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Abstract
In this paper, we propose a novel affinity learning
based framework for mixed data clustering, which
includes: how to process data with mixed-type at-
tributes, how to learn affinities between data points,
and how to exploit the learned affinities for cluster-
ing. In the proposed framework, each original data
attribute is represented with several abstract objects
defined according to the specific data type and val-
ues. Each attribute value is transformed into the
initial affinities between the data point and the ab-
stract objects of attribute. We refine these affini-
ties and infer the unknown affinities between data
points by taking into account the interconnections
among the attribute values of all data points. The
inferred affinities between data points can be ex-
ploited for clustering. Alternatively, the refined
affinities between data points and the abstract ob-
jects of attributes can be transformed into new data
features for clustering. Experimental results on
many real world data sets demonstrate that the pro-
posed framework is effective for mixed data clus-
tering.

1 Introduction
Clustering is the task of partitioning the data objects into a
set of groups (clusters) such that objects in the same group
are similar, while objects in different groups are dissimilar.
It is one of the most fundamental problems in data mining
and machine learning. Numerous algorithms have been de-
veloped for clustering. Most of them are designed to handle
data with only one type of attributes, e.g. continuous, categor-
ical or ordinal. Mixed data clustering has received relatively
less attention, despite the fact that data with mixed types of
attributes are common in real applications.

For mixed data clustering, one of the greatest challenges
is how to measure the affinities or distances between data
points. One of the most straightforward methods for process-
ing mixed data is the so-called 1-hot or 1-of-K encoding. A
categorical attribute with K distinct values is encoded to K
0 − 1 binary attributes. Each categorical attribute value is
transformed into a 1 on its corresponding binary attribute.
Then they are treated just like continuous attributes. The

more formal Gower’s similarity coefficient [Gower, 1971]
and its extensions [Legendre and Legendre, 1998; Podani,
1999] compute the partial affinity between two data points on
each attribute according to the data type, and then aggregate
all of them into a composite similarity measure. Such meth-
ods are widely used in practice. However, they essentially
compute the affinity or distance ”locally” between two data
points, without considering the attribute values of other data
points. This may result in missing some intrinsic information.
For example, in many real world data sets, some values of a
categorical attribute are inherently related. Such information
would be missed by similarity measures like Gower’s coef-
ficient, which simply assume different categories are totally
independent and unrelated.

In this paper, we propose a novel affinity learning based
framework for mixed data clustering. It includes how to pro-
cess data with mixed-type attributes, how to learn affinities
between data points, and how to exploit the learned affinities
for clustering.

First, each original attribute is represented with several ab-
stract objects defined according to the specific data type and
values. Each attribute value is then transformed into the ini-
tial affinities between the data point and the abstract objects
of attribute. For categorical attributes, each category is de-
fined as an abstract object. Its affinities to the data points
in this category are initialized to a constant value. For each
continuous attribute, two abstract objects are defined to repre-
sent its minimum and maximum values. Their initial affinities
to each data point are transformed from the individual con-
tinuous attribute value with a novel method. For ordinal at-
tributes, all possible values are first ranked and then replaced
by their ranks. The new ordinal attributes are processed as
continuous attributes.

After the data processing, we obtain a bipartite graph con-
sisting of the data points, the abstract objects of attributes,
and the initial affinities between them. The next step is to
learn new affinities, including inferring the unknown affini-
ties and refining the known affinities. We adopt the algorithm
proposed in [Li and Latecki, 2015], which essentially imple-
ments the von Neumann kernel [Kandola et al., 2003] from
the perspective of transitive inference confidence. Specifi-
cally, the new affinities are learned according to the transitive
property of the affinitive relation. All the initial affinities are
scaled with a common scaling factor. Any transitive infer-
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Figure 1: An illustration of data point connections via their
attribute values. Blue circles represent data points. Rectan-
gles represent categorical attributes, each has three distinct
attribute values.

ence process without self-loops is considered to be effective
to reveal the two objects are affinitive. The confidence of
such an inference process is quantified as the product of the
related scaled affinity values. In general, there can be an infi-
nite number of distinct transitive inference processes between
two objects. The confidence of all these inference processes
are added up to be the new affinity between two objects. The
details of this affinity learning algorithm are presented in Sec-
tion 3.2.

