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Abstract Imbalanced data sets present a particular challenge to the data mining
community. Often, it is the rare event that is of interest and the cost of misclassifying the rare
event is higher than misclassifying the usual event. When the data is highly skewed toward
the usual, it can be very difficult for a learning system to accurately detect the rare event.
There have been many approaches in recent years for handling imbalanced data sets, from
under-sampling the majority class to adding synthetic points to the minority class in feature
space. However, distances between time series are known to be non-Euclidean and non-met-
ric, since comparing time series requires warping in time. This fact makes it impossible to
apply standard methods like SMOTE to insert synthetic data points in feature spaces. We
present an innovative approach that augments the minority class by adding synthetic points
in distance spaces. We then use Support Vector Machines for classification. Our experimen-
tal results on standard time series show that our synthetic points significantly improve the
classification rate of the rare events, and in most cases also improves the overall accuracy of
SVMs. We also show how adding our synthetic points can aid in the visualization of time
series data sets.

Keywords Imbalanced data sets · Support Vector Machines · Time series

1 Introduction

Most traditional learning systems assume that the class distribution in data sets is balanced,
an assumption that is often violated. There are many real-world applications where the data
sets are highly imbalanced, such as oil spill detection from satellite images [16], credit card
fraud detection [7], medical diagnostics [21], and predicting telecommunication equipment
failure [31]. In these data sets, there are many examples of the “normal” (the majority/negative
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class), and very few examples of the “abnormal” (the minority/positive class). But often it is
the rare occurrence, the “abnormal”, which is the interesting or important occurrence, e.g. an
oil spill. In data mining, the rare occurrence is usually much more difficult to identify since
there are so few examples and most traditional learning systems are designed to work on bal-
anced data. These learning systems are biased toward the majority class, focus on improving
overall performance, and usually perform poorly on the minority class. If a data set has say
999 examples of the normal event and only one example of the abnormal event, a learning
system that predicts all examples as “normal” will be 99.9% accurate, but misclassify the
very important abnormal example.

Mining imbalanced data sets has been the focus of much research recently [4,10,30],
and one important direction is sampling strategies. Sampling methods may include remov-
ing majority class data points (under-sampling) or inserting minority class data points
(over-sampling) in order to improve accuracy. Two well-known techniques for increasing
the number of minority examples are random resampling and SMOTE (Synthetic Minority
Over-sampling TEchnique) [8]. In random resampling, minority class examples are randomly
replicated, but this can lead to overfitting. The SMOTE algorithm inserts synthetic data into
the original data set to increase the number of minority class examples. The synthetic points
are generated from existing minority class examples by taking the difference between the
corresponding feature values of a minority class example x and one of its nearest neigh-
bors in the minority class, multiplying each feature difference by a random number between
0 and 1, and then adding these amounts to the feature vector of x .

SMOTE and its variations, for example [9,3,13], have shown that they can improve over-
all classification accuracy and also improve the learning of the rare event. But SMOTE and
its variations work only in feature space, i.e., each example is represented as a point in
n-dimensional space where n is the number of features of each example. However, for some
fields such as bioinformatics, image analysis, and cognitive psychology, often the feature
vectors are not available. Instead, in these domains, the data may be represented as a matrix
of pairwise comparisons where typically each element of the matrix is the distance (similar-
ity or dissimilarity) between the corresponding original data points. This matrix represents
the distance space of the data. Often, this distance space is non-metric because the distance
function used to calculate the similarities or dissimilarities between the pairs of data points
does not satisfy the mathematical requirements of a metric function. For example, the dis-
tances between time series are often non-metric due to warping. When only pairwise scores
are available, the feature space based approaches to adding synthetic points cannot be used.
In our experiments, we do not compare ghost points with SMOTE or random resampling
because SMOTE and random resampling do not work in distance spaces, while the distinct
advantage of the proposed approach is that it can be used in distance spaces. Our approach
to balancing the data sets is to use supervised learning to increase the size of the minority
class by inserting synthetic points directly into the distance space. Our synthetic points do
not have any coordinates, i.e., they are not points in any vector space, which is why we call
our synthetic points ghost points. But our ghost points are points in distance space.

To show the flexibility of our approach, we inserted ghost points into the distance spaces
induced by two different distance measures, Dynamic Time Warping (DTW) [5,23] and
Optimal Subsequence Bijection (OSB) [17]. For a nice overview of elastic sequence match-
ing algorithms, see [12]. The DTW distance between two sequences is the sum of distances
of their corresponding elements. Dynamic programming is used to find corresponding ele-
ments so that this distance is minimal. The DTW distance has been shown to be superior
to the Euclidean distance in many cases [1,36]. However, DTW is particularly sensitive to
outliers, since it is not able to skip any elements of the sequences. In DTW, each element of
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(a) (b)

Fig. 1 The top and bottom sequences represent parts of contours of two different but very similar bone shapes.
The correspondence obtained by DTW is shown in (a). The correspondence obtained by OSB is shown in (b)

the query sequence must correspond to some element of the target sequence and vice versa
(see Fig. 1a). Thus, the optimal correspondence computed by DTW is a relation on the set of
indices of both sequences, i.e., a one-to-many and many-to-one mapping. The fact that outlier
elements must participate in the correspondence optimized by DTW often leads to an incor-
rect correspondence of other sequence elements. OSB computes the distance value between
two sequences based directly on the distances of corresponding elements just as DTW does,
but unlike DTW, OSB can skip outlier elements of the query and target sequences when
computing the correspondence (see Fig. 1b). This makes the performance of OSB robust in
the presence of outliers. Moreover, OSB defines a bijection on the matched subsequences,
which means that we have a one-to-one correspondence of the matched elements.

