
Optimal Subsequence Bijection

Longin Jan Latecki, Qiang Wang, Suzan Koknar-Tezel, and Vasileios Megalooikonomou

Temple University

Department of Computer and Information Sciences

Philadelphia, PA 19094, USA

{latecki, wang32, tezel, vasilis}@temple.edu

Abstract

We consider the problem of elastic matching of se-

quences of real numbers. Since both a query and a target

sequence may be noisy, i.e., contain some outlier elements,

it is desirable to exclude the outlier elements from matching

in order to obtain a robust matching performance. More-

over, in many applications like shape alignment or stereo

correspondence it is also desirable to have a one-to-one

and onto correspondence (bijection) between the remain-

ing elements. We propose an algorithm that determines the

optimal subsequence bijection (OSB) of a query and target

sequence. The OSB is efficiently computed since we map the

problem’s solution to a cheapest path in a DAG (directed

acyclic graph). We obtained excellent results on standard

benchmark time series datasets. We compared OSB to Dy-

namic Time Warping (DTW) with and without warping win-

dow. We do not claim that OSB is always superior to DTW.

However, our results demonstrate that skipping outlier ele-

ments as done by OSB can significantly improve matching

results for many real datasets. Moreover, OSB is partic-

ularly suitable for partial matching. We applied it to the

object recognition problem when only parts of contours are

given. We obtained sequences representing shapes by rep-

resenting object contours as sequences of curvatures.

1. Introduction

Sequences of real numbers are commonly used in all re-

search fields. Due to historical reasons, they are also called

time series in the data mining community. Time series are

a ubiquitous and increasingly prevalent type of data, there-

fore, there has been much research effort devoted to time

series data mining in recent years. Many data mining algo-

rithms have similarity measurements of sequences at their

core. Examples include motif discovery [3], anomaly de-

tection [7, 18], rule discovery [6], classification [16] and

clustering [1]. In this paper we deal with computation of

time series distances based on elastic matching.

To solve the problem of alignment of sequences, Dy-

namic Time Warping (DTW) [2, 17] has been used. The

DTW distance between two sequences is the sum of dis-

tances of their corresponding elements. Dynamic pro-

gramming is used to find corresponding elements so that

this distance is minimal. The DTW distance has been

shown to be superior to the Euclidean distance in many

cases [1, 4, 20, 21]. However, DTW is particularly sen-

sitive to outliers, since it is not able to skip any elements

of the sequences. In DTW, each element of the query se-

quence must correspond to some element of the target se-

quence and vice versa. Thus, the optimal correspondence

computed by DTW is a relation on the set of indices of both

sequences, i.e., a one-to-many and many-to-one mapping.

The fact that outlier elements must participate in the corre-

spondence optimized by DTW often leads to an incorrect

correspondence of other sequence elements. This fact is il-

lustrated in Fig. 1b, where the query sequence on top has

one outlier element (spike), and the target sequence (at the

bottom) has two outlier elements. The correspondence of

the elements is illustrated with straight lines. Observe that

the outliers corrupt the correspondence computed by DTW.

In particular, this is reflected in the fact that single elements

of one sequence correspond to a large number of elements

of the other sequence. For comparison, the result of the

proposed Optimal Subsequence Bijection (OSB) is shown

in Fig. 1a.

The Longest Common Subsequence (LCSS) measure

has been used in time series [5, 19] to deal with the align-

ment and outlier problems. Given a query and a target se-

ries, LCSS determines their longest common subsequence,

i.e., LCSS finds subsequences of the query and target that

best correspond to each other. The distance is based on the

ratio between the length of longest common subsequence

and the length of the whole sequence. The subsequence

does not need to consist of consecutive points, the order of

points is not rearranged, and some points can remain un-

matched. However, when LCSS is applied to sequences

(a) OSB (b) DTW

(c) LCSS (0.5 threshold) (d) LCSS (1.0 threshold)

Figure 1: The top and bottom sequences represent parts of

contours of two different but very similar bone shapes.The

correspondence obtained by the proposed OSB is shown in

(a). Observe how outliers corrupt the result of DTW in (b).

The correspondence obtained by LCSS with two different

thresholds in (c) and (d) are also mis-aligned.

of numeric values, one needs to set a threshold that deter-

mines when values of corresponding points are treated as

equal [19]. The performance of LCSS depends heavily on

the correct setting of this threshold, which may be a partic-

ularly difficult problem for many applications.

