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Abstract: We present a novel method for detecting moving objects in videos. 
The method represents videos using spatiotemporal blocks instead of pixels. 
Dimensionality reduction is performed to obtain a compact representation of 
each block's values. The block vectors provide a joint representation of texture 
and motion patterns. The motion detection and tracking experiments 
demonstrate that our method although simpler than a state-of-the-art method 
based on the Stauffer-Grimson Gaussian mixture model has superior 
performance. It reduces both the instability and the processing time making 
real-time processing of high resolution videos and efficient analysis of large 
scale video data feasible. 
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1 Introduction 

Automatic detection and tracking of moving objects is a necessary pre-processing step of 
video analysis. The need is especially strong in the case of large scale video analysis and 
content-based retrieval where moving objects have to be identified prior to generation of 
video semantics and performance of high-level video analysis such as similarity 
retrievals. Detection of moving objects in video is inherently prone to uncertainty. Steady 
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objects may appear to be moving because of changing lighting conditions, movement of 
camera, noise in video acquisition, etc. An overview of existing approaches to motion 
detection can be found in a collection of papers edited by Remagnino et al. (2002) and in 
the special section on video surveillance in IEEE PAMI edited by Collins et al. (2000). 

A common feature of existing approaches for moving objects detection is the fact that 
they are pixel based. Some of the approaches rely on comparison of colour or intensities 
of pixels in the incoming video frame to a reference image. Jain et al. (1977) used simple 
intensity comparison to reference images so that the values above a given threshold 
identify the pixels of moving objects. A large class of approaches is based on appropriate 
statistics of colour or grey values over time at each pixel location (e.g., the segmentation 
by background subtraction in W4 (Haritaoglu et al., 2000), eigenbackground subtraction 
(Oliver et al., 2000), etc). Wren et al. (1997) were the first that used a statistical model of 
the background instead of a reference image. Later, Toyama et al. (1999) introduced 
Wallflower, a system that performs background subtraction and maintains a background 
model using an appropriate representation of the background and its associated statistics, 
differentiating background pixels from foreground pixels (that should be processed for 
identification and tracking of moving objects). One of the most successful approaches  
for motion detection was introduced by Stauffer and Grimson (2000). It is based on 
adaptive Gaussian mixture model of the colour values distribution over time at each pixel 
location. Each Gaussian function in the mixture is defined by its prior probability, mean 
and covariance matrix. 

In this paper, we introduce an approach for video analysis that is based on simple and 
very efficient dimensionality reduction of videos. We use spatiotemporal blocks as main 
representation of videos. Each spatiotemporal block represents both texture and motion 
patterns. To obtain such blocks, we decompose a given 3D video matrix into cuboids. 
Our results are obtained with cuboids with dimensions 8 × 8 × 3 to be consistent with the 
8 × 8 blocks that MPEG uses for compression. Originally each such block contains 192 
colour or grey values, which is reduced to just three values using Principal Components 
Analysis (PCA). Thus, the obtained video is 64 times smaller in spatial size. Moreover, 
the obtained block representation handles uncertainty better than the original pixel values, 
i.e., it is significantly more stable with respect to noise and light changes. An earlier 
version of the motion detection method was proposed in Pokrajac and Latecki (2003). 
Here, we have extended the method by replacing the dynamic threshold with dynamic 
distribution learning and outlier detection significantly improving the performance of the 
original approach. 

The usefulness of dimensionality reduction techniques to compactly represent 3D 
blocks has already been recognised in video compression. There, 3D discrete cosine and 
3D wavelet transforms are employed to reduce the colour or grey level values of a  
large number of pixels in a given block to a few quantised vector components,  
e.g., Westwater and Furht (1997). However, these techniques are not particularly suitable 
for detecting moving objects, since the obtained components do not necessarily provide 
good means to differentiate the texture of the blocks. Namely, these transformations are 
context free and intrinsic in that their output depends only on a given input 3D block.  
In contrast, we propose to use a technique that allows us to obtain an optimal 
differentiation for a given set of 3D blocks. To reach this goal, we need an extrinsic and 
context-sensitive transformation such that a representation of the given block depends on 
its context – the set of other 3D blocks in a given video. The Principal Component 
Analysis (PCA) (Jolliffe, 2002) satisfies these requirements. Namely, for a given set of 
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3D blocks, PCA assigns to each block a vector of the components that maximises the 
differences among the colocated blocks. Consequently, PCA components are very 
suitable to detect changes in 3D blocks. As argued in Javed et al. (2002), the  
application of region level techniques can lead to increased stability when detecting 
objects in adverse conditions. However, Javed et al. (2002) and related approaches by 
Buttler et al. (2003), aimed to improve the Stauffer and Grimson algorithm (2000) still 
perform motion detection on pixel level, and only the post-processing of pixel-based 
motion detection results is region based. 

