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This paper describes a novel approach, called Force Field Simulation, to multi robot map-
ping that works under the constraints given in autonomous search and rescue robotics.
Extremely poor prealignment, lack of landmarks, and minimal overlap between scans are
the main challenges. The presented algorithm solves the alignment problem of such laser
scans utilizing a gradient descent approach motivated by physics, namely simulation of
movement of masses in gravitational fields, but exchanges laws of physics with con-
straints given by human perception. Experiments on different real world data sets show
the successful application of the algorithm. We also provide an experimental comparison
with classical ICP implementation and a Lu/Milios-type alignment algorithm. © 2007 Wiley
Periodicals, Inc.

1. INTRODUCTION

This paper focuses on multi robot mapping in the
field of urban search and rescue robotics �“rescue ro-
bots”�. The task of multi robot mapping in rescue en-
vironments imposes especially challenging con-
straints:

• no precise or reliable odometry can be as-
sumed, which means especially that the ro-
bots’ relative poses are unknown

• due to the nature of catastrophe scenarios no
distinct landmarks are given

• the overlap between pairs of the robots’ scans
is minimal

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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There are two reasons for our selection of rescue ro-
bots: �1� Rescue robots belong to the class of most ad-
vanced robotic systems. Their goal is to search a cata-
strophic site �like a collapsed building� for survivors.
This requires building a map and, once victims are
found, localizing them in the constructed map. First
responders can then use this map to identify the saf-
est way to rescue the victims. �2� The performance of
rescue robots is systematically evaluated in the Rob-
oCupRescue competition series with performance
metrics developed by NIST �Jacoff, Messina, & Weiss,
2003�. The challenges involved in search and rescue
applications provide objective evaluation of robotic
implementations in representative environments and
promote collaboration between researchers. The ro-
bots must demonstrate capabilities in mobility, sen-
sory perception, planning, mapping, and practical
operator interfaces, while searching for simulated
victims in a maze of increasingly difficult obstacles.
The competitions are hosted on Reference Test Arenas
for Urban Search and Rescue Robots, which were de-
veloped by NIST and were proliferated globally. The
arenas provide a continuum of increasingly difficult
representations of collapsed buildings that have
simulated victims scattered throughout.

This paper introduces a new process, called
“Force Field Simulation” �FFS�, which is tailored to
align maps under the aforementioned constraints. It
is motivated by simulation of dynamics of rigid bod-
ies in gravitational fields, but replaces laws of physics
with constraints derived from human perception. It is
an approach of the family of gradient descent algo-
rithms, applied to find an optimal transformation of
local maps �in particular, laser range scans� to build a
global map based on feature correspondences be-
tween the local maps. Figure 1 shows the basic prin-
ciple: forces �red arrows� are computed between four

single scans �the four corners�. The scans are itera-
tively transformed by translation and rotation until a
stable configuration is gained. The single scans are
not merged but kept separated. As they are moved
according to the laws of the motion of rigid bodies in
a force field, single scans are not deformed. FFS has
the following properties:

1. Low level correspondences �data point corre-
spondences� are not made by a hard decision
�an integral of forces between pairs of points
defines the force field in place of hard ‘near-
est neighbor’ correspondences�.

2. FFS is a gradient approach; it does not com-
mit to an optimal solution in each iteration
step.

3. The iteration step towards an optimal solu-
tion is steered by a “cooling process” that al-
lows it to jump the system out of local
minima.

4. FFS transforms all scans simultaneously.
5. FFS easily incorporates structural similarity

modeling human perception to emphasize/
strengthen the correspondences.

2. RELATED WORK

The problem of aligning n scans has been treated as
estimating sets of poses �Lu & Milios, 1997a�. Since
sets of poses and the associated structures �maps� are
conditionally independent, this estimation is simul-
taneous localization and mapping �SLAM�. The con-
ditional independence is, e.g., the key for Rao-
Blackwellization �factoring the posterior of maps� of
particle filters for SLAM �Montemerlo, Thrun, Koller
& Wegbreit, 2002�.

There have been several algorithms to estimate
the sets �Olson, Leonard & Teller, 2006; Frese, 2006;
Frese, Larsson & Duckett, 2005; Thrun, Koller,
Ghahramani, Durrant-Whyte & Ng, 2002; Minguez,
Montesano & Lamiruix, 2006; Konolige, 2003�. The
underlying framework for all such techniques is to
optimize a constraint graph, in which nodes are fea-
tures, and poses and edges are constraints built using
various observations and measurements like odom-
etry and scan-matching of range scans. These tech-
niques differ in

• how they represent graphs, e.g. �Frese, 2006�
uses a sophisticated data structure called

Figure 1. Basic principle of FFS. Forces are computed be-
tween four single scans. Red arrows illustrate the principle
of forces. The scans are iteratively �here: two iterations�
transformed by translation and rotation until a stable con-
figuration is achieved.
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Tree-map �Thrun et al., 2002� represents using
sparse extended information filters �SEIF�.

• how they build constraints, e.g. �Lu & Milios,
1997a� uses linearized constraints obtained
from scan-matching and odometry �Olson et
al., 2006� works with nonlinear constraints.

• how they optimize the graphs, e.g. �Olson et
al., 2006� uses stochastic gradient descent for
approximate optima, borrowing the ideas
from learning theory �Lu & Milios, 1997a�
solves for exact optima using brute-force, and
�Frese et al., 2005� use Gauss-Seidel relaxation
again for approximate optima.