The proposed OSB computes the distance value between

two sequences based directly on the distances of corre-

sponding elements, just as DTW does, and it allows the

ignoring of outlier points on both the query and target se-

quences to find the best match, just as LCSS does. The main

difference between DTW and OSB is that, unlike DTW,

OSB can skip outlier elements of the query and target se-

quences when computing the correspondence. This makes

the performance of OSB robust in the presence of outliers.

Moreover, OSB defines a bijection on the matched subse-

quences, which means that we have a one-to-one correspon-

dence of the matched elements.

The main difference between LCSS and OSB is that

LCSS optimizes the length of the longest common subse-

quence and requires a distance threshold, while OSB op-

timizes directly the sum of distances of corresponding ele-

ments. Moreover, the OSB penalty for skipping consecutive

elements is proportional to the number of elements skipped,

thus skipping one outlier costs less than skipping a consec-

utive subsequence of several elements. There is no penalty

for skipping elements in LCSS, which often leads to acci-

dental matches as illustrated in Fig. 1c. As can be seen also

in Figs. 1c and 1d, the threshold chosen greatly affects the

resulting correspondence.

The main difference between OSB and assignment al-

gorithms, like the Hungarian algorithm [10, 15], is that

the Hungarian algorithm, as well as other assignment al-

gorithms, do not preserve the order of sequences.

OSB is a natural extension of Minimum Variance Match-

ing (MVM) [14]. MVM aims at finding a subsequence of

the target sequence that best matches the query sequence.

While MVM can avoid noise on the target sequence, every

element in the query sequence must be matched. This is a

serious limitation of MVM. In particular, it implies that the

length of the query sequence must be shorter than the length

of the target sequence. This problem has been corrected

in OSB. Moreover, the theoretical framework for OSB is

significantly different from the framework introduced for

MVM.

The paper is organized as follows. In Section 2 we in-

troduce our new method OSB together with its underlying

theoretical framework. In Section 3 we propose a method to

automatically compute the main parameter for OSB which

is the cost of jumping over an element of the query and/or

target sequence. In section 4 we discuss the time complex-

ity of OSB. Finally, in Section 5 we present the experimen-

tal evaluation of the performance of OSB on two types of

datasets: benchmark time series datasets and a shape con-

tour dataset. In particular, we show that OSB outperforms

DTW, LCSS, and the Euclidean distance.

2. Optimal Subsequence Bijection

The new algorithm, called Optimal Subsequence Bijec-

tion (OSB), works for the elastic matching of two sequences

of different lengths m and n:

a = (a1, . . . , am) and b = (b1, . . . , bn).

The goal of OSB is to find subsequences a′ of a and b′ of b

such that a′ best matches b′. Skipping (not matching) some

elements of a and b is necessary because both sequences

may contain some outlier elements. However, skipping too

many elements of either sequence increases the chance of

accidental matches. To prevent this from happening, we

introduce a penalty for skipping. We call this penalty the

jump cost and denote it with C. We describe one method to

compute the jump cost in Section 3.

We assume that the distance function d used to compute

the dissimilarity value between elements of sequences a and

b, i.e., d(ai, bj), is given for (i, j) ∈ {1 . . .m} × {1 . . . n}.

We do not have any restrictions on the distance function d,

and therefore, any distance function is possible. Usually,

for sequences of real numbers we simply have the distance

d(ai, bj) = (ai − bj)
2, which is also the case for our exper-

imental results reported in Section 5.

The optimal correspondence can be found with a short-

est path algorithm on a DAG (directed acyclic graph). The

nodes of the DAG are all index pairs (i, j) ∈ {1 . . .m} ×
{1 . . . n} and the edge cost w is defined as

w((i, j)(k, l)) =










√

(k − i − 1)2 + (l − j − 1)2 · C + d(ak, bl)

if i < k ∧ j < l

∞ otherwise

(1)

Thus, the cost of an edge from (i, j) to (k, l) is the Eu-

clidean distance of vertices (i, j) and (k, l) in the matrix

{1 . . .m} × {1 . . . n} times the jump cost plus the dissimi-

larity measure of elements ak and bl.

OSB can be viewed as extension of DTW. To see this,

observe that the edge weight dtw for DTW is defined as

dtw((i, j)(k, l)) =
{

(.ak, bl) if i < k ∧ j < l ∧ ((k − i) + (l − j) = 1 ∨ 2)

∞ otherwise

This means that if i maps to j, then either k = i maps

to l = j + 1 or k = i + 1 maps to l = j + 1 or k =
i + 1 maps to l = j in the DTW correspondence. Thus,

in comparison to DTW, OSB allows penalized jumps. We

view as our main contribution the definition of the edge cost

w in DAGs with a jump penalty that includes the jump cost

defined in Section 3.