In the sections that follow, we present a detailed description of the proposed 
methodology (Section 2). We then describe in detail the datasets used for the evaluation 
of our proposed approach as well as the experiments performed and the results obtained 
(Section 3). Finally we present our concluding remarks (Section 4). 

2 Methods 

We first describe the new representation of video data that use spatiotemporal texture 
vectors. We then introduce the proposed method for detection of moving objects that is 
based on the analysis of the distribution of texture vectors. 

2.1 Video representation with spatiotemporal texture vectors 

We represent videos as three-dimensional (3D) arrays of grey level or monochromatic 
infrared1 pixel values gi,j,t at a time instant t and at a pixel location i, j. A video is 
characterised by temporal dimension Z corresponding to the number of frames and by 
two spatial dimensions that characterise the number of pixels in horizontal and vertical 
direction of each frame. Each frame (image) in a video sequence is divided into disjoint 
NBLOCK × NBLOCK squares (e.g., 8 × 8 squares) that cover the whole image. Spatiotemporal 
(sp) 3D blocks are obtained by combining squares in consecutive frames at the same 
video plane location. In our experiments, we used 8x8x3 blocks that are disjoint in space 
but overlap in time, i.e., two blocks at the same spatial location at times t and t + 1 have 
two squares in common. 

The fact that the 3D blocks overlap in time allows us to perform successful motion 
detection in videos with very low frame rate, e.g., in our experimental results, videos with 
2 fps (frames per second) are included. Since our goal is to capture change of texture at 
each spatial location, we used grey level/monochromatic pixel values from each 
spatiotemporal 3D block as original feature space. Hence, 3D blocks are represented as 
192-dimensional vectors of grey level or monochromatic infrared pixel values. We zero 
mean these vectors and project them to a smaller number of dimensions (e.g., ten 
dimensions) using principal component analysis (PCA) (Jolliffe, 2002). By performing 
PCA, we retain the variance of original features (representing spatiotemporal texture  
at a particular video frame location) while significantly reducing the dimensionality.  
The obtained low-dimensional vectors therefore form a compact spatiotemporal texture 
representation for each 3D block. The PCA projection matrices are computed separately 
for each video plane location (a set of disjoint 8 × 8 squares in our experiments).  
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Observe that the same matrix is used for all colocated blocks, making possible to 
maximise the difference among the blocks positioned at the same place of the video 
plane. 

The blocks are represented by N-dimensional vectors bI,J,t, specified by spatial 
indexes (I,J) and time instant t. Vectors bI,J,t contain all values gi,j,t of pixels in the 
corresponding 3D block. To reduce the dimensionality of bI,J,t while preserving 
information to the maximal possible extent, we compute a projection of the normalised 
block vector to a vector of a significantly lower length K << N using a PCA projection 
matrix PK

I,J computed for all bI,J,t at video plane location (I,J). The resulting sp texture 
vectors b*I,J,t = PK

I,J * bI,J,t provide a joint representation of texture and motion patterns in 
videos and are used as input of the algorithms for detection of moving objects (we used 
K = 10 in all of our experiments). 

To compute the projection matrix PK
I,J, we employ the principal values 

decomposition following Duda et al. (2001) and Flury (1997). A matrix of all normalised 
block vectors bI,J,t at video plane location (I,J) is used to compute the N × N dimensional 
covariance matrix SI,J. The PCA projection matrix PI,J for spatial location (I,J) is 
computed from the SI,J covariance matrix. The projection matrix PI,J of size N × N 
represents N principal components. By taking only the principal components that 
correspond to the K largest eigenvalues, we obtain PK

I,J. 

2.2 Detection of moving features by measuring texture spread 

The spread of texture vectors over time indicates whether the corresponding object 
texture is stationary or moving. Recall that each sp vector represents texture of the 
corresponding block. Hence, by observing the change of the characteristics of sp vectors 
over time, we are able to detect whether a particular block belongs to a moving object or 
to the background. 