All these approaches have performed well in many
practical cases, but they have one drawback: they are
sensitive to the behavior of error models of sensors
because of several assumptions and approximations
that might not hold with sparse sensing.

�Lu & Milios, 1997a� linearizes constraints by lin-
earizing pose-relations, solving a linear equation of
the form AX=B to estimate X, the set of poses. This
requires that A is invertible, so they conjecture that A
is invertible if the constraint graph is fully connected
and the errors of the observations behave in a
Gaussian/normal way.

�Olson et al., 2006� present an approximate opti-
mization of nonlinear constraints and demonstrate
that their approach of approximating the optimiza-
tion process in nonlinear state space yields superior
results compared to finding exact optima by approxi-
mating a nonlinear state space �SLAM� to a linear
state space.

Another strategy of attacking the problem is to
treat the problem of SLAM from a perspective of
aligning n scans simultaneously. The algorithms ex-
ploiting this perspective build from image registra-
tion techniques, the most famous being iterative clos-
est point �ICP� �Besl & McKay, 1992; Chen & Medioni,
1992� and its numerous variants to improve speed
and converge basins �Rusinkiewicz & Levoy, 2001; Lu
& Milios, 1997b; Birk & Carpin, 2006�. Basically all
these techniques do search in transformation space
trying to find the set of pair-wise transformations of
scans by optimizing some function defined on trans-
formation space. The techniques vary in defining the
optimization functions that range from being error
metrics like “sum of least square distances” to quality
metrics like “image distance” as in �Birk, 1996�. Their

optimization process itself can be gradient descent or
hill climbing or using genetic programming strategy
as in �Robertson & Fisher, 2002�. All of these tech-
niques have one major limitation, which is they
search in pair-wise transformation space. Though in
some variants of ICP the error from all pair-wise
transformations is spread across all transformations
to simultaneously align all scans, the procedure can
be highly sensitive to outliers �Rusinkiewicz, Brown
& Kazhdan, 2005�.

FFS also adapted the perspective of aligning n
scans; it treats the alignment problem as an optimi-
zation problem. Rather than using a least squares so-
lution to compute intermediate motions, FFS uses an
iterative gradient technique to solve for �local� op-
tima. Here FFS is similar to the approach proposed by
�Eggert, Fitzgibbon & Fisher, 1998�, which simulates
a dynamic spring system to register multiple range
scans simultaneously. They describe the advantages
of such a gradient descent system as follows: “The rea-
son �not to use a least square solution� is that the effects of
any significantly incorrect correspondences are com-
pounded when the best alignment is computed �…� With
a dynamic system it is possible to move in the direction of
an intermediate solution without being totally committed
to it.” �Eggert et al., 1998� differ in the choice of the
registration function, which in contrast to FFS is
based on one to one correspondences between points,
as well as in the optimization technique.

FFS uses a gradient method with decreasing step
width �t. The registration function �target function�
of FFS is based on Gaussian fields, similar to �Bough-
orbel, Koschan, Abidi & Abidi, 2004�. In contrast to
�Boughorbel et al., 2004�, FFS uses a variable, decreas-
ing � for each iteration step t. Additionally �Bough-
orbel et al., 2004� solve the optimum of the registra-
tion using a quasi-Newton method, hence they do not
steer the system with a step width parameter.

Since we keep the single scans separated, our
search space is high dimensional, in the 2D case it is
3n-dimensional �3D: 6n-dimensional�, with n being
the number of scans. For example, our experiment
described in Section 4.2 uses 60 scans: our search
space is therefore 180-dimensional. Birk and Carpin
use a random walk technique to reach the optimal so-
lution. Since random walk techniques tend to become
critical in high dimensions, we do not utilize this
technique in our approach but decide in favor of a
guided �gradient� walk.

This search in high dimensional space at first
sight seems very complicated, demanding computa-

Lakaemper et al.: Multi Robot Mapping Using Force Field Simulation • 749

Journal of Field Robotics DOI 10.1002/rob



tion of a high dimensional gradient, but, fortunately,
using potential field simulation for various computer
vision tasks like contour detection, and segmentation,
and registration has been empirically successful
�Yang, Mermehdi & Xie, 2006; Jalba, Wilkinson &
Roerdink, 2004; Xu & Prince, 1998; Ayyagari, Bough-
orbel, Koschan & Abidi, 2005; Paragios, Rousson &
Ramesh, 2003; Veltkamp & Hagedoorn, 1999�. Since
mapping is closely related to registration, the ap-
proaches whose motivations are closely related to our
approach are �Biber & Strasser, 2006; Ayyagari et al.,
2005; Eggert et al., 1998�. In �Eggert et al., 1998� they
align range scans by moving them simultaneously.
The movements are not just based on the minimizing
error of transformation computed using correspon-
dences but on the simulated fields generated by
imaginary springs attached to the corresponding
points. Our technique differs from �Eggert et al., 1998�
in that the force field is generated not just by closest
point correspondences but using perceptual prin-
ciples and Gaussian fields similar to �Boughorbel et
al., 2004�. �Biber & Strasser, 2006� also performs a
search in 3n-dimensional space. For each configura-
tion they compute energy as the sum of the normal
distribution transforms �NDTs� �Biber & Strasser,
2003� of all the scans in the configuration and update
the configuration using Newton’s optimization algo-
rithm that involves the first and second derivatives of
the energy. Their approach is very closely related to
ours but does not use perceptual features and rigid
body dynamics and hence, in principle, can be more
sensitive to outliers.

3. FORCE FIELD BASED MAPPING

The following motivates and describes the FFS algo-
rithm. A pseudo code representation can be found at
the end of this section.