The edge cost can be easily extended to impose a warp-

ing window constraint, i.e., we can limit the number of ele-

ments that can be jumped over in one step by setting a max-

imal value for the index differences k − i− 1 and l− j − 1.

We illustrate the proposed method on a simple exam-

ple. Fig. 2a demonstrates the correspondence found with

OSB as a shortest path for two sequences a = (1, 2, 8, 6, 8)
and b = (1, 2, 9, 15, 3, 5, 9) with the distance between two

elements being the squared difference. The correspond-

ing sequence indices computed by OSB (not the values)

are (1, 1), (2, 2), (3, 3), (4, 6), and (5, 7). Observe that the

outliers b4 = 15 and b5 = 3 are skipped. The automat-

ically computed jump cost is C = 1.15 (see Section 3).

For comparison, DTW (Fig. 2b) yields the sequence indices

(1, 1), (2, 2), (3, 3), (3, 4), (4, 5), (4, 6), and (5, 7). Thus,

a3 = 8 is matched to b3 = 9 (correct) and the outlier b4 =
15, while a4 = 6 is forced to match the outlier b5 =
3 and the correct match b6 = 5.

The output of OSB gives us a correspondence defined as

a mapping on sequence indices f : {1 . . .m} → {1 . . . n}
that is a monotonic injection, i.e., f(i) < f(i + 1) for i ∈
{1 . . .m}. The sets of indices (ik) and (f(ik)) ik ∈
{1 . . .m} define the subsequences a′ of a and b′ of b, such

that f restricted to (ik) is a bijection. This explains the

phrase “subsequence bijection” in Optimal Subsequence Bi-

jection (OSB).

(a) OSB (b) DTW

Figure 2: Time series alignment example

3. Penalty for skipping elements

In this section we describe how to determine the jump

cost C. As we stated in Section 2, while in most applica-

tions d(ai, bj) is given for (i, j) ∈ {1 . . .m} × {1 . . . n},

the jump cost should be carefully selected. We propose to

compute the jump cost in two phases. Let B be a set of all

target sequences to which query sequence a should be com-

pared. In the first phase, the query sequence a is compared

to a target sequence b ∈ B, and we define

C(a, b) = mean
i

(min
j

(d(ai, bj))) + std
i

(min
j

(d(ai, bj)))

Thus, for every element ai we find the closest element bj ,

and then we take the mean plus one standard deviation (std)

of the distances to the closest elements. So, for example,

if sequences a and b are similar with the exception of one

outlier element, call it ak, then for every ai with i 6= k we

find an element bj with a small distance d(ai, bj). Conse-

quently, C(a, b) will be small, so that the distance to the

closest element in b for ak will be greater than C(a, b), and

the element ak will be excluded from matching by this rel-

atively small penalty, i.e., we will jump over it.

In order to ensure a fair comparison of sequence a to all

target sequences b ∈ B, we need to fix the jump cost for all

the comparisons. This is obtained in the second phase by

simply taking the mean of all the jump costs:

C(a) = mean{C(a, b) : b ∈ B}

4. Time complexity

It is well known that the time complexity of DTW is

O(mn) for two sequences with m and n elements respec-

tively. Since OSB considers all possible jumps, its time

complexity is O(m2n2).
It is also well known that in practice DTW is run with

a warping window restriction, which means that element ai

from the query sequence can only match to an element bj

from the target sequence if |i − j| is smaller than a prede-

fined constant, say r. The time complexity of DTW with

this warping window restriction is O(m). We can also im-

pose the warping window restriction on OSB. In addition,

we can limit the number of elements that can be jumped

over in one step by setting maximal values for the index dif-

ferences k − i − 1 and l − j − 1 in formula (1). With these

restrictions, the time complexity of OSB is also O(m).
As our experimental results in Section 5 demonstrate,

these restrictions do not influence the matching results of

OSB. In all experimental results, we set all three index dif-

ferences to be bounded by five, i.e., |i− j| < 5, k− i− 1 <

5, and l−j−1 < 5. In contrast, the performance of DTW is

evaluated with respect to the best possible warping window

restriction.