We choose Support Vector Machines (SVMs) to perform the classification because they
are a fundamental machine learning tool and they have a strong theoretical foundation [27],
though ghost points can also be used with newer methods like Lotka–Volterra derived models
[14]. SVMs have been very successful in pattern recognition and data mining applications
on balanced data sets. But when data sets are unbalanced, the SVM’s accuracy on the minor-
ity/positive examples is poor. This is because the class-boundary learned by the SVM is
skewed toward the majority/negative class [34]. This may lead to many positive examples
being classified as negative (false negatives), which in some situations can be very costly (e.g.
missing an oil spill, missing a cancer diagnosis). There are cost-sensitive SVMs that assign
different costs to different classification errors and the SVM attempts to minimize misclassifi-
cation costs instead of maximizing accuracy. Often though, in many real-world situations, the
misclassification costs are unknown. Also, how to assign the costs is still an active research
area and has not been solved. For example, [38] discusses two major approaches to con-
verting traditional classifiers into cost-sensitive classifiers, and [28] combines modifying the
classifier with changing the data distribution. Using ghost points eliminates the need for
cost-sensitive classifiers and our experimental results (see Sect. 4) show that inserting ghost
points in both DTW distance spaces and OSB distance spaces can significantly increase the
SVM’s ability to learn the rare events. Furthermore, in most cases, the addition of ghost
points increases the SVM’s overall classification accuracy.

In Sect. 2, we introduce the definition of ghost points. In Sect. 3, we demonstrate how
ghost points can be used to visualize data, particularly minority classes. We discuss evaluat-
ing performance on imbalanced data sets and our experimental results in Sect. 4. In Sect. 5,
we summarize and discuss our future work.
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2 Definition of ghost points

In many applications, only distance (or equivalently similarity) information is available, in
which case operations in vector space cannot generate synthetic points. This is the case when
the data points do not have any coordinates, or the data points have coordinates but the Euclid-
ean distance does not reflect their structure. Consequently, a distance measure is used that is
not equivalent to the Euclidean distance, e.g., [5,17]. For this type of data, researchers usu-
ally utilize embeddings to low-dimensional Euclidean spaces. However, embedding implies
distance distortion. It is known that not every four point metric space can be isometrically
embedded into an Euclidean space R

k , e.g., see [20].

Definition 2.1 A metric on a set X is a distance function ρ : X × X → R, such that the
following axioms hold:

1. ρ(x, y) ≥ 0 (non-negativity)
2. ρ(x, y) = ρ(y, x) (symmetry)
3. ρ(x, y) = 0 ⇔ x = y (positive definiteness)
4. ρ(x, y) + ρ(y, z) ≥ ρ(x, z) (triangle inequality)

for any x, y, z ∈ X .

Definition 2.2 A metric space is an ordered pair (X, ρ), where X is a set of points, and ρ is
metric on X , that is, a distance function ρ : X × X → R.

Definition 2.3 Let Y and Z be two metric spaces. We say that a mapping f of the space Y
into Z is an isometric embedding if distZ ( f (y1), f (y2)) = distY (y1, y2).

A simple example where distances are not preserved when mapping a four point metric
space to R

k is presented in [11]. Given the metric space (X, ρ) defined in Fig. 2a, assume there
exists a mapping f : X = {a, b, c, d} → R

k for some k where f preserves the distances. The
triangle inequality holds for the elements a, b, and d; in fact ρ(b, d) = ρ(b, a) + ρ(a, d)

and because of the equality, the mapped points f (b), f (a), and f (d) are collinear in the
space R

k . This also holds for points a, c, and d , i.e., they are collinear in R
k (Fig. 2b).

Since both lines have two points in common, they must be the same line (Fig. 2c). But then
f (b) = f (c) contradicting the fact that the original distance between b and c is 2. Therefore,
the assumption that f preserves the distances is false.

Fig. 2 (a) Example of a 4-point metric space that cannot be embedded into a Euclidean space. (b) The points
b, a, and d are collinear after embedding, and so are the points c, a, and d. Thus, points b and c are the same
point after embedding as shown in (c)
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Definition 2.4 In this paper, a distance space is an ordered pair (X, ρ), where X is a set of
points and ρ : X × X → R is a distance function that satisfies the first two axioms and the
⇐ direction of axiom 3 from Definition 2.1.

Clearly, we would like ρ to be as close as possible to a metric, but this is not always possi-
ble, e.g., there are clear arguments from human visual perception that the distances induced
by human judgments are often non-metric [19].

The key observation of the proposed approach is that although not every four point metric
space can be embedded into a Euclidean space, every three point metric space can be iso-
metrically embedded into the plane R

2. Let (�, ρ), where � = {x, a, b} ⊆ X , be a metric
space with three distinct points. Then, it is easy to map � to the vertices of a triangle on
the plane. For example, we can construct an isometric embedding h : � → R

2 by set-
ting h(a) = (0, 0) and h(b) = (ρ(a, b), 0). Then, h(x) is uniquely defined as a point with
non-negative coordinates such that its Euclidean distance to h(a) is ρ(x, a) and its Euclid-
ean distance to h(b) is ρ(x, b). h : � → R

2 is an isometric embedding, since for any two
points y, z ∈ �,ρ(y, z)2 = ||y − z||2, where || · || is the standard L2 norm that induces the
Euclidean distance on the plane. We stress that this construction does not require that (X, ρ)

be a metric space, but it does require that the three point space (�, ρ) be a metric space.
Below we will generalize this construction to the case when � is not a metric space.