3.1. Basic Principle

To draw the analogy to Newtonian physics, each
scan si can be seen as a rigid body of masses: the
scan points represent the masses, rigidly connected
by massless rods. A global map g defines the trans-
formation of all scans; it therewith defines the distri-
bution of all masses �the union of all scan points�. In
the framework of Newtonian physics the gravita-
tional forces between these masses forms a gradient
field. The FFS algorithm is motivated by simulation

of the movement of bodies in a gradient field. In
contrast to pure physics it replaces physical prin-
ciples of masses and forces by principles that corre-
spond to human visual perception, i.e., gravitation is
replaced by “strength of correspondence.” Also, to
achieve convergence to a stable state of minimal to-
tal energy, the kinetic energy is not taken into ac-
count, i.e., the velocity of each rigid body after each
iteration step is set to 0. Also FFS uses a “cooling”
strategy in its step width parameter that initially
adds energy to the system to allow for escape from
local minima �see Section 3.2�.

Let S=s1 , . . . ,sn be a set of n scans gained from
laser range scan devices. A scan si= �p1

i , . . . ,pj
i� con-

sists of j data points. Data points are the coordinates
of reflection points of the laser range scanner in a
local coordinate frame defined by a single robot
pose. We also assign a scalar value, a mass mj

i, to each
data point, which can be interpreted as the percep-
tual importance. For the purpose of multi robot
mapping we assume that each scan is possibly
gained from a different robot, while the robots’ rela-
tive poses are unknown or poorly estimated. The
task of the algorithm is an optimization over the set
of the robots’ poses; hence the goal is to find trans-
formations for all n scans si=1,. . .,n to register the
scans, such that similar features in different scans
match “perceptually consistently” when they are su-
perimposed on top of each other.

Observe that the order of local maps is irrelevant
in our framework since we transform the scans si-
multaneously, which is an important property of the
algorithm to be applicable for multi robot mapping.
For single robot mapping, FFS is canonically extend-
able to online FFS �see Section 3.6�.

The transformations performed are rotation �i
and translation xi, yi of each scan si. Superimposing
the transformed maps builds a global map g as shown
in Figure 2. During the global map building process
single maps are not merged but kept separated.
Therefore a global map is defined by the vector of
the transformation parameters of all scans: a global
map g= �t1 , . . . , tn� is a 3n-dimensional vector of trans-
formation parameters ti= �xi ,yi ,�i� of all n scans
s1,. . .,n. The space of all global maps is denoted by G.
To register the scans, we define a fitness measure Pg to
evaluate the “perceptual consistency” of a global
map g. Finding the global map gk that minimizes Pg
is clearly an optimization problem. FFS solves this
optimization problem with a gradient technique that
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iteratively transforms all scans simultaneously until
a stable configuration �local minimum� is reached.
The following section will motivate and define the
fitness measure Pg as well as the implementation of
the gradient approach.

3.1.1. Correspondence Function

As in �Boughorbel et al., 2004�, the basic idea of our
registration method is to use a Gaussian field to de-
fine a strength of correspondence between data
points, i.e., a measure for both spatial proximity and
visual similarity of two points belonging to different
scans.

A correspondence between data point p1 and a
data point p2 is defined as a vector

V�p1,p2� = C�p1,p2�
p2 − p1

�p2 − p1�
. �1�

Its magnitude �V�p1 ,p2� � =C�p1 ,p2� describes the
strength of correspondence, defined as

C�p1,p2� =
1

�t�2�
e−�p2 − p1�2/2�t

2
m1m2 cos ���p1,p2��

�2�

with mi being the mass assigned to pi �see Section
3.4�, and the angle ��p1 ,p2� being the angle between
the directions of points p1, p2, which will be defined in
Section 3.3. Intuitively, the direction of a point is the
direction of an underlying model of a linear struc-
ture �a line segment�. Expression �2� can be inter-
preted as a force field whose sources are located in
the data points. It has the following properties:

1. The strength of correspondence decays with
Euclidean distance; the influence of distance
is controlled by the parameter �t.

2. The strength of correspondence is weighted
by the mass of each data point and depends
on the angle between point directions, i.e., it
is 0 for orthogonal directions, 1 for parallel
directions.

We propose this model for the following reasons:

1. Distance likelihood and parallelism follow
the basic principles of Gestalt psychology
�Wertheimer, 1958�, modeling low level cog-
nition.

2. The scale parameter �t gives additional free-
dom to adjust the process �see Section 3.2�; it
enables the correspondence process to work
on different visual scales.

3. Assigning a mass to a data point can be seen
as assigning a visual importance to it. Data
points in regions of interest, computed by
mid level cognitive modules, will be assigned
higher masses. See Section 3.4 for further
details.

In terms of the physical framework, the corre-
spondence V�p1 ,p2� �Eq. �1�� describes a force on
p1 towards p2 with strength C�p1 ,p2�. Embedding
the scans si into R2 using the transformations de-
fined by a global map g, we can define a vector
field F :R2�P→R2, the force field on the set of all
points P= �p �p��i=1..nsi	 by summing the corre-
spondences.

Figure 2. Single scans are transformed to build a global
map.
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F�pi� = 

pj�P\pi

V�pi,pj� . �3�

By definition of the strength of correspondence F
is radial and hence a gradient field. With

A = m1m2 cos ���p1,p2��

the overlying potential is defined by

P�pi� =
1
2 


pj�P\pi

�
�

r A

�t�2�
e−z2/2�t

2
dz �4�

with r=��X−x�2+ �Y−y�2, pi= �X ,Y�, pj= �x ,y�
�P.
Note: P�pi� is the potential over F since

F�pi� = − � P = �−
�P
�x

−
�P
�y


= � 

pj�P\pi

A

�t�2�
e−r2/2�t

2
.