5. Experimental results

We tested our approach on the benchmark time se-

ries datasets published on the UCR Time Series Classi-

fication/Clustering Page [9] and on the MPEG-7 shape

dataset [11]. These datasets are online to serve the data

mining/machine learning community as an effort to encour-

age reproducible research for time series classification and

clustering, and for shape matching. Section 5.1 will discuss

the results for the UCR time series datasets, and Section 5.2

will discuss the results for partial sequence similarity on the

MPEG-7 dataset.

In addition, we entered the Workshop and Challenge on

Time Series Classification at SIGKDD 2007 [8]. In this

competition, we were given twenty time series datasets of

unknown taxonomy and we had 24 hours to run our algo-

rithm, classify the data, and submit the results. Due to tech-

nical problems, we could finish only twelve of the twenty

datasets, but using OSB, we had the highest accuracy of all

competitors on three of the datasets.

5.1. The UCR time series datasets results

We were able to download 19 datasets from [9] that came

from various application domains. The description of these

datasets can be found on the UCR webpage.

The table published on [9] reports 1-Nearest Neighbor

(1-NN) classification results for three methods: Euclidean

Distance, DTW (Dynamic Time Warping) without warping

window, and DTW with best scoring warping window. The

overall accuracy is reported as the percentage of misclas-

sified queries (i.e., the smaller the value, the better is the

result). We followed the same 1-NN classification proce-

dure as reported on [9] to obtain our results and compare

OSB to the other methods.

To summarize, OSB yields the best results on 10 datasets

(best on 7 datsets and tied for best on 3), followed by DTW

without warping window with best results on 8 datasets

(best on 4 and tied for best on 4), followed by DTW with

best scoring warping window with best results on 6 datasets

(best on 2 and tied for best on 4). The Euclidean Distance

obtained the best score on only two datasets (tied for best

on both datasets). Please see [12] for a complete discussion

and the full results.

We do not claim that OSB is always superior to DTW,

we claim only that skipping outlier elements as done by

OSB can significantly improve matching results for many

real datasets, and this fact is clearly demonstrated by our

results (see Table 1 in [12]).

5.2. The MPEG7 dataset results

The goal of this section is to test OSB’s ability as a mea-

sure for partial sequence similarity. Our query sequences

represent significant contour parts of shapes in the MPEG-

7 Shape 1 Part B dataset [11]. The MPEG-7 dataset is a

standard dataset for testing shape-matching algorithms [13].

The dataset consists of 70 object classes (e.g. ”Birds”) and

within each class there are 20 shapes for a total of 1400

shapes. Each shape is represented with 100 equidistant sam-

ple points on the contour. We manually selected 10 query

sequences as contour segments representing shapes from 10

different classes. They are represented as the black parts of

the contours in the first column in Fig. 3. Their lengths

range from 30 to 57 points. We then converted both the tar-

get shapes and the query segments into sequences by calcu-

lating the curvature of each point with respect to its 5 neigh-

bors on each side. This particular transformation makes

the sequence representation invariant to rotation and scale

changes, which is particularly relevant for finding similar

contour parts. In other words, the shape of a cell phone

with its antenna pointing up can still match with the same

cell phone shape scaled and rotated so that its antenna is

now smaller and pointing down. This curvature conversion

was done for each target shape (yielding target sequences

of length 100), and on each query segment (giving query

sequences with lengths 10 less than the original number of

points for each segment).

We ran the OSB algorithm for each query against each

target to find the optimal subsequence between each query

segment and target shape. For each query/target pair we

used a step of 5 points to move the starting point of the tar-

get. First we compared the query against target elements

1 - 100. Then we compared the query against target ele-

ments 6 - 105 (doing a circular shift of the elements), then

against target elements 11 - 110, and so on (incrementing

by 5).

