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