Definition 2.5 Given any two points a, b in a distance space X , we define a ghost point
e induced by a and b using the construction e = μ(a, b) = h−1( 1

2 (h(a) + h(b)). For every
x ∈ X , the distance from x to e, ρ(x, μ(a, b)), is computed as follows:

1. If the three point subspace � = {x, a, b} is a metric, then use Eq. 1 below.
2. If ρ(a, b) > ρ(x, a) + ρ(x, b), then use Eq. 2 below.
3. (a) If ρ(x, a) > ρ(x, b) + ρ(a, b), then use Eq. 3 below or

(b) If ρ(x, b) > ρ(x, a) + ρ(a, b), then use Eq. 4 below.

Cases 2 and 3 in this definition apply when � is not a metric space.

Let μ(a, b) denote the mean of two points a, b. If a, b ∈ R, then we have the usual formula
μ(a, b) = 1

2 (a + b) (see Fig. 3a, where red points are original data, the green point e is the
ghost point and e = μ(a, b)).

Our first key contribution is the definition of μ(a, b) for any two points a, b in a distance
space X . To define μ(a, b), we need to specify ρ(x, μ(a, b)) for every x ∈ X . There are
three cases depending on whether the three point subspace � = {x, a, b} ⊆ X is a metric or
not.

Case 2.1 Type1: � = {x, a, b} ⊆ X is a metric subspace
We first isometrically embed � into the plane R

2 by h. We define
μ(a, b) = h−1( 1

2 (h(a) + h(b)). Since h(�) defines vertices of a triangle on the plane, we
can easily derive that

||h(x) − h(a) + h(b)

2
||2 = ||h(x) − h(a)||2

2
+ ||h(x) − h(b)||2

2
− ||h(a) − h(b)||2

4

Since h is an isometry and μ(a, b) = h−1( 1
2 (h(a) + h(b)), we obtain (see Fig. 3a)

ρ(x, μ(a, b))2 = 1

2
ρ(x, a)2 + 1

2
ρ(x, b)2 − 1

4
ρ(a, b)2 (1)

Consequently, Eq. 1 defines the distance of every point x ∈ X to the new point μ(a, b),
which we call the mean of a and b. By computing the distances of μ(a, b) to all points
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Fig. 3 a The construction of ρ(x, e) for e = μ(a, b) for a triple of points that satisfy the triangle inequality.
b Triple of points that cannot construct a triangle. The way to calculate ρ(x, e) for 3b is shown in (c). Another
way in which the triangle inequality is violated is shown in (d) and the approach to calculating ρ(x, e) is
shown in (e)

in X , we define a new point μ(a, b), and the augmented set X ′ = X ∪ {μ(a, b)} is also a
distance space. We stress that to add a new point μ(a, b) to X we do not need to compute the
embedding h. We use h only to derive Eq. 1. Moreover, since the embedding h is an isometry,
Eq. 1 defines locally correct distances from μ(a, b) to all points in X . Since we can compute
the correct distances without explicitly computing the mapping h, this is similar to the kernel
trick [2].

Case 2.2 Type 2: � = {x, a, b} ⊆ X is not a metric subspace and ρ(a, b) > ρ(x, a) +
ρ(x, b)

In Eq. 1, we assume that the three point space (�, ρ) is a metric space. Thus, we assume
that the local structure of any distance space X can be locally approximated by the metric
space, which is also the assumption for embedding approaches [22,24]. However, for some
point triples � = {x, a, b} ⊆ X, (�, ρ) is not a metric space, which may lead to a negative
distance in Eq. 1. This is the case if ρ(a, b) > ρ(x, a)+ρ(x, b). Then a triangle with vertices
h(a), h(b), and h(x) cannot be constructed on the plane, as illustrated in Fig. 3b. Since a
single point h(x) on the plane does not exist, we map h(x) to two different points denoted
xa and xb such that ρ(x, a) = ||h(a) − xa || and ρ(x, b) = ||h(b) − xb||. Without loss of
generality we assume that ρ(x, a) > ρ(x, b). Then it is possible to position points xa and xb

on the plane such that (see Fig. 3c): ρ(x, a) = ||h(a) − xa ||, ρ(x, b) = ||h(b) − xb||, and
||h(μ(a, b)) − xa || = ||h(μ(a, b)) − xb||.
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Thus, both points xa and xb are the same distance away from h(μ(a, b)), and this distance
is equal to 1

2 ||h(a) − h(b)|| − ||xb − b||. Therefore, we define h(x) = {xa, xb} and

ρ(x, μ(a, b)) = 1

2
ρ(a, b) − ρ(x, b) (2)

Formally, h maps x to a single point in a quotient space R
2/{xa, xb}, and h remains an

isometric embedding but to the quotient space.