X − x
r



pj�P\pi

A

�t�2�
e−r2/2�t

2
.

Y − y
r


= 


pj�P\pi

A

�t�2�
e−r2/2�t

2
· u = 


pj�P\pi

V�pi,pj� ,

where u=pi−pj/�pi−pj�.
Finally, we define the fitness measure or potential

of a global map g�G as the sum of potentials of all
data points p� �P�:

P�g� = 

pi�P

P�pi� . �5�

In this framework, the potential P�g� can be inter-
preted as the weighted average distance of all point
pairs of different scans, the weight being the
strength of correspondence. This potential can be
seen as the quality of registration achieved by the
transformations defined by g. To minimize the po-
tential we apply an iterative gradient descent ap-
proach, the gradients in each data point given by
F�pi� �Eq. �3��. Computing the correspondences ex-
plicitly gives us these gradients, hence in the imple-

mentation of the algorithm there’s no need to explic-
itly compute and derive the potential P�g� �Eq. �5��
for the actual gradient descent.

In FFS, the computation of the transformation of
each scan is determined assuming movement of
rigid bodies in the given gradient field, i.e., all data
points pi

j�P of a single scan sj share the same trans-
formation, consisting of rotation and translation.
However, Eq. �3� does assume a nonrigid, indepen-
dent movement of the data points; also the points’
potential P�pi� �Eq. �4�� is defined over the space of
all single �not rigidly connected� point configura-
tions, which is a 2m-dimensional space with m= �P�.
This means the gradient F�pi� is defined under the
assumption of unrestricted freedom of movement in
R2. To implement rigid body movement, we have to
impose a restriction on the movement. The restric-
tion is defined by the possible point configurations
that are allowed by the transformations g�G. The
laws of rigid body dynamics define these con-
straints: computing the gradient F�pi� in each data
point as in Eq. �3� results in a 2m-dimensional gra-
dient vector; the laws of rigid body dynamics map
this vector to a 3n-dimensional vector �g. �g de-
scribes the transformation of all n scans such that
each data point moves in the direction of maximum
descent of P�g� in Eq. �5�, i.e., under the rigid body
constraints. We therefore achieve a movement in the
direction of the gradient gained in the
2m-dimensional single point space projected onto
the restricted 3n-dimensional rigid movement sub-
space.

The basic laws of dynamics of rigid bodies in
force fields accumulate the translation of all masses
of a single scan into a single translation and a single
rotation around a defined center. For each scan si,
the translational and rotational acceleration has to be
determined. The translational acceleration aT�si� of a
scan si is defined by

aT�si� =

p�si

F�p�


p�si
mp

. �6�

The rotational acceleration aR is computed by torque
and moment of inertia. Torque and inertia play the
role of force and mass, respectively, but take into
account the distance to the rotational center cR:
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inertia = 

p�si

mi�pi − cR�2,

torque = 

p�si

�pi − cR� � F�p� .

aR is defined as

aR =
torque
inertia

. �7�

The rotational center cR is either defined as the ro-
bot’s position or by the center of mass. Experiments
show that in the first iteration steps it is useful to set
the rotational center to the center of mass, while in
later steps the robot’s position is preferable. The first
choice enables easier rotation, the second is model-
ing the actual scan setting more precisely. Hence, the
closer the global map is to the solution, the more
preferable is the robot’s position as rotational center.

With aT and aR the transformation tk= �xk ,yk ,�k�
for scan sk is defined by

�xk,yk� = 1
2aT�t

2, �8�

�k = 1
2aR�t

2, �9�

�t being the step width of the gradient descent, as
described in Section 3.2.

With these constraints, the gradient in each itera-
tion is computed by the following steps:

1. For each pair of points pi ,pj�P, compute
V�pi ,pj�.

2. For each point pi�P, compute F�pi�.
3. For each scan sk�S, compute the transforma-

tion tk= �xk ,yk ,�k� using the points pi
k�sk.

This step results in a 3n-dimensional gradient
vector �g.

Computing all correspondences V in step one is
an O�n2� process; Section 3.5.1 will deal with the
necessary reduction of computational complexity.
Figure 3 shows two iteration steps of FFS using

two simple scans, consisting of three and five data
points. In the left figure, the forces F�pi� in each data
point pi are plotted as green dotted lines. The two
scans are transformed until they are superimposed,
i.e., a stable configuration �local minimum of P�g�� is
reached. As in all gradient descent methods, the de-
termination of the step width �t is crucial. Also, gra-
dient methods imply the danger of being trapped in
local minima. We tackle both problems with the de-
termination of step with �t and �t as described in
the following section.

3.2. Cooling Down the Motion: Time Stepping �t
and Parameter �t

The determination of step width parameter �t in any
gradient descent approach is a well known problem.
�t chosen too small results in inapplicably slow con-
vergence behavior and is not robust to noise; �t cho-

Figure 3. Left: two scans �black/brown� superimposed. Dotted lines: scans at time t, green lines: forces on the data points
at time t. Solid lines: scans after one iteration, time t+�t. Both scans are translated/rotated according to the forces. Center:
after iteration 5. Right: iteration 10.