In comparison to Gower’s similarity coefficient and its ex-
tensions, our affinity learning method shares the similar idea
of aggregating partial affinities on individual attributes into
an overall measure. But the significant difference is that our
affinities are computed ”globally” by taking into account the
interconnections among the attribute values of all data points,
not just between the two data points. This is illustrated in
Figure 1. The numbered blue circles represent data points,
i.e. {x1,x2,x3,x4}. The two rectangles represent categor-
ical attributes R and Y , each of which has three distinct at-
tribute values. If we compute the affinity Sij just between
the two data points xi and xj , like Gower’s coefficient does,
then S13 and S14 are both 0, because they don’t have any
common attribute values. However, because of the existence
of x2, which shares one common attribute value with x1 and
x3 respectively, it’s intuitive to infer that x1 is more affinitive
to x3 in comparison to x4. Our affinity learning method can
capture such information by taking into account all transitive
inference processes, including x1 → R1 → x2 → Y2 → x3.

The inferred affinities between data points can be used by
many clustering algorithms. Alternatively, the refined affini-
ties between data point and the abstract objects of attribute
can be transformed into new data features. With such fea-
tures, any algorithms can be used for clustering.

The mixed data clustering algorithms derived from the pro-
posed framework achieve superior performance on many real
world data sets. The details of the experimental evaluation
are presented in Section 4.

2 Related Work

For mixed data clustering, in addition to using 1-hot encoding
to obtain continuous features or Gower’s coefficient [Gower,
1971] and its extensions [Legendre and Legendre, 1998;
Podani, 1999] to measure the similarities between data points,
as introduced in Section 1, there are also some specially de-
signed clustering algorithms, including k-prototypes [Huang,
1997; 1998], K-means-mixed [Ahmad and Dey, 2007], CAVE
[Hsu and Chen, 2007], M-ART [Hsu and Huang, 2008],
INTEGRATE [Böhm et al., 2010], INCONCO [Plant and
Böhm, 2011], SCENIC [Plant, 2012] and so on. K-prototypes
algorithm [Huang, 1997; 1998], which essentially follows the
same idea of k-means algorithm, calculates the dissimilar-
ity between two mixed-type objects as a combination of the
squared Euclidean distance measure on the numeric attributes
and the simple matching dissimilarity measure on the cate-
gorical attributes. K-means-mixed [Ahmad and Dey, 2007],
like k-prototypes, is also based on the k-means paradigm and
combines distance measures computed separately on numeric
attributes and categorical attributes. Unlike k-prototypes, k-
means-mixed does not assume a binary or a discrete measure
between two distinct categorical attribute values but com-
putes the distance as a function of their overall distribution
and co-occurrence with other categorical attributes. This idea
of computing distances ”globally” is similar to ours, but it’s
only applied within categorical attributes. CAVE [Hsu and
Chen, 2007] uses variance to measure the similarity of the
numeric part of the data and computes the similarity of the
categorical part based on entropy weighted by the distances
in the hierarchies. Similarly, the incremental clustering al-
gorithm M-ART [Hsu and Huang, 2008] also computes the
distance between two data points according to distance hi-
erarchies associated with the mixed-type attributes. INTE-
GRATE [Böhm et al., 2010] applies ideas from information
theory to implement the k-means paradigm. It models both
numerical and categorical attributes with their probability dis-
tributions and minimizes a cost function based on the Mini-
mum Description Length principle for clustering. INCONCO
[Plant and Böhm, 2011] and SCENIC [Plant, 2012] process
mixed-type attributes in a similar way as INTEGRATE. Their
main advantage is the capability of modeling and revealing
the cluster-specific dependency patterns among the attributes.