Case 2.3 Type 3: � = {x, a, b} ⊆ X is not a metric subspace and either ρ(x, a) > ρ(x, b)+
ρ(a, b) or ρ(x, b) > ρ(x, a) + ρ(a, b)

In this case, as in Case 2.2, (�, ρ) is not a metric space and again may lead to a neg-
ative distance in Eq. 1. This occurs if either ρ(x, a) > ρ(x, b) + ρ(a, b) or ρ(x, b) >

ρ(x, a) + ρ(a, b). Then a triangle with vertices h(a), h(b), h(x) cannot be constructed on
the plane, as illustrated in Fig. 3d. Since a single point h(x) on the plane does not exist, we
again map h(x) to two different points denoted xa and xb such that ρ(x, a) = ||h(a) − xa ||
and ρ(x, b) = ||h(b) − xb||.

Without loss of generality we assume that ρ(x, a) > ρ(x, b) + ρ(a, b). In this case, we
first position point xb on the plane so that the angle h(a)h(b)xb is straight without changing
the distance from h(b) to xb (see Fig. 3e). Then, we use the triangle h(a)h(b)xb to define
the ghost point. When doing so we ignore the distance ρ(x, a) in this construction or equiv-
alently, only consider the assignment h(x) = xb. Unlike Case 2.2, it is impossible to make
the assignments h(x) = xa and h(x) = xb consistent, hence we need to ignore one of them.
Since ρ(x, b) is significantly smaller than ρ(x, a), and small distances are less likely to be
the result of noise, we rely only on h(x) = xb. We can then use the right triangle h(a)h(b)xb

to define

ρ(x, μ(a, b))2 = ρ(x, b)2 + 1

4
ρ(a, b)2. (3)

Similarly, if ρ(x, b) > ρ(x, a) + ρ(a, b), we define

ρ(x, μ(a, b))2 = ρ(x, a)2 + 1

4
ρ(a, b)2. (4)

The so-defined distances to ghost points are guaranteed to be non-negative and symmetric
by their construction. Hence the space augmented by ghost points remains a distance space.
However, it may happen that two different points have distance zero, and this is possible even
if X is a metric space. For example, assume that X is a sphere of radius 1 and that points a
and b are on the north and south poles (see Fig. 4). For any point x ∈ X on the equatorial line
the distance between μ(a, b) and x becomes ρ(x, μ(a, b))2 = 0.5(π/2)2 + 0.5(π/2)2 −
0.25π2 = 0. Therefore, every point on the equatorial line has a distance of 0 to the ghost
point μ(a, b). This example also shows that adding ghost points to a metric space may lead to
a non-metric space. We stress however that the intended application of the proposed method
is to densify distance spaces that are non-metric, since such spaces are common in many
cognitively motivated tasks such as distances between images, shapes, text documents, and
so on. We also stress that though global metricity is not necessary, local metricity is preferred.
If the triple of points a, b, and x is close to a metric, then the embedding of the three points
is uniquely defined and Eq. 1 can be used to calculate the distance between x and the ghost
point.

If the space X is finite, i.e., X = {x1, . . . , xn}, then the distance function ρ : X×X → R≥0

is represented by a square matrix Mρ(X). Each row of the square distance matrix Mρ(X)

is the distance of one data point x to all data points in the data set, i.e., for all y ∈ X ,
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Fig. 4 Example of a unit sphere
where ρ(h(e), h(x)) = 0

Mρ(x, y) = ρ(x, y). The matrix for X ∪ {μ(a, b)} is obtained by simply adding one row
and one column to Mρ(X), with each entry computed using Eqs. 1, 2, 3, or 4.

Thus, the proposed approach can be applied to metric and non-metric distance spaces,
and our construction guarantees that the distances to all ghost points are non-negative and
symmetric. In Sect. 4.3, we show the results of experiments that count the number of Type 1,
Type 2, and Type3 computations performed on eighteen data sets using distance spaces
induced by two different distance functions, OSB and DTW.

3 Visualizing data

High-dimensional data, such as time series, are often hard to visualize, though visualization
can help in the analysis of trends, periodicity, motifs, and the like. When the actual time series
sequences are available, line graphs can be a very effective tool to visualize and analyze time
series. One of the earliest known time series plot is of planetary orbits from a tenth century
monastery [25]. There have been some advances in the visualization of time series (for exam-
ple, [29]), but the line graph is still the most prevalent. But if instead of sequences, the data
is represented as a distance space (pair-wise distances between each time series), then the
visualization becomes much more difficult as line graphs are not sufficient. In addition, even
when plotted in a graph, if the data set is imbalanced, the minority class is often undiscernible
among all the points of the majority class.

Adding ghost points to the minority class before plotting can change the structure of the
underlying points so that minority class clusters become visible. For example, Fig. 5 shows
the Wafer training set before and after adding ghost points to the distance matrix induced
by Optimal Subsequence Bijection (OSB). The training set has 903 samples of the majority
class and 97 samples of the minority class for a total of 1000 samples. To create Fig. 5a,
we first take the original 1000 × 1000 distance matrix and use principal component analysis
(PCA) to reduce the dimensionality to two dimensions. For Fig. 5b we add 9 ghost points per
minority sample to the distance matrix (to create a 1873 × 1873 matrix) and again run PCA.
The majority class is plotted as light blue circles, the minority class as black squares, and the
ghost points as green squares. In Fig. 5a, without ghost points, it is impossible to distinguish
the minority class from the majority class since the minority class forms no cluster and many
of the minority class points overlap the majority class clusters. In Fig. 5b, after ghost points
are added to the training set, the underlying shape of the data changes to form five discernable
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Fig. 5 After using PCA on the distance matrix to reduce the dimensionality from 1000 to 2, (a) the 1000
examples are plotted (the majority class as light blue circles and the minority class as black squares). b is
the same data set with 9 ghost points (green squares) added per minority example. In (a), it is impossible to
distinguish the minority class from the majority class as the minority class has no structure. However, in (b)
there are 5 distinct clusters, 2 of which belong to the minority class (Best viewed in color)

clusters. It is clear that two of the clusters belong to the minority class (the upper-left cluster
and the lower-right cluster).