Lakaemper et al.: Multi Robot Mapping Using Force Field Simulation • 753

Journal of Field Robotics DOI 10.1002/rob



sen too big might miss the optimum. In FFS, the step
width �t is used as a steering parameter of the algo-
rithm in connection with the parameter �t, which
determines the influence of distance in the corre-
spondence function. We designed �t as exponen-
tially decreasing, �t linearly decreasing.

A large �t allows the scans to be massively relo-
cated �shuffled�; they overshoot their correct posi-
tion in the direction of the correspondence gradient.
Naturally, a small �t moves the scans less �the
amount of replacement is directly proportional to �t

2,
as defined by the laws of movement�. We chose the
strategy of decreasing �t and �t experimentally, hav-
ing analogies of the cooling behavior of algorithms
like simulated annealing in mind. The imprecise,
nonoptimal large �t at the beginning allows the sys-
tem to possibly escape from local minima. Observe
that in contrast to a technique like simulated anneal-
ing we cool down a gradient guided process, not a
random state change or a random walk technique
that would not be applicable in our high dimen-
sional search space. We therefore avoid the problems
with a high computational load �high number of it-

eration steps� that tend to appear in simulated an-
nealing due to unguided selection of the next state.

The parameter �t in Eq. �2� steers the influence
of distance in the computation of point correspon-
dences. A large �t enhances the relative influence of
data correspondences with greater distances and,
since it equalizes this spatial proximity property, fa-
vors the influence of visual similarity. A small �t em-
phasizes local proximity, which is useful if the global
map is already close to an optimum.

The effect of cooling is shown in Figure 4 show-
ing our experimental results on the “apartment data
set.” Observe that the potential function �the fitness
measure� as shown in Figure 5 is not monotonically
decreasing in the first iteration steps. This shows an
“overshooting” of the system due to a large �t; in the
data registration this can indicate an escape from a
local minimum.

It is important to mention that after each itera-
tion the system resets the velocity of each scan to
zero. This guarantees that the system converges to a
stable state �assuming �t→0�.

3.3. Point Direction and Optional Resampling

The “point direction” is used in the correspondence
Eq. �2� to assign to points the direction of an under-
lying linear structure. It is derived by modeling the
point set with line segments using the extended EM
algorithm described in �Latecki & Lakaemper, 2006�.
Utilizing a segment split and merge approach, the
extended EM algorithm automatically adjusts num-
ber and location of the line segments in a way such
that linear structures are represented �by a single,
possibly long line segment� as well as round struc-
tures �by multiple short segments�. Hence, even sce-
narios not being rich in linear structures are robustly
represented. The algorithm was already successfully
applied to model indoor and outdoor rescue sce-
narios. A 3D version of this algorithm for approxi-
mation of scan points with planar patches is de-
scribed in �Lakaemper & Latecki, 2006�.

The data of each scan si are approximated by a
set of line segments Li. The direction of a point p in si
is the angular direction �in the scan’s coordinate
frame� of the closest line segment in Li. The approxi-
mation of the data set with line segments results in a
very stable and intuitive estimation of point direc-
tions. Figure 6 shows the influence of point direc-
tions for the correspondences. The closest line seg-
ment lj to the point p is called the supporting line

Figure 4. Apartment data set. �a� Initial configuration.
The circled area shows an error due to incorrect loop clos-
ing. �b� A large step parameter dT blurs the map in the
first iteration step to escape from the local minimum. �c�
Iteration 50. �d� Iteration 150. FFS has not only contracted
the edges given in �a�, but also has realigned the entire
global map to fix the error �circled area�.
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segment if its distance to p is below a certain thresh-
old. Points without supporting line segments are re-
moved from the data set. Due to the nature of the
extended EM algorithm, these removed points are
points in areas with low point density. Low point
density results from objects that are hit less than oth-
ers. This is the result of either erroneous scanning,
nonstatic objects, or low scanning density, which by
itself results from either long distance to an object or
simply the fact that a certain location was only
scanned a few times. All of these topics include un-
certainty about the existence of the object, hence we

disregard such points. The behavior of the extended
EM segment fitting guarantees that safe, distinct ob-
jects are not removed. The removal of uncertain data
increases the stability of the FFS algorithm.

Having the segments, the data can optionally be
resampled along the supported line segments with
an equal sampling distance. Such a point set has a
more homogeneous distribution of points, which
tends to be advantageous: experiments showed that
homogeneous distributions are helpful to avoid local
minima if the configuration of scans is still far from
the optimal solution, since overrepresented areas
�e.g., features with unusually high scanning density
due to multiple scans in a single location� are equal-
ized. Additionally, the optional resampling can sig-
nificantly speed up the computation if the number of
data points reduces drastically due to the chosen
sampling resolution �see Section 3.5.1�. If the data is
resampled, only the line segments �two endpoints�
are stored, also resulting in a significant data com-
pression �typically about 1:100�.

3.4. Regions of Interest

A major difference from the pure physics simulation
is that the mass values assigned to the data points
are not assumed to be constant. The mass mi for a
point pi is used to compute the force as in Eq. �3�, yet
it can be reassigned a different value for the compu-

Figure 5. Left: potential vs. iterations of FFS for disaster data. Right: potential for apartment data set. The potential
�encircled� of the apartment data is not monotonically decreasing, indicating a possible escape from a local minimum.

Figure 6. Left: forces between two scans �red lines belong
to first scan, black lines to second scan� computed without
direction information. Right: forces computed using L and
K as described in example 2 �using equal masses�. Corre-
spondences between nonparallel structures are weakened.
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tation of movement of the scan �we are not modeling
physics but perception, hence freedom from New-
ton’s law is given�. Steering the mass enables the
algorithm to react better to perceptual properties:
there is no perceptual reason for an “important
point,” e.g., a corner point, assigned a high mass for
force computation, to be less mobile than other
points during movement computation �caused by its
high mass�. This observation suggests using differ-
ent masses during the computation of forces than
during the computation of the movement.