To learn affinities between heterogeneous objects of data
points and attributes, we adopt the algorithm proposed in [Li
and Latecki, 2015], which models the new affinities from the
perspective of transitive inference confidence. It essentially
implements the von Neumann kernel defined in [Kandola et
al., 2003]. The idea of learning semantic similarity between
terms from a corpus for measuring similarity between text
documents in [Kandola et al., 2003] is similar to our idea of
capturing the intrinsic information between attribute values.
One significant difference, besides the applications are differ-
ent, is that we explicitly model the interconnections among
data points and attribute values together. There are also some
other algorithms can be used for affinity learning , such as
[Zhou et al., 2003] and [Yang et al., 2013]. The main reasons
we do not choose them include: 1. their row or column nor-
malizations on the initial affinity matrix change the original



Figure 2: An illustration for explaining the first requirement
in equation (1) for transforming a continuous attribute value
into initial affinities.

relationships between the heterogeneous objects; and 2. they
are not as semantically intuitive and meaningful as the one
[Li and Latecki, 2015] we adopt.

3 Our Framework
3.1 Mixed Data Processing
We first transform the data points and their mixed-type at-
tribute values into abstract objects and initial affinities. For
categorical attributes, each category is defined as an abstract
object. Its affinities to the data points in this category are ini-
tialized to 1, while its initial affinities to the rest data points
are 0. This is similar to the 1-hot encoding. For each contin-
uous attribute C, two abstract objects are defined to represent
its minimum and maximum values, i.e. Cmin and Cmax. The
attribute value xC of the data point x is transformed into two
initial affinities to the abstract objects of Cmin and Cmax.
Suppose they are Sx,Cmin = a and Sx,Cmax = b, we have
two requirements,{

a2 + b2 = 1

(Cmin × a+ Cmax × b)/(a+ b) = xC
(1)

To understand the first requirement, consider the illustra-
tion in Figure 2. a, b, c, d on the edges represent the initial
affinities of two data points x and x′ to the abstract objects
of Cmin and Cmax respectively. The diffusion based affinity
learning algorithms essentially compute the affinity Sx,x′ as

Sx,x′ = a× c+ b× d (2)
If x and x′ have the same attribute value xC on C, obvi-

ously their affinities to Cmin and Cmax should be the same,
i.e. a = c and b = d. It’s also obvious to require that Sx,x′

to be a constant, e.g. 1, no matter what the attribute value xC
is. Therefore, we get the first requirement,

Sx,x′ = a× c+ b× d = a× a+ b× b = 1 (3)
The second requirement makes sure the original attribute

value can be restored from the transformed affinities.
Specifically, to transform the attribute value xC of x into

the initial affinities, xC is first scaled with the Min-Max nor-
malization.

x′C =
xC − Cmin
Cmax − Cmin

(4)

The scaled attribute value x′C is in range [0, 1], i.e. C ′min =
0 and C ′max = 1. We have{

a2 + b2 = 1

(0× a+ 1× b)/(a+ b) = x′C
(5)

Solve the system of equations, we get the affinity transfor-
mation formula as a =

√
(1− x′C)2/(2× x′C

2 − 2× x′C + 1)

b =
√
x′C

2/(2× x′C
2 − 2× x′C + 1)

(6)

In this way, if two data points have the same value on a con-
tinuous attribute, their partial affinity inferred by the diffusion
based affinity learning algorithm described below based on
this agreement is always the same, no matter what the value
is.

For ordinal attributes, all possible values are first ranked
and then replaced by their ranks. The new ordinal attributes
are processed as continuous attributes.

If an attribute value of x is missing, the related initial affini-
ties are all set to 0.