Consider a single block position in a video plane. We can observe the trajectory of its 
sp vectors, i.e., the loci of sp vectors in successive time frames. If during an observed 
time interval, there is no moving object in the block, the sp vectors will be close to each 
other. Hence the variance of sp vectors during the time interval will be small. In contrast, 
if there is a moving object passing through this block, the sp vectors will change fast,  
i.e., the sp vectors will be spread in the space of their coordinates. Therefore, the variance 
of sp vectors within an observation time window will be fairly large. In Figure 1(a) we 
show the trajectory of sp vectors corresponding to block location (26,28) in Campus 1 
video. To make this visualisation possible, we use only the first three PCA components 
for each sp vector. It can be observed that frames where only stationary objects are 
visible in the observed block location correspond to regions where sp vectors are 
clustered into fairly spherical shapes (black dots) with a small spread. In contrary,  
when moving objects are passing through this block location, the trajectory of sp vectors 
(blue-grey dots) is typically elongated and the variance is relatively large. 

 
 
 
 
 
 



      

 

   

 

   

    Using spatiotemporal blocks to reduce the uncertainty 381    
 

    
 
 

   

 

 

       
 

Figure 1 (a) Orbits of block vectors with blue-grey dots corresponding to the frames where the 
block (26, 28) of the Campus 1 video was identified as moving by the proposed method 
and (b) the graph of local variance mm over time for the same block 

 
(a) 

 
(b) 

A simple way to determine the speed of sp vectors’ change would be to compute the 
norms of their first derivatives. However, computing finite differences of consecutive  
sp vectors may be unreliable. In order to determine whether the consecutive vectors 
belong to elongated trajectories, we need to observe whether they are making a consistent 
progress in one particular direction within a certain time interval. We propose to assess 
the sp vector spread in the direction of maximal variance. To measure the variance of  
sp vectors, we compute the covariance matrix of sp vectors corresponding to the same 
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block location for a pre-specified number of consecutive frames. We use the maximal 
eigenvalue as a measure of trajectory elongation. More formally, for each location (x,y), 
and temporal instant t, we consider vectors of the form 

, , , , 1 , , , ,* , * , , * , , *x y t W x y t W x y t x y t Wb b b b− − + +… …  

corresponding to a symmetric window of size 2W + 1 around the time instant t. For these 
vectors, we compute the covariance matrix Cx,y,t. We assign the largest eigenvalue of 
Cx,y,t, denoted as Λx,y,t, to a given spatiotemporal video position to define a local variance 
measure, which we will also refer to as motion measure (mm) 

, ,( , , ) .x y tmm x y t = Λ  

The larger the motion measure mm(x,y,t), the more likely is the presence of a moving 
object at position (x,y,t). An example graph of mm is shown in Figure 1(b). The large 
values (spikes) correspond to time intervals when moving objects were observed at this 
particular video location. 

As the graph shown in Figure 1(b) suggests, we can label video position (x,y,t) based 
on the history of mm(x,y,t) values over time (frames 1, …, t – 1) as moving by applying 
an outlier detection method to mm values, i.e., a position is labelled as moving if the 
motion measure (mm) value at a given time is classified as outlier. To perform the outlier 
detection, we first learn the nominal distribution of mm(x,y,t) values over some initial 
time period (t = 1, …, t1). This requires that the amount of unusual activity is relatively 
small in the initial time period, i.e., the part of the scene we mostly view at this location 
in the initial time period is stationary (background). Then we use running average to 
update the mean and standard deviation of this distribution. The update is not performed 
if the position is classified as moving. A particular mm(x,y,t) is classified as outlier if  
it is further away from the mean than a certain number of standard deviations.  
Our distribution-learning algorithm is described in detail below. 

2.3 Dynamic distribution learning and outlier detection 

Consider labelling each video position as moving or stationary (background) based on 
whether the motion measure mm is larger or smaller than a suitably defined threshold. 
The uncertainty in deciding about motion is handled as follows: we use a dynamic 
distribution learning to determine the threshold value at position (x,y,t) based on the 
history of mm(x,y,t) values over time (at frames 1, …, t – 1). Since mm(x,y,t) is a function 
of one variable t for a fixed position (x,y) (see Figure 1(b)), the task reduces to dynamic 
estimation of the mean and standard deviation of mm. Given a function f of one variable, 
we compute initial values of mean(t0) and variance σ2(t0) of all values f(t) in some initial 
interval t = 1, …, t0. For t > t0, we update the estimates using the technique described in 
the next paragraph. An outlier is detected at time t > t0 if the standardised feature value is 
sufficiently large, i.e., when 

1
( ) ( ( 1)) ,

( ( 1))
f t mean f t C

std f t
− − >

−
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where C1 is a constant and 2( ( )) ( ( ))std f t f tσ= .Once an outlier is detected at time t1, 
value f(t1) is labelled as an outlier. We update the nominal state at time t, if the 
standardised feature value drops below a threshold C2 < C1, i.e., 