To compute the mass distribution, we focus on
cognitively interesting features in the global map by
defining regions of interest �ROI�. ROI are regions
around certain features detected in the global map.
Since the global map is analyzed, not single scans,
features are detected even if they are not present in
single scans but emerge from the overlap of scans, a
case that is very likely in our assumed setting of
sparse scans with little overlap �e.g., a corner that
consists of one segment of scan 1 and one segment
of scan 2 will be detected, although it might not be
present in either scan�. In general, once an interest-
ing feature is detected, the ROI is defined as a region
around the feature. To let FFS focus on these regions,
the correspondences �forces� in these regions are em-
phasized. The emphasis is gained by the assignment
of mass values: data points in ROI are assigned a
higher mass during the force computation. Hence
forces in regions of interest are stronger, i.e., the cor-
respondences and therefore the rigid body move-
ment are based on forces with focus on perceptually
interesting features. There are many possible ROIs,
in particular higher level objects as described in the
spatial semantic hierarchy �Kuipers, 2000� could be
used, e.g., corridor junctions represented with line
segments. In the current implementation, ROI are
defined by automatic corner detection as an example
for ROI. Though such an implementation restricts
the applicability to the presence of corners, it can be
easily exchanged to focus on different features. In
this implementation we benefit again from the sup-
porting line segments, as described in Section 3.3:
corners are gained from intersections between sup-
porting line segments. Each intersection between
two supporting line segments �extended to infinite
lines� in the global map with a distance below a cer-
tain threshold to both segments and an intersection
angle between 80 and 100 deg counts as a corner.
The ROI are the union of discs with a given radius
centered at all corners �see Figure 7�a��. Data points

in these regions will be assigned higher mass values
�Figure 7�a� does not show the data points but only
the supporting lines�. Figure 7�b� shows a global
map with ROI at an early iteration stage. Since the
scans are still poorly arranged, the dislocation of su-
perimposed scans leads to detection of many cor-
ners. However, long walls, represented by parallel
lines �in Figure 7�b� the vertical lines on the left side,
marked by arrows�, are not emphasized. This allows
for easier relocation in these “wall areas” in favor of
corner correspondences. Without ROI, point corre-
spondences between data points of the wall areas
�then equal in strength to correspondences between
corners� would fix the scans’ positions in a local
minimum, not giving the necessary freedom to be
relocated �intuitively: to slide along each other� with
regard to the perceptually more important corre-
spondences. In early iteration stages, the ROI are
still widespread around the correct feature positions,
as seen in Figure 7�b�. Since in later iteration steps
the scans become better aligned, ROI become better
focused and mark the positions around features in
higher precision.

3.5. Computational Complexity

3.5.1. Time Complexity

The definition of C �Eq. �2�� on pairs of data points
leads to an algorithm with O�n2� time complexity
where n is the number of points. This is certainly

Figure 7. Regions of interest �ROI�. �a� Line segments
�black� and intersection points �red�. Intersection points
satisfying the constraints on angle of intersection and dis-
tance to segments define ROI �blue discs�. �b� ROI of an
early global map �upper left corner of the NIST data set
�Figure 9��. Arrows mark areas of lower interest �‘wall-
areas’�, see text.
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prohibitive for real applications. Different tech-
niques can be used to reduce the complexity by tak-
ing advantage of two main properties of Eq. �2�:

1. For each data point only its local neighbor-
hood must be examined, since the forces be-
tween points rapidly decrease with distance.
Hence some techniques successfully built
into ICP implementations �which suffers
from the same complexity problem� can be
used to reduce the complexity, e.g., KD-trees.
In the current implementation, we take ad-
vantage of the line segment representation of
the data. We use a bounding box intersection
approach on axis aligned bounding boxes
around the line segments: bounding boxes
around all line segments are computed and
extended by 2�t in each direction. The force
between two data points is computed only if
the two corresponding lines’ bounding boxes
overlap. Hence we first reach a computa-
tional complexity based on the number m
�n of line segments, which is significantly
lower than the number n of data points. Sec-
ondly, though bounding box intersection is
an O�m log m� computation �note again:
m=number of segments�, update techniques
as reported in �Cohen, Lin, Manocha &
Ponamgi, 1995� reduce the expected com-
plexity to O�m�. This linear complexity is re-
ported under the constraint of “relatively
small” movements of objects, such that the
O�m log m� sorting in the sweep and prune
step reduces to O�m� on a nearly presorted
list. The constraint of small movements is
met for most of the iteration steps in FFS. To
give an idea of the order of magnitude of re-
duction that is achieved, some numbers for
the NIST data set �see Section 4.2� should be
mentioned:

• 60 scans contain a total of 21,420 points,
represented by 332 line segments �on av-
erage: 65 points per segment�

• average number of colliding pairs of seg-
ments per iteration: 1500; hence we have
65�65�1500�=6,337,500� computations,
compared to 21,4202�460,000,000�.

2. The data points have to be evaluated with a
certain accuracy only. By approximating the
evaluation of force field we can achieve com-

putational reduction in the following two
manners:

• The current FFS implementation sub-
samples each segment equally with some
sampling distance. For the NIST data set
�sampling distance 10 cm�, we achieve in
average 7 data points per segment; the
force computation is therefore reduced to
7�7�1500�=73,500� computations.