3.2 Affinity Learning
Now we have a bipartite graph consisting of n data points, m
abstract objects of attribute, and the initial affinities between
them. We construct a nonnegative symmetric affinity matrix
A = (aij)α×α, where α = m+ n.

A =

[
ADD ADC
ACD ACC

]
(7)

whereADD is a n×n zero matrix indicating that the affinities
between data points are unknown; ADC = Aᵀ

CD is a n ×m
matrix consisting of the initial affinities between data points
and the abstract objects of attributes; ACC is a m ×m zero
matrix indicating that the affinities between abstract objects
of attributes are unknown.

The next step is to scale the nonzero entries in A, i.e. the
initial affinities, with a common scaling factor ∆ which satis-
fies

∆ > max(amax, ρ(A)) (8)
where amax is the maximum entry of A; ρ(A) is the spectral
radius of A.

Each entry aij of A is scaled with ∆ to obtain another ma-
trix A′ = (a′ij)α×α where

a′ij =
aij
∆

(9)

Obviously, any entry a′ij of A′ is less than 1. Also, the
spectral radius of A′ is less than 1. Therefore,

lim
l→∞

(A′)l = 0 (10)

Then we compute a matrix A∗ as



A∗ = (I −A′)−1 (11)
where I is the α× α identity matrix.

Each entry a∗ij of A∗ denotes a value,

a∗ij =

∞∑
l=0

[(A′)l]ij (12)

which is the learned affinity between objects i and j.
The inferred affinities between data points are in A∗DD.

The refined affinities between data points and abstract objects
of attributes are in A∗DC .

To get the scaling factor ∆, we need to calculate the spec-
tral radius ρ(A) of A. With iterative eigenvalue algorithms,
it can be done in O(α2). Scaling the nonzero entries of A
takes O(α2). The straightforward computation for inverting
the matrix I−A′ takesO(α3). Advanced algorithms, such as
Strassen algorithm, can further reduce the asymptotic com-
putational complexity. Therefore, the straightforward time
complexity of our affinity learning algorithm isO(α3). How-
ever, A and I−A′ are usually very sparse. Consequently, the
practical efficiency should be much better. We evaluate it on
several real data sets with α up to about 30, 000. The details
are presented in Section 4

3.3 Clustering with Learned Affinities
In this paper, we use the complete-linkage algorithm for clus-
tering with the inferred affinities between data points inA∗DD.
It is one of the agglomerative hierarchical clustering methods.
Specifically, in the beginning, each data point is in a cluster
of its own. Then these clusters are iteratively combined until
the target cluster number is reached. At each step, the two
clusters, whose two members (one in each cluster) have the
minimum pair-wise affinity, are combined.

Alternatively, the refined affinities of data points to the ab-
stract objects of attributes can be used as new data features.
Specifically, in the n ×m matrix A∗DC , each row is consid-
ered as a m-dimensional feature vector of the corresponding
data point. In this paper, we choose k-means algorithm and
complete-linkage algorithm for clustering with such features.

4 Experimental Evaluation
4.1 Experimental Setup
We evaluate the performance of the proposed clustering
framework on several real world data sets from the UCI Ma-
chine Learning Repository, including 5 mixed-type (Acute
Inflammations, Heart Disease, Credit Approval, Contracep-
tive Method Choice and Adult) and 2 categorical (Soybean
and Tic-Tac-Toe Endgame). The detailed information of
these data sets is summarized in Table 1.

Each record of Acute Inflammation data set corresponds to
the yes or no diagnoses of two diseases of the urinary sys-
tem. We transform the two diagnoses into four classes, i.e.
(yes,yes), (yes,no), (no,yes) and (no,no). For Adult data set,
we only use the training set, which contains 32, 561 records.
For fair comparison, we remove the records with missing at-
tribute values. The final data set contains 30, 162 records. We
skip the attribute ”education”, because it is fully expressed by

another attribute ”education-num”. In Credit Approval data
set, 37 (about %5) records have one or more missing values.
We simply remove them.