The final score for a query/target pair is the dissimilar-

ity value of the best matching starting value. Since we

have only 10 query sequences, and we want a statistically

significant comparison, we used 1, 5, 10 and 20 nearest

neighbors’ classification. For each query we looked at the

one/five/ten/twenty targets that yielded the smallest distance

measure among 1400 shapes and calculated the rate of cor-

bird:05.17

bone:06.01

cell:14.15

crown:20.16

glas:42.13

bird:05.17 bird:05.19 bird:05.16 dog:33.08 dog:33.04

bone:06.01 bone:06.07 bone:06.11 bone:06.04 bone:06.13

cell:14.15 cell:14.16 cell:14.19 cell:14.12 cell:14.10

crown:20.16 dev1:24.05 crown:20.01 crown:20.11 dev1:24.19

glas:42.13 glas:42.05 glas:42.01 glas:42.12 glas:42.02

fish:36.09

rat:59.16

fount:40.17

watch:70.16

stef:65.01

fish:36.09 fish:36.05 fish:36.11 fish:36.19 fish:36.02

rat:59.16 rat:59.01 rat:59.11 rat:59.18 rat:59.06

fount:40.17 fount:40.02 fount:40.06 fount:40.19 fount:40.15

watch:70.16 watch:70.17 watch:70.15 watch:70.02 watch:70.14

stef:65.01 stef:65.13 stef:65.12 stef:65.17 stef:65.07

Figure 3: OSB results on the MPEG-7 dataset for our 10

queries. Each contour is identified by label:class:id. The

first column shows the query part (in black) in its original

contour (red). Columns 2 through 6 are the top five matches

out of the 1400 target shapes. The black points on the tar-

gets indicate the corresponding points as computed by OSB

rect classification, i.e., how many of the target contours in

the top one/five/ten/twenty were from the same class as the

query segment. The accuracy reported is the recall rate

(sometimes also called the retrieval rate), i.e., of all the pos-

sibly correct matches, how many were actually found in the

top one/five/ten/twenty.

For comparison, we used the same query and tar-

get sequences in three other algorithms: DTW, DTWCW

(DTW with Correspondence Window, described below),

and LCSS. As shown in Table 1, OSB performed signifi-

OSB DTW DTWCW LCSS

1NN 100% 0% 90% 90%

5NN 92% 2% 72% 42%

10NN 84% 2% 67% 34%

20NN 67% 3% 59% 26%

Table 1: Recall rates on the MPEG-7 dataset.

cantly better than any of the other algorithms. OSB was the

only algorithm to achieve 100% recall rate in the 1NN clas-

sification; it had a 92% recall rate in the 5NN classification.

The extremely low performance of DTW is due to the

fact that we did not use any window restriction, e.g., if the

query sequence is of length 20, we still matched it to the

target sequences of length hundred 1-100, 6 - 105, and so

on. In order to eliminate this problem, we also considered

DTW with Correspondence Window (DTWCW), where we

matched the query sequence against a target sequence of the

same length, i.e., the correspondence window has the same

length as the query sequence. For example, if the query se-

quence is of length 20, we matched it to subsequences of

the target with indices 1-20, 6-25, and so on. The results for

DTWCW improved dramatically, but still did not match the

performance of OSB. It may be possible to further improve

the performance of DTW, by varying the size of the corre-

spondence window, but this would add one more parameter

and increase the time complexity (from the linear time of

DTW with a warping window to quadratic time if the size of

the correspondence window is added). The excellent perfor-

mance of OSB illustrates that such a window size parameter

is not needed, since OSB computes a bijective embedding

of the query sequence. This fact clearly demonstrates that it

is more suitable for partial sequence similarity.

For DTW, DTWCW, and OSB we used the same warp-

ing window of size five. Thus, all three algorithms have

the same linear time complexity. LCSS requires a threshold

that decides whether two sequence elements are matching

or not. We used LCSS with various thresholds and selected

the results that gave the best performance (0.3 times the

value of the smallest element.) For OSB, we used a fixed

jump cost of 10 for each query, which was determined ex-

perimentally. (OSB was not sensitive to the value of the

jump cost, since we obtained the same results for a large

range of jump cost values.)

Fig. 3 shows the retrieval results of OSB. It can be ob-

served that the performance of OSB is actually better than is

reflected by the classification based on class labels. For ex-

ample, the query contour segment representing a bird head

in the first row matches to dog heads, which actually have

very similar shape.

The best match for each segment (shown in the second

column) is the same shape from which we took the query

segment. This holds for all the queries and is not a trivial

result. Because of the step of 5 we used to position the

starting point of the target sequence, the query and target

sequences are not identical. In fact, DTW was not able to

find any of the queries’ original shapes, and DTWCW and

LCSS both could find only 9 of the 10.

To summarize, the OSB algorithm performed signifi-

cantly better than DTW, DTWCW, and LCSS. This differ-

ence clearly shows that the ability of skipping outlier ele-

ments is essential in partial sequence similarity.

6. Conclusions and future work

The proposed sequence matching method (OSB) can be

viewed as an extension of DTW. In comparison to DTW,

OSB allows penalized skipping of outlier elements, which

we view as one of our main contributions. As demonstrated

in the test results in Section 5.1, the ability of skipping out-

lier elements leads to improved retrieval performance for

most datasets. However, for some datasets without sig-

nificant outliers it may lead to reduced retrieval perfor-

mance. As demonstrated in the test results in Section 5.2,

when dealing with partial shape similarity in the presence

of noise, the ability of skipping outlier elements is essential.