The next four examples are from the MPEG-7 image data set (see Sect. 4 for a description
of the data set). In Fig. 6, the first two rows show the MPEG-7 data set before and after adding
ghost points to the distance matrix induced by OSB for two different minority classes, rat and
teddy; the second two rows show the MPEG-7 data set before and after adding ghost points
to the distance matrix induced by DTW for the same two minority classes, rat and teddy.
We divide the data set into 1380 samples of a majority class (69 classes of 20 images each,
collapsed into a single class) and 20 samples of a minority class for a total of 1400 samples.
As before, for Fig. 6a, c, e, and g, we take the original 1400 × 1400 distance matrix and use
PCA to reduce the dimensionality to two and then plot the 1400 points. For Fig. 6b, d, f and
h we add 10 ghost points for each of the 20 minority class samples to the distance matrix
(creating a 1600 × 1600 matrix) and again run PCA. Again, a majority class is plotted as
light blue circles, a minority class as black squares, and the ghost points as green squares. In
Fig. 6a, c, e and g without ghost points, the minority class points overlap the majority class
points and cannot be differentiated from the majority class points. In Fig. 6b, d, f and h, after
ghost points are added to the data set, the underlying shape of the minority class changes to
form distinct and visible clusters, with very few points, if any, overlapping the majority class
points.

4 Experimental evaluation

In many real-world situations, the minority class, the class with the fewest examples, is by far
the most important class. Take for example the Mammography data set [33], which consists
of non-calcification (non-cancerous) and calcification (cancerous) examples. The data set
has 11183 examples of which only 260 (2.32%) are examples of cancer. A trivial classifier
that classifies all examples as non-cancerous will achieve an accuracy of 97.68%, though
its error rate for the minority class is 100%. For this data set, there are also uneven costs
associated with misclassifying a normal example and misclassifying a cancerous example. If
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�Fig. 6 The MPEG-7 data set. The first two rows use the distance matrix induced by OSB, the second two rows
by DTW; rows 1 and 3 show the minority class rat and rows 2 and 4 show the minority class teddy. Column 1
shows the data sets without ghost points; column 2 after adding ghost points. After using PCA on the distance
matrix to reduce the dimensionality from 1400 to 2, the 1400 examples are plotted ((a), (c), (e), and (g)); the
majority class is plotted as light blue circles and the minority class as black squares. (b), (d), (f), and (h)
are the same corresponding data sets with 10 ghost points (green squares) added per minority example. In
(a), (c), (e), and (g), it is impossible to distinguish the minority class from the majority class as the minority
class completely overlaps the majority class. However, in (b), (d), (f), and (h) the minority class now forms a
distinct cluster (Best viewed in color)

a healthy patient is incorrectly diagnosed with having breast cancer, there is a cost associated
with this error (fear, unnecessary tests) but eventually the misdiagnosis will be found. On
the other hand, if a patient who does have breast cancer is incorrectly diagnosed as being
healthy, then the cost could be her life since she will not get appropriate treatment. When the
performance on the minority class is as important or more important than overall accuracy,
other performance measures must be used. A common measure is Fβ -measure [26] which is
defined below in Sect. 4.1.

Unlike other techniques that add synthetic points, ghost points have the advantage that
they can be added in distance space. To show that they will work with different distance
measures, we use both DTW and OSB as distance measures on the UCR Time Series data
sets [15] and on the MPEG-7 Core Experiment CE-Shape-1 data set [18] for our experiments.

The UCR Time Series data repository has available 20 data sets from various domains. The
time series lengths range from 60 (Synthetic Control) to 637 (Lightning-2) and the number
of classes in a data set ranges from 2 to 50. Each data set is divided into a fixed training set
and testing set. The number of examples in a training set ranges from 24 (FaceFour) to 1000
(Wafer), and the number of testing examples ranges from 28 (Coffee) to 6174 (Wafer). In
our experiments, we use seventeen of the data sets and their characteristics are described in
Table 1.

MPEG-7 is a standard data set and is widely used to test shape classification and retrieval
methods. It contains 1400 binary images consisting of 70 object classes (e.g. “Rats”) and
within each class there are 20 shapes, for a total of 1400 shapes. For our experiments, each
shape is represented with 100 equidistant sample points on the contour, and these points are
converted into sequences by calculating the curvature of each point with respect to its five
neighbors on each side. This yields 1400 sequences of real numbers, each of length 100. This
particular transformation makes the sequence representation invariant to rotation and scale
changes. In other words, the shape of a cell phone with its antenna pointing up can still match
with the same cell phone shape scaled and rotated so that the phone is now smaller and its
antenna is pointing down.