The clustering algorithms derived from the proposed
framework include: 1. IA+CL (Inferred Affinities between
data points + Complete-Linkage algorithm); 2. FRA+CL
(Feature from Refined Affinities of the data point to the ab-
stract objects of attributes + Complete-Linkage algorithm); 3.
FRA+KM (Feature from Refined Affinities of the data point
to the abstract objects of attributes + K-Means algorithm).

For the three derived clustering algorithms, we vary
the scaling factor ∆ in equation 9 in the range of
(max(amax, ρ(A)), 4×max(amax, ρ(A))] (see equa-
tion (8)) with a step size of 10. The best results achieved by
each algorithm in this process are reported. For FRA+CL and
FRA+KM, we use the squared Euclidean distance measure.

The comparison algorithms include: 1. OH+CL (Feature
from One-Hot encoding + Complete-Linkage algorithm); 2.
OH+KM (Feature from One-Hot encoding + K-Means al-
gorithm); 3. GC+CL (Gower’s Coefficient + Complete-
Linkage algorithm); 4. KP (k-prototypes) [Huang, 1997;
1998]; 5. KMM (K-means-mixed) [Ahmad and Dey, 2007].
These algorithms are widely used in practice for mixed data
clustering. Some of them are still state-of-the-art in perfor-
mance. Many recent algorithms, such as [Plant and Böhm,
2011; Plant, 2012] are very complex to be implemented. We
are not able to obtain the source code from the authors.

The Gower’s coefficient in GC+CL processes ordinal at-
tributes according to Eqs. 2a-b of [Podani, 1999]. For KP
(k-prototypes), we scale all numeric attributes to the range
of [0, 1] with Min-Max normalization and randomly select k
data points without missing values to be the initial prototypes.
The parameter γ is varied from 0.5 to 1.5 with a step size of
0.1 for the 5 mixed-type data sets. When using k-means tech-
nique, including k-prototypes and K-means-mixed, the maxi-
mum number of iterations is set to be 1000 for the Adult data
set, which contains much more data, and 100 for the other 6
data sets. Moreover, all the tests are run for 100 times and the
average results are reported.

For all the clustering algorithms above, we set the target
number of clusters to be the number of classes in each data
set. The clustering quality is measured in terms of Jaccard
Coefficient, Fowlkes and Mallows Index, and FScore [Jing
et al., 2007]. The results are consistent, so only FScore is
reported. Suppose k is the class and cluster number, n is the
number of data points, ni and nj are the numbers of data
points in class CLAi and cluster CLUj respectively, nij is
the number of data points in both CLAi and CLUj , FScore
is defined as

FScore =

k∑
i=1

(
ni
n
× max

1≤j≤k

2×Rij × Pij
Rij + Pij

) (13)

where Rij = nij/ni and Pij = nij/nj .
All the experiments are implemented in MATLAB R2016a

and conducted on a PC with Intel(R) Core(TM) i7 processor
up to 3.4 GHz and 16GB RAM.



Table 1: Data Sets for Experimental Evaluation (number of different types of attributes, number of instances and number of
classes)

Data set Continuous Categorical Ordinal #Instance #Class
Acute Inflammations 1 5 - 120 4
Heart Disease 6 6 1 270 2
Credit Approval 6 9 - 690 2
Contraceptive Method Choice 2 7 - 1,473 3
Adult 6 8 - 48,842 2
Soybean - 35 - 47 4
Tic-Tac-Toe Endgame - 9 - 958 2

Table 2: Clustering Results (FScore on AI: Acute Inflammations; HD: Heart Disease; CA: Credit Approval; CMC: Contracep-
tive Method Choice; Adult; Soybean; TTT: Tic-Tac-Toe Endgame)