2
( ) ( ( 1)) ,

( ( 1))
f t mean f t C

std f t
− − >

−
 

We update the estimates of mean and standard deviation only when the outliers are not 
detected (nominal state), i.e., at the beginning of the execution of the algorithm and  
when equation holds, mean and std are updated using running average (an algorithm for 
incremental estimation of parameters of distributions, that is commonly applied in the 
case of Gaussian distribution): 

2 2 2

2

( ( )) ( ( 1)) (1 ) ( ),
( ( )) ( ( 1)) (1 ) ( ( ) ( ( 1))) ,

( ( )) ( ( )).

mean f t u mean f t u f t
f t u f t u f t mean f t

std f t f t

σ σ

σ

= ⋅ − + − ⋅
= ⋅ − + − ⋅ − −

=

 

For example, we use C1 = 9, C2 = 3, and u = 0.99 in the case of the detection of moving 
blocks for f = mm. The only assumption that we make about the distribution of values of 
function f is that it has a prominent right tail. This assumption clearly applies to the 
Gaussian distribution, but is significantly more general. 

3 Experimental evaluation 

3.1 Ground truth dataset 

The video clips and corresponding ground truth data used in our evaluation were created 
by the CAVIAR project team (http://homepages.inf.ed.ac.uk/rbf/CAVIAR/). The video 
was captured using a wide-angle lens at a resolution of 384 × 288 pixels and 25 fps and 
then compressed using MPEG2 codec. Each video clip shows different scenarios, such as 
people walking, meeting, fighting and leaving objects behind. Ground truth data were 
established for each video sequence by manually labelling each activity and region of 
interest, and stored in an XML file. The XML file conforms to Computer Vision Markup 
Language (CVML) format. 

The information stored in the ground truth file contains more data than was necessary 
to perform our evaluation. Therefore, to simplify the computation and data analysis, a 
new simple text file was created from the extracted XML data. The following individual 
object data were extracted for each frame: frame number, object id and (x,y) centroid 
location of the region of interest. An example of extracted data is shown in Table 1, 
where three distinct objects were identified in frame 11 of the Split1 video, as shown in 
Figure 2. 
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Table 1 Sample of Split1 video ground truth data 

Frame Object ID cx cy 

10 0 266 239 
10 1 65 193 
10 2 47 112 
11 0 268 241 
11 1 65 193 
11 2 48 113 
12 0 269 244 
12 1 65 193 
12 2 48 113 

Figure 2 Ground truth data centroids for three objects in frame 11 of Split1 video 

 

Evaluation of two videos out of 28 available from the CAVIAR project is presented  
in Section 3.2. The first video is labelled Walk1 and is identified as ‘One person  
walking – straight line’ with ground truth data file wk1gt.xml. The second video is 
labelled Split1 and is identified as ‘Two people meet, walk together and split’ with 
ground truth data file mws1gt.xml. Each video exhibits slight periodic frame jumps 
owing to transmission and compression artifacts. Both motion detection methods must be 
able to distinguish true motion in a noisy video stream. The videos can be viewed on 
http://knight.cis.temple.edu/~video/VA/. 

3.2 Ground truth data evaluation 

Ground truth data give us the number of objects and their centroids in each video frame. 
In order to compare the proposed method and the previous state-of-the-art method to the 
ground truth data, we must detect motion, find objects from motion data and compute 
their ROI and centroids. The processing of each video sequence using our method to 
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identify motion on block level and establish the motion/no motion binary image is 
performed as described in Section 2. An initial comparison of the Stauffer-Grimson 
Gaussian mixture model (S&G) (Stauffer and Grimson, 2000) with our method has been 
presented in Pokrajac and Latecki (2004), showing global variation of spatiotemporal 
blocks and stop-and-hold thresholding algorithm. 

The output from motion detection is fed into the object-labelling algorithm to 
measure the object’s region of interest and centroid location. Connected components are 
used to establish motion regions of interest with a minimum of ten blocks per region.  
We evaluate motion blocks as 8-connected objects. The connected component general 
procedure is outlined in Haralick and Shapiro (1992). We compute the region of interest 
for each labelled component taken from the minimum and maximum block location of 
the labelled object, and finally compute the block’s centroid location. 

3.3 Walk1 video evaluation 

Ground truth for Walk1 video is shown in Figure 3. All ground truth centroids are 
projected onto one frame to visualise all motion paths. All motion centroids for objects 
with more than ten sp motion blocks are shown in Figure 4(a). The same is shown for all 
detected motion blocks in Figure 4(b) using the S&G method. A substantially large 
number of moving objects with more than ten blocks per object is evident in  
Figure 4(b), as the noise of the video on the pixel level contributed to the detection of 
false-positives. Figure 5 presents frame 390 of Walk1 video showing ground truth data 
and sp motion centroids. 