4.1 Evaluating performance

Most studies on the class imbalance problem concentrate on two-class problems since multi-
class data sets can easily be reduced to two classes (see Sect. 4.2). In an imbalanced data set,
one class, the majority class or the negative class, has many examples, while the other class,
the minority class or positive class, has few examples. These imbalances in real-world data
sets can be 2:1, 1000:1, or even 10000:1. When a data set is imbalanced, the usual forms of
evaluating performance do not work. For classification, generally the overall accuracy (the
fraction of examples that are correctly classified) or the error rate (1−accuracy) is reported,
but this does not have much value if the interest lies in the minority class. It has been empiri-
cally shown that accuracy can lead to poor performance for the minority class [32]. Another
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Improving SVM classification on imbalanced time series data sets with ghost points

Table 2 Confusion matrix Predicted positive Predicted negative

Actual positive TP FN
Actual negative FP TN

problem with using accuracy as the performance metric is that different classification errors
are given the same importance, whereas in actuality their costs might differ significantly.
One solution commonly used is to have a weighted loss function with higher loss for the
minority class [6], but it requires knowing the loss weights, which is often impossible in real
applications.

For imbalanced data sets when the minority class is the important class, performance
metrics borrowed from the information retrieval community [26] are often used. They are
based on a confusion matrix (see Table 2) that reports the number of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN). These are then used to
define metrics that evaluate the performance of a learner on the minority class, such as recall,
precision, and Fβ -measure. The formulas for these metrics are given below. The precision
of a class (Eq. 6) is the number of TPs divided by the total number of examples predicted as
positive. A precision score of 1.0 means that every example predicted as a positive example
is a positive example, though there may be some positive examples that were labeled as neg-
ative. The recall of a class (Eq. 5) is the number of TPs divided by the number of examples
that are actually positive. A recall score of 1.0 means that every positive example is labeled
correctly, though some negative examples may have also been labeled as positive. There is
always a trade-off between precision and recall, but for data sets where the cost of false neg-
atives is high, a high recall value is preferable. The Fβ -measure [26] (Eq. 8) is the weighted
harmonic mean of precision and recall and merges recall and precision into a single value.
The best Fβ score is 1 and the worst is 0. The β parameter controls the relative weight given
to recall and precision. Fβ “measures the effectiveness of retrieval with respect to a user who
attaches β times as much importance to recall as precision” [26]. If correct classification of
the minority class is important, when false negatives have similar costs to false positives, then
the F1-measure (β = 1) is used because precision and recall are weighted equally. When the
cost of false negatives is more than that of false positives, then the F2-measure (β = 2) is
better because it weights recall twice as heavily as precision.

Recall = T P

T P + F N
(5)

Precision = T P

T P + F P
(6)

Accuracy = T P + T N

T P + F P + T N + F N
(7)

Fβ = (1 + β2)
Recall × Precision

β2 × Precision + Recall
(8)

4.2 Methodology

Of the twenty-one data sets we have available (twenty UCR data sets and the MPEG-7 data
set), only three have training sets that contain a true minority class (a two-class data set
with one class comprising less than 35% of the total number of examples). These data sets
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Table 3 The results of adding ghost points to the OSB distance scores on the imbalanced UCR time series
data sets

Data set #GP added Overall accuracy F1-measure: F2-measure:
per minority Minority class Minority class

Example SVM (%) SVM-GP (%) SVM SVM-GP SVM SVM-GP

SyntheticControl 2 98.83 99.78 0.967 0.993 0.984 0.991

CBF 1 96.89 98.56 0.950 0.978 0.928 0.966

FaceAll 1 98.83 99.26 0.906 0.940 0.931 0.939

OSULeaf 2 86.16 87.05 0.369 0.532 0.329 0.492

SwedishLeaf 8 98.27 99.11 0.855 0.938 0.814 0.940

50Words 1 98.78 98.95 0.324 0.466 0.278 0.416

Trace 2 91.50 96.75 0.792 0.934 0.748 0.930

TwoPatterns 2 99.78 99.96 0.995 0.999 0.993 0.999

Wafer 5 96.25 99.81 0.791 0.991 0.706 0.994

FaceFour 1 91.19 96.88 0.790 0.939 0.736 0.923

Lightning2 1 73.77 83.61 0.619 0.800 0.516 0.746

Lightning7 1 89.63 93.54 0.452 0.723 0.397 0.692

ECG 1 87.00 93.00 0.787 0.896 0.710 0.857

Adiac 3 98.07 98.29 0.442 0.625 0.377 0.576

Fish 3 94.86 97.39 0.755 0.907 0.686 0.889

Beef 1 82.67 81.33 0.167 0.342 0.167 0.310

OliveOil 1 91.11 94.44 0.571 0.745 0.543 0.702

are Wafer, Lightning-2, and ECG. In order to evaluate ghost points further, we also create
artificially imbalanced data sets. To create artificial minority classes for the fourteen data sets
from the UCR repository that have more than two classes, we take each class that comprises
less than 35% of the total number of examples as a minority class, and then collapse the
remaining classes into one. If in a data set there is more than one class that meets our criteria
as a minority class, we treat each class as minority class in turn and average the results. For
the MPEG-7 data set, to create a training and testing set, we randomly choose ten shapes
from each class (for a total of 700 shapes) for the training set, and the remaining ten shapes
from each class (again 700 shapes total) become the testing set. Then we take each class as
a minority class in turn, collapse the remaining 69 classes into one class, and average the
results over the 70 minority classes. See Tables 3, 4, and 5 for a summary of the results.

Once we create a minority class in the training set, we add ghost points to the minority
class of the training set and perform classification in the following manner:

1. The training set

(a) Given a training set consisting of m time series examples with sequence length s,
create the m × m distance matrix by calculating the OSB or DTW distance between
each pair of examples.