AI HD CA CMC Adult Soybean TTT
IA+CL 0.92 0.78 0.78 0.52 0.75 1 0.71

FRA+CL 0.92 0.79 0.75 0.51 0.73 1 0.76
FRA+KM 0.80 0.79 0.70 0.44 0.73 0.89 0.58
GC+CL 0.92 0.71 0.63 0.47 0.58 1 0.68
OH+CL 0.76 0.63 0.64 0.48 0.69 1 0.68
OH+KM 0.72 0.76 0.69 0.44 0.73 0.88 0.57

KP 0.51 0.76 0.62 0.42 0.68 0.84 0.58
KMM 0.79 0.78 0.77 0.43 0.73 0.91 0.60

4.2 Experimental Results

As shown in Table 2, the three clustering algorithms derived
from the proposed framework achieve superior performance
(with ties) on all the 7 data sets. Apparently, among these
three algorithms, IA+CL is the best. It achieves the best per-
formance on 5 data sets. In comparison to GC+CL, the per-
formance of IA+CL is consistently better (with ties). Since
they use the same clustering algorithm, it proves that our
inferred affinities between data points, which are computed
”globally”, capture more useful information than the ”lo-
cally” computed similarities. We can see FRA+CL is consis-
tently better (with ties) than OH+CL, and FRA+KM is con-
sistently better (with ties) than OH+KM. It means the feature
derived from the refined affinities of the data point to the ab-
stract objects of attributes, which is also computed ”globally”
in our framework, is more effective than the 1-hot encoding
feature. On some data sets, the performance of KP and KMM
are competitive. But overall, our IA+CL and FRA+CL are su-
perior. Obviously, the algorithms derived from the proposed
framework are effective for mixed data clustering.

In order to further prove that it is beneficial to take into
account the interconnections among the attribute values of
all data points, we compare the performance of IA+CL,
FRA+CL and FRA+KM, which are reported in Table 2, with
those achieved with ”locally” inferred affinities and features
from non-refined affinities. Specifically, after scaling the
initial affinities with equation 9, we obtain the matrix A′.
A′DC contains the non-refined affinities of data points to
the abstract objects of attributes. We use them as data fea-
ture (FNRA: Feature from Non-Refined Affinities) for clus-
tering with the complete-linkage (CL) and k-means (KM)
algorithms. To obtain the ”local” affinities between data

points, we compute A∗ = A′ × A′. The affinities in A∗DD
are inferred ”locally” just between each pair of data points.
We call them LIA (Locally Inferred Affinities) and use the
complete-linkage (CL) algorithm for clustering. When com-
paring LIA+CL versus IA+CL, FNRA+CL versus FRA+CL
and FNRA+KM versus FRA+KM, on each data set, LIA+CL,
FNRA+CL and FNRA+KM use the same scaling factors ∆ as
IA+CL, FRA+CL and FRA+KM respectively. Table 3 shows
the performance comparisons. As we can see, the perfor-
mance of using ”globally” inferred or refined affinities are
always better or equal to those of using ”locally” inferred
or non-refined affinities. It demonstrates that the proposed
framework is effective for modeling and exploiting the inter-
connections among the attribute values of all data points to
improve clustering performance.

In order to show that the proposed framework for mixed
data clustering is applicable in practice, we evaluate its effi-
ciency on real world data sets. The proposed framework con-
sists of three main components: 1. processing mixed data;
2. learning affinities; 3. clustering with the learned affinities.
As introduced in Section 3.1, it takes linear time to process
the mixed data. When clustering with the learned affinities,
the time complexity totally depends on the selected cluster-
ing algorithm. Therefore, in this paper, we only evaluate the
efficiency of affinity learning. The average time consumed on
this step in the clustering experiments are reported in Table 4.