• Greengard and Strain introduced fast
Gauss transform �FGT� �Greengard &
Strain, 1991�, which is in turn based on fast
multipole methods introduced for high
speed simulation of particle dynamics in
potential fields �Greengard & Rokhlin,
1987�. The main advantage with FGT is
that the force field can be computed in lin-
ear time with a constant factor depending
on the precision required in computation
of the field. Details can be found in �Green-
gard & Strain, 1991�. The main idea is to
compute the force field using a divide and
conquer strategy and exploiting Hermite
and Taylor expansions. FGT was first in-
troduced in �Elgammal, Duraiswami &
Davis, 2003; Ayyagari et al., 2005�.

3.5.2. Space Complexity

Since we approximate the scans by segments, it is
not necessary to keep the original data. For each
scan, only the segments’ endpoints have to be
stored. Experiments with the extended EM algo-
rithm �Latecki & Lakaemper, 2006� on 2D laser data
sets show an average compression rate of 1:100 �200
data points per segment�.

3.6. Online FFS

The described algorithm easily can be extended to
online SLAM, i.e., scans are recorded and processed
subsequently, as they arrive from the laser device.
The extension is canonical: each additional scan is
pre aligned, then FFS runs on the previously aligned
data set plus the new scan. The current FFS system
targets the application of multi robot mapping,
hence the sequential processing is not implemented
yet.
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Algorithm 1 Force field based mapping.

1: Compute supporting line segments �Section 3.3�
2: Resample data set �Section 3.3�

3: S← initial state of transformations

4: Initialize step width �t and �t �Section 3.2�
5: repeat

6: Compute regions of interest �ROI� on global map
�Section 3.4�
7: Assign masses to data points with respect to ROI

8: Compute forces using �t �Eq. �3��
9: Assign constant mass values to data points

10: Compute rotational and translational acceleration
�Eq. �7� and Eq. �6��

11: Compute transformations �g

12: g←g+ �g

13: Set velocity of all points to zero

14: u\Update �t and �t �Section 3.2�

15: until average of relocations � Threshold

3.7. Prealignment

The prealignment does not make use of odometric
sensor data, but is based on shape similarity. It finds
distinct shape features in single scans and tries to
find an optimal overlap based on the shape similar-
ity of these features. For further details see �Adluru,
Latecki, Lakaemper & Madhavan, 2006�.

4. EXPERIMENTAL RESULTS

4.1. Performance Comparison to Classical ICP

Figure 8 shows the difference between the results of
aligning a hypothetical set of three simple scans us-
ing classical ICP and our approach. Due to the hard
constraints of using the nearest point correspon-
dence, only ICP �top row� ends in a nonperceptually
optimal configuration.

FFS takes into account the correspondences be-
tween all points first; a decreasing �t finally guaran-
tees the correct positioning of the scans, decreasing

Figure 8. The top row shows three steps of the alignment of three scans �each scan consists of a single corner only� using
classical ICP, the bottom-row shows the results of the proposed approach. The alignment progress can be seen from left
to right in both cases. The square boxes show the robot poses of the scans.
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the influence of points being too far away. The bot-
tom right image shows the result of FFS after 12 it-
eration steps.

4.2. NIST Disaster Area

The NIST data set used in this experiment simulates
a typical data set of multi robot mapping in rescue
scenarios. It is especially complicated, as it matches
the complicated constraints imposed by these set-
tings, which contain only imprecise odometry, no
landmarks, and very little overlap.

The data set consists of 60 scans taken from 15
different positions in directions E,N,W,S with an
overlap of 5 deg �i.e., overlap between E and N, N
and W, etc.�. The area has a size of �10�15 m, the
15 locations differ �2 m from each other �see Figure
9 for sample scans�. The distance between the posi-
tions of the four scans taken from an assumed single
position differs up to 30 cm, with an angular error of
up to 20 deg to the assumed direction. The size of
the arena was �12�10 m. This data set can be seen
as a multi robot mapping scenario using 15 robots,
with four scans gained from each robot. Although
the prealignment assumes this setting, FFS actually
treats the 60 scans as independent scans without the
help of any further information, e.g., constraints on
the groups of four. The single scans have very little
pair wise overlap. Figure 9 shows six example scans,
all located on the left side of the global map; the
overlapping pairs among these scans are
�1,2� , �1,3� , �1,4� , �2,3� , �3,4� , �3,6� , �4,5�.

The test performed on this complicated data set
demonstrates the robustness of the FFS system. The
initial, prealignment map is gained by the shape-
based algorithm described in Section 3.7. Figure 10
shows the initial global map as well as iteration step
20, Figure 11 the final global map, after 50 iterations.
The data set was resampled as described in Section

3.3. The radius of the ROI was set to 5 cm; the pa-
rameters for the motion cooling were set as

• �t decreases from 5 to 1 with step factor of
0.96

• �t decreases from 15 to 4 with step size of 0.25

Although the data is poorly prealigned and the over-
lap between the single scans is minimal, FFS success-
fully reconstructs the global map, which proves its
applicability for this multi robot setting. The mean
translation/rotation of the scans �translation/
rotation between initial and final global map� is
16 cm/4 deg, the maximum translation/rotation is
50 cm/10.5 deg.

The alignment can also be seen as a movie at
http://knight.cis.temple.edu/~lakaemper/FFS/
FFSTheMovie.wmv

The movie especially makes clear the effect of
the motion cooling.