(b) For each minority class example x , add k-many ghost points by inserting one ghost
point between x and each of its knn. This gives us a total of p new points.

(c) Calculate the distance from the p ghost points to every other point in the training set
using Eqs. 1, 2, 3, or 4; we now have an (m + p) × (m + p) matrix.
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Table 4 The results of adding ghost points to the DTW distance scores on the imbalanced UCR time series
data sets

Data set #GP added Overall accuracy F1-measure: F2-measure:
per minority Minority class Minority class

Example SVM (%) SVM-GP (%) SVM SVM-GP SVM SVM-GP

SynthericControl 1 97.44 99.28 0.929 0.979 0.968 0.981

CBF 1 95.83 97.72 0.934 0.964 0.917 0.945

FaceAll 8 96.08 97.56 0.731 0.844 0.792 0.837

OSULeaf 2 85.12 86.98 0.345 0.478 0.309 0.432

SwedishLeaf 9 97.94 98.71 0.829 0.907 0.791 0.911

50Words 1 98.76 98.97 0.311 0.472 0.272 0.417

Trace 2 90.25 95.50 0.769 0.909 0.717 0.899

TwoPatterns 2 98.45 99.08 0.968 0.981 0.953 0.970

Wafer 5 96.82 99.69 0.830 0.986 0.759 0.988

FaceFour 1 83.52 92.33 0.515 0.835 0.464 0.790

Lightning2 1 77.05 83.61 0.682 0.792 0.586 0.720

Lightning7 2 90.02 90.80 0.441 0.588 0.421 0.581

ECG 2 82.00 84.00 0.710 0.742 0.647 0.676

Adiac 3 97.74 98.05 0.419 0.626 0.389 0.622

Fish 5 93.55 95.76 0.708 0.845 0.650 0.824

Beef 1 82.00 81.33 0.167 0.308 0.167 0.300

OliveOil 1 85.56 91.11 0.400 0.726 0.371 0.725

(d) Convert both the original and augmented OSB or DTW score matrix to affinity matri-
ces using the approach in [35] and Eq. 9.

(e) Use these affinity matrices as the user-defined or precomputed kernels for the SVM
to get two models: one that includes ghost points and one that does not.

(f) Run SVM to train.

2. The testing set

(a) Given a testing set consisting of n time series examples with sequence length s, and
a training set consisting of m time series of length s, create the n × m OSB or DTW
distance score matrix.

(b) Calculate the distance from each test data point to each of the p ghost points using
Eqs. 1, 2, 3, or 4; we now have an n × (m + p) distance matrix.

(c) Convert both the original and augmented OSB or DTW score matrix to an affinity
matrix as in step 1d above.

(d) Use these affinity matrices as the user-defined or precomputed kernels for the SVM
as in step 1e above.

(e) Run SVM to test.

There are two critical parameters to set when we convert the distance matrices to kernels
that modify the σ for the Gaussian Kernel function, A and K . As stated in [37], the scaling
parameter σ is some measure of when two points are considered similar. We use the method
in [35] to calculate the local scaling parameter σi j for each pair of data points xi and x j . The
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affinity between a pair of points can be written as:

k(xi , x j ) = exp

(−d(xi , x j )
2

σi j

)
(9)

where σi j = A · mean{knn d(xi ), knn d(x j )}, mean{knn d(xi ), knn d(x j )} is the mean dis-
tance of the K -nearest neighbors of points xi , x j , and A is an extra scaling parameter. For
the SVM, there is a third parameter to set, which is the cost parameter C . For all UCR exper-
iments we used A = 0.5, K = 5, and C = 0.5 and for all MPEG-7 experiments we used
A = 0.36, K = 25, and C = 0.5. For each of the eighteen data sets, we run SVM on the four
matrices (after converting them to kernels): OSB score matrix without ghost points; OSB
score matrix with ghost points; DTW score matrix without ghost points; and DTW score
matrix with ghost points.

The final parameter to set is the number of ghost points to add per minority example, as
the final results can be sensitive to the number of ghost points added. Two good heuristics
are 1. to balance the classes and 2. add one ghost point per minority example, but neither
of these always give the best results. The strategy we use in our experiments is a modified
version of balancing the classes. Let m be the number of minority examples in the training
set, n be the number of majority examples, and k be the maximum number of ghost points to
add per minority example such that k · m = n. We then choose the number of ghost points
per example g ∈ {1, . . . , k} that gives the best results. Though the strategy for finding g is
very simple and the results are very good, g is found empirically. How to choose the optimal
number of ghost points is an open question that we will be addressing in the future.

4.3 Results

Of the eighteen data sets we test, only three of the training sets had natural minority classes.
For the other fifteen, we created artificial minority classes, and if necessary, averaged the
results. See Sect. 4.2 for the methodology we used to create the imbalanced data sets. We
compare the results of SVM on OSB with and without ghost points on the UCR data sets in
Table 3, the results of SVM on DTW with and without ghost points on the UCR data sets in
Table 4, and finally, the results of SVM on OSB and DTW on the MPEG-7 data set in Table 5.
Because we are interested in the performance on minority classes, specifically minimizing
the number of false negatives, we measure the overall accuracy (Eq. 7), the F1-measure
(Eq. 8 with β = 1) which weights precision and recall equally, and the F2-measure (Eq. 8
with β = 2) which weights recall twice as heavily as precision.