As shown in Table 4, for small data sets, which contain
at most thousands of objects, the time consumed on affinity
learning is negligible. For medium data sets, such as Adult, it
may take a few minutes. Since these results are obtained on
an ordinary PC, we can say, with modern computation tech-
nologies and computing power, the proposed framework is



Table 3: Clustering Results with Locally and Globally Learned Affinities (FScore on AI: Acute Inflammations; HD: Heart
Disease; CA: Credit Approval; CMC: Contraceptive Method Choice; Adult; Soybean; TTT: Tic-Tac-Toe Endgame)

LIA+CL IA+CL FNRA+CL FRA+CL FNRA+KM FRA+KM
AI 0.92 0.92 0.92 0.92 0.79 0.80
HD 0.71 0.78 0.71 0.79 0.78 0.79
CA 0.60 0.78 0.60 0.75 0.69 0.70

CMC 0.49 0.52 0.49 0.51 0.44 0.44
Adult 0.67 0.75 0.67 0.73 0.69 0.73

Soybean 1 1 1 1 0.88 0.89
TTT 0.68 0.71 0.68 0.76 0.57 0.58

Table 4: Time Consumed on Affinity Learning (sec.)

Data set #Instance #Attribute #Object Time Consumed
Acute Inflammations 120 6 132 0.005
Heart Disease 270 13 300 0.01
Credit Approval 653 15 705 0.03
Contraceptive Method Choice 1473 9 1493 0.09
Adult 30,162 13 30,256 40
Soybean 47 35 105 0.005
Tic-Tac-Toe Endgame 958 9 985 0.04

applicable in practice.

5 Conclusions
The main contributions of this paper include: 1. we de-
velop a novel framework for mixed data clustering; 2. our
approach to mixed data processing, especially the way we
transform continuous attribute values into initial affinities, is
novel; 3. it’s novel to transform the refined affinities between
data points and the abstract objects of attributes into new data
features. Experimental results on several real world data sets
demonstrate the proposed framework is effective.
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nahita Oswald, Claudia Plant, Michael Plavinski, and
Bianca Wackersreuther. Integrative parameter-free cluster-
ing of data with mixed type attributes. In Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining, pages
38–47. Springer, 2010.

[Gower, 1971] John C Gower. A general coefficient of sim-
ilarity and some of its properties. Biometrics, pages 857–
871, 1971.

[Hsu and Chen, 2007] Chung-Chian Hsu and Yu-Cheng
Chen. Mining of mixed data with application to catalog

marketing. Expert Systems with Applications, 32(1):12–
23, 2007.

[Hsu and Huang, 2008] Chung-Chian Hsu and Yan-Ping
Huang. Incremental clustering of mixed data based on
distance hierarchy. Expert Systems with Applications,
35(3):1177–1185, 2008.

[Huang, 1997] Zhexue Huang. Clustering large data sets
with mixed numeric and categorical values. In Proceed-
ings of the 1st pacific-asia conference on knowledge dis-
covery and data mining,(PAKDD), pages 21–34. Citeseer,
1997.

[Huang, 1998] Zhexue Huang. Extensions to the k-means al-
gorithm for clustering large data sets with categorical val-
ues. Data mining and knowledge discovery, 2(3):283–304,
1998.

[Jing et al., 2007] Liping Jing, Michael K Ng, and
Joshua Zhexue Huang. An entropy weighting k-means
algorithm for subspace clustering of high-dimensional
sparse data. IEEE Transactions on Knowledge and Data
Engineering, 19(8):1026–1041, 2007.

[Kandola et al., 2003] Jaz Kandola, Nello Cristianini, and
John S Shawe-taylor. Learning semantic similarity. In Ad-
vances in Neural Information Processing Systems, pages
673–680, 2003.

[Legendre and Legendre, 1998] Pierre Legendre and Louis
Legendre. Numerical ecology, volume 24, (developments
in environmental modelling). 1998.

[Li and Latecki, 2015] Nan Li and Longin Jan Latecki.
Affinity inference with application to recommender sys-
tems. In Web Intelligence and Intelligent Agent Technology
(WI-IAT), 2015 IEEE/WIC/ACM International Conference
on, volume 1, pages 393–400. IEEE, 2015.
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