Figure 11 shows the result after 50 iteration
steps. The computational time for each iteration is

Figure 9. Six out of 60 scans of the NIST rescue scenario
data set. The scans in this data set are very sparse and
have minimal overlap. Figure 10. Left: 60 scans superimposed building a global

map using a rough initial transformation estimation.
Right: after 20 iterations of FFS. The crosses show the ro-
bots’ positions. �The reader might try to find the six single
scans of Figure 9 in the global map. 1,2,3 and 6 are part of
the upper left corner, 4 and 5 are located in the lower left
corner.� The final result of FFS is shown in Figure 11, left.

Figure 11. Left: final map �after 50 iterations� of intializa-
tion in Figure 10 with FFS. Right: the final map obtained
by the Lu and Milios technique as reported in �Lu & Mil-
ios, 1997a�. The systems lead to results of comparable
quality.
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1 s on a 1.5 GHz desktop computer in the current
MATLAB implementation, using the bounding box
approach as described in Section 3.5.1 and resam-
pling with a distance of 10 cm.

The sensitivity to initial conditions was tested as
follows: using the result of the previously described
experiment �Figure 11, left�, we distorted this map
by random transformations of the single scans in the
range of ±30 cm �translation� and ±20 deg �rotation�.
The visual appearance of such maps is similar to the
appearance of the map shown in Figure 10, left. Tak-
ing these distorted maps as initial configurations,
FFS achieved results that differed from the source
map by a maximum of 0.9 cm and 0.7 deg, i.e., they
were visually identical.

In order to compare the proposed FFS approach
to the state of the art of existing robot mapping ap-
proaches, we applied three influential approaches to
the NIST data set illustrated in Figure 11. We applied
the particle filter based DP-SLAM �Eliazar & Parr,
2004�, the ICP based VASCO robot mapping module
of CARMEN, and improved grid-based SLAM with
Rao-Blackwellized particle filters �Grisetti, Stachniss
& Burgard, 2005�. All three approaches failed to pro-
duce any reasonable results, since they are based on
sequential processing of data �online SLAM�, which
cannot be applied on this data set due to the ex-
tremely minimal overlap of consecutive scans �even
if the order is known�.

However, we compared to a recent implementa-
tion of Lu and Milios type SLAM �Lu & Milios,
1997a�. The results are shown in Figure 11. Both al-
gorithms show an overall comparable performance,
although local differences can be seen: the Lu and
Milios type SLAM reconstructs the top right corner
better, while FFS performs better on the left side.

Figure 5, left, shows the potential P�g� vs. itera-
tion curve for this data set. The potential is mono-
tonically decreasing, hence in this case FFS steers di-
rectly towards a �local� minimum, which is
reasonable due to the initialization. The next experi-
ment will show a different case.

4.3. Apartment

This experiment demonstrates the benefits and ap-
plicability of FFS in data sets which are incorrectly
prealigned, e.g., due to effects of wrong loop closing.
We used the IROS 2006 test data set taken from
http://staff.science.uva.nl/~zivkovic/FS2HSC/
dataset.html. The data set consists of about 2000

scans from which we select every tenth scan. Thus,
our test data set consists of 200 scans taken from a
single robot in an apartment of size about 16�8 m.
As shown in Figure 4�a�, the prealignment gained
shows a huge error, additionally the alignment is
very imprecise �blurred features�. The experiment
shows the power of FFS to escape local minima:
starting with a large stepping parameter �t, the first
transformation blurs the data set and therefore
weakens the wrong correspondences, giving space
for new connections, Figure 4�b�. Transforming all
scans in parallel eventually results in a version of the
map, which not only shows the misaligned parallel
walls correctly contracted but also corrected the
huge error as shown in Figure 4�d�. The values of the
parameters are equal to the experiment in Section
4.2. Figure 4 also shows a limit of the algorithm: one
single initially strongly misaligned scan does not
find consistent correspondences and therefore can-
not be correctly repositioned by the algorithm. It
stays in its incorrect position. We assume that no
algorithm working only on low level perceptual fea-
tures is able to handle such a strong error correctly;
mid level cognitive correspondences are needed.
However, mid level perceptual features can easily be
integrated into the system using correspondence
functions modeling these perceptual forces, which
will be part of the future work on the system.

4.4. NIST Maze

This data set consists of 16 scans with similar struc-
tures, a typical indoor environment, yet again
scanned with minimal overlap. See Figures 12 and
13 for this experiment. The final result was achieved
after 20 iterations, transforming the single scans up
to 25 cm and 20 deg. The size of the maze is �10
�10 m. FFS was able to align the scans correctly.

Figure 12. Left: initial configuration of NIST’s maze data
�16 scans�. Right: after five iterations of FFS.

760 • Journal of Field Robotics—2007

Journal of Field Robotics DOI 10.1002/rob



5. CONCLUSION AND FUTURE WORK

We presented a new approach to the problem of multi
robot mapping under the constraints given in rescue
scenarios. It does not rely on odometry, i.e., the rela-
tive pose between the robots is unknown. It also can
deal with the problem of extremely minimal overlap.
Experiments conducted on a real data set of a disaster
area from NIST showed the performance of the FFS
approach under these complicated constraints and
proved its applicability to the problem of multi robot
mapping; they also proved the excellent performance
of the algorithm correcting effects from wrong pre-
alignment. The future work will mainly focus on de-
tection of higher level features: the modeling of the
correspondence function with respect to the masses
opens different ways to interface to mid level mod-
ules. The approach is easily extendable to 3D; a report
about the performance of an implementation of the
3D FFS is the topic of a forthcoming paper.
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