Here the performance of OSB in the 5NN classification was

90 percentage points higher than the performance of DTW,

20 percentage points higher than that of DTWCW, and 50

percentage points higher than that of LCSS.

References

[1] Aach and Church. Aligning gene expression time series

with time warping algorithms. Bioinformatics, 17:495–508,

2001.
[2] Berndt and Clifford. Using dynamic time warping to

find patterns in time series. In Proceedings AAAI-94 W.

on Knowledge Discovery and Databases, pages 229–248,

1994.
[3] Chiu, Keogh, and Lonardi. Probabilistic discovery of time

series motifs. In Proceedings ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, Washington, 2003.
[4] Chu, Keogh, Hart, and Pazzani. Iterative deepening dynamic

time warping for time series. In Proceedings SIAM Interna-

tional Conference on Data Mining, 2002.
[5] Das, Gunopulos, and Mannila. Finding similar time series.

In Principles of Data Mining and Knowledge Discovery,

pages 88–100, 1997.
[6] Hoeppner. Discovery of temporal patterns. learning rules

about the qualitative behavior of time series. In Proceedings

of the 5th European Conference on Principles and Practice

of Knowledge Discovery in Databases, Freiburg, pages 192–

203, 2001.

[7] Keogh, Lonardi, and Ratanamahatana. Towards parameter-

free data mining. In Proceedings ACM SIGKDD Int. Conf.

on Knowledge Discovery and Data Mining, Seattle, 2004.

[8] Keogh, Shelton, and Moerchen. Workshop and challenge

on time series classification at SIGKDD 2007. Web-

site, 2007. http://www.cs.ucr.edu/˜eamonn/

SIGKDD2007TimeSeries.html.

[9] Keogh, Xi, Wei, and Ratanamahatana. Ucr time series clas-

sification/clustering page. Website. http://www.cs.

ucr.edu/˜eamonn/time_series_data/.

[10] Kuhn. The hungarian method for the assignment problem.

Naval Research Logistic Quarterly, 2:83–97, 1955.

[11] Latecki. Shape data for the MPEG-7 Core Experiment CE-

Shape-1. Website. http://www.cis.temple.edu/

˜latecki/TestData/mpeg7shapeB.tar.gz.

[12] Latecki, Koknar-Tezel, Wang, and Megalooikonomou. Se-

quence matching capable of excluding outliers. In Pro-

ceedings of Workshop on Time Series Classification at ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Min-

ing (KDD), San Jose, CA, August 2007.

[13] Latecki, Lakaemper, and Eckhardt. Shape descriptors for

non-rigid shapes with a single closed contour. In IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR), pages

424–429, 2000.

[14] Latecki, Megalooikonomou, Wang, Lakaemper, Ratanama-

hatana, and Keogh. Partial elastic matching of time series.

In Proceedings IEEE Int. Conf. on Data Mining (ICDM),

Houston, pages 701–704, 2005.

[15] Munkres. Algorithms for the assignment and transportation

problems. Journal of the Society of Industrial and Applied

Mathematics, 5(1):32–38, 1957.

[16] Rafiei. On similarity-based queries for time series data. In

Proceedings of the Int. Conf. on Data Engineering, Sydney,

pages 410–417, 1999.

[17] Sakoe and Chiba. Dynamic programming algorithm op-

timization for spoken word recognition. IEEE Trans. on

Acoustics, Speech, and Signal Processing, 26(1):43–49,

1978.

[18] Salvador, Chan, and Brodie. Learning states and rules for

time series anomaly detection. In Proceedings of the 17th

Intl. Florida Artificial Intelligence Research Society Confer-

ence, Florida, pages 306–311, 2004.

[19] Vlachos, Hadjieleftheriou, Gunopulos, and Keogh. Index-

ing multi-dimensional time-series with support for multiple

distance measures. In Proceedings of ACM SIGKDD Int.

Conf. on Knowledge Discovery and Data Mining, Washing-

ton, pages 216–225, 2003.

[20] Vlachos, Kollios, and Gunopulos. Discovering similar mul-

tidimensional trajectories. In Proceedings of 18th ICDE, San

Jose, CA, pages 673–684, 2002.

[21] Yi, Jagadish, and Faloutsos. Efficient retrieval of simi-

lar time sequences under time warping. In Proceedings

Int. Conf. on Data Engineering (ICDE98), pages 201–208,

1998.