As the results show in Table 3, for the OSB score matrix on the UCR data sets, adding ghost
points improve SVM’s overall accuracy rate on sixteen of the seventeen data sets. In fact, four
of the data sets, Trace, FaceFour, Lightning-2, and ECG, have increases in overall accuracy
of over 5 percentage points. On all seventeen of the data sets data sets, the F1-measure and
the F2-measure improve with ghost points by as much as 29.5 percentage points; twelve data
sets see an increase of at least 10 percentage points in the F1-measure and thirteen data sets in
the F2-measure. For the Lightning-7 data set, adding ghost points increases the accuracy by
3.9 percentage points, the F1-measure by 27.1 percentage points, and the F2-measure by 29.5
percentage points. The overall accuracy of Lightning-2 has the largest increase when ghost
points are added, an increase of 9.8 percentage points, while the F1-measure and F2-measure
increase by 18.1 and 23 percentage points, respectively. The Beef data set, which is the only
data set in Table 3 that decreases in overall accuracy when ghost points are added (by 1.3
percentage points), still gains in the F1-measure, which increases by 17.5 percentage points,
and the F2-measure, which increases by 14.4 percentage points.
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When using the DTW score matrix of the UCR data sets (Table 4), adding ghost points
increases the overall accuracy again on sixteen of the seventeen data sets; on the Beef data set,
the accuracy decreased by 0.7 percentage points. For four of the data sets (Trace, FaceFour,
Lightning-2, and OliveOil), ghost points increase the accuracy by over 5 percentage points.
The F1-measure and the F2-measure increase for all seventeen data sets when ghost points
are added. Twelve data sets see an increase of at least 10 percentage points in both the
F1-measure and the F2-measure. Two data sets (FaceFour and OliveOil) see an increase of
over 30 percentage points in both their F1-measure and the F2-measure. The data set with
the largest gain in its F1-measure F2-measure is OliveOil; it gains 32.6 and 35.4 percentage
points, respectively. The accuracy rate for OliveOil also increases by 5.6 percentage points
with ghost points. The data set FaceFour, which has the greatest accuracy gain (8.8 percentage
points) also has an increase in its F1-measure of 32 percentage points and in its F2-measure
of 32.6 percentage points. The only data set, Beef, where ghost points actually decrease the
overall accuracy (by 0.7 percentage points), still has an impressive gain in the F1-measure
and the F2-measure; 14.2 and 13.4, respectively.

For the MPEG-7 data set (Table 5), the results are similar to those discussed earlier. With
both OSB and DTW, all measures increase. With OSB on the MPEG-7 data set and ghost
points, the overall accuracy increases 0.3 percentage points, the F1-measure by 18.8 per-
centage points, and the F2-measure by 20.6 percentage points. The increases of the results
for DTW on the MPEG-7 data set are similar; overall accuracy increases by 0.1 percentage
points, the F1-measure by 16.5 percentage points, and the F2-measure by 21.3 percentage
points.

As discussed in Sect. 2, computing the distance of a ghost point to the other points in the
distance matrix can take one of three forms (see Cases 2.1, 2.2, and 2.3). Tables 6 and 7 show
the number of the different types of computations made for the eighteen data sets using OSB
and DTW, respectively. It is interesting to note that most of the distance spaces induced by
DTW contain very few Type 2 and Type 3 computations. Fifteen of the data sets had less than
8% of non-Type 1 computations, and one of these (OliveOil) had 0%. This indicates that the
distance space induced by DTW on these fifteen data sets is very close to a metric space. The
remaining three data sets (Trace, Fish, and Beef) had non-Type1 computations of 33, 18%,
and 44%, respectively, and thus have distance spaces relatively close to a metric space. On the
other hand, the distance spaces induced by OSB are much more variable, where the number
of non-Type 1 computations ranges from 6 to 85%. For example, under DTW, the OliveOil
data set has 100% Type 1 computations, while only 66% under OSB; the data set Wafer
has 99% Type 1 computations under DTW, but only 42% under OSB. Thus, OSB is more
likely to induce non-metric distance spaces. Though again we state, and our experimental
results show, that the application of the proposed method can densify distance spaces that
are non-metric, and such spaces are common in many cognitively motivated tasks.

It is clear to see that ghost points increase the overall accuracy for most data sets, and also
the F1-measure and F2-measure, at times very significantly. When a data set is imbalanced,
and the cost of false negatives is high (but can’t be easily quantified), then adding ghost points
may significantly reduce the number of false negatives while at the same time increase overall
accuracy.

5 Conclusions

We introduce an innovative method for over-sampling the minority class of imbalanced data
sets. Unlike other feature based methods, our synthetic points, which we call ghost points,
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are added in distance space. In addition, ghost points can be added to distance spaces that
are not metric, such as those induced by elastic sequence matching algorithms like DTW and
OSB. The experimental results on standard time series data sets from varied domains show
that adding ghost points to the minority class can significantly improve the overall accuracy,
and especially the F1-measure and F2-measure.

We also introduce a way to use ghost points to visualize distance data for imbalanced data
sets. When plotting the distance space, adding ghost points to the minority class may change
the underlying structure of the distance space such that the previously indistinct minority
class now becomes observable.

We are still exploring optimal strategies for inserting ghost points. In particular, to choose
the optimal number of ghost points is an open question that we will be addressing in the future.
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