Figure 3 Projected GT centroids, Walk1 video 
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Figure 4 Projection of all centroids for Walk1 video; (a) ground truth data and spatiotemporal 
motion centroids and (b) ground truth data and Stauffer-Grimson Gaussian mixture 
model centroids 

 

(a) 

 
(b) 
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Figure 5 Frame 390 of Walk1 video showing ground truth data and sp motion centroids 

 

The original S&G requires morphological post-processing. The difficulty is in selecting 
the size of structuring element, which adds one more parameter. If it is too large, small 
moving objects disappear, if it is too small, many motion artifacts appear. Our sp method 
does not require any post-processing. 

3.4 Split1 video evaluation 

Ground truth for Split1 video along with sp motion centroids and S&G motion centroids 
is shown in Figure 6. All centroids are projected onto one frame to visualise all motion 
paths for objects with at least ten motion blocks. 

Figure 6 Projection of all centroids for Split1 video; (a) ground truth data and spatiotemporal 
motion centroids and (b) ground truth data and Stauffer-Grimson Gaussian mixture 
model centroids 

 
(a) 
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Figure 6 Projection of all centroids for Split1 video; (a) ground truth data and spatiotemporal 
motion centroids and (b) ground truth data and Stauffer-Grimson Gaussian mixture 
model centroids (continued) 

 
(b) 

3.5 Motion orbits evaluation 

In comparison to any pixel-based approach (e.g., S&G), our technique performs better 
since it reduces noise in background and can extract information about temporal change 
of texture (since it is based on spatiotemporal texture representation of 3D blocks instead 
of pixels). We demonstrate this on Campus 1 video (http://knight.cis.temple.edu/~video/ 
VA/); in Figure 7(b) we plot a trajectory over time of RGB colour values that occur at the 
pixel (185, 217), which is one of the pixels in the block (26, 28). For better visualisation, 
in Figure 7(a) we show the linearly transformed space of PCA projections of the original 
RGB colour values (the trajectory in the space of original RGB colours is similar).  
Also in Figure 7(b), we superimpose green and blue dots computed by our algorithm for 
block (26, 28), that correctly correspond to moving objects at this position. 

3.6 Visual frame evaluation 

The simplest way to evaluate motion and tracking methods is to simply view the video.  
In Figure 8(c), we see the effects of false-positives when a noisy video is streamed from a 
live surveillance camera (the original frame is shown in Figure 8(a)). In Figure 8(b), the 
effect of noise is minimal owing to spatiotemporal block evaluation of motion vectors. 
Some noise is visible in Figure 8(b), right at the boundaries of light and shadow.  
The jitters in video create false motion of texture, however this effect is minimal 
compared with Figure 8(c). 
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Figure 7 Trajectories at location I = 26, J = 28 of the outdoor video in feature space of (a) 3-PCA 
components of block vectors and b) standardised PCA components of RGB pixel 
coordinates at pixel location (185, 217) (inside block I = 26, J = 28) 
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Figure 8 (a) Walk1 video, frame 354, no motion blocks; (b) spatiotemporal blocks detect motion 
of central person and (c) S&G method detects motion of central person plus some noise 
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4 Conclusion 

In this paper, we propose a new method for dealing with uncertainty in detecting moving 
objects in video. We decompose a given video into spatiotemporal blocks and apply a 
dimensionality reduction technique to obtain a compact representation of colour or grey 
level values of each block as vector of just a few numbers. The block vectors provide a 
joint representation of texture and motion patterns in videos. The power of 3D block 
representation has already been recognised in video compression, where 3D discrete 
cosine and 3D wavelet transforms have been developed. We propose to use 3D block 
vectors as primary input elements to video analysis algorithms moving away from the 
standard input of pixel values that are known to be noisy and the main cause of instability 
of video analysis algorithms. Our experiments show that detection and tracking of 
moving objects is substantially improved if it is based on spatiotemporal blocks instead 
on pixels. Since each 3D block is represented as a vector of a few real numbers, we 
significantly improve the performance of video analysis algorithms. We show that the 
proposed local variation is not only a much simpler but also a more robust model for 
motion detection for surveillance videos. It can significantly reduce the processing time 
in comparison to the Gaussian mixture model, owing to smaller complexity of the local 
variation computation, thus making the real-time processing of high-resolution videos as 
well as efficient analysis of large-scale video data possible. Moreover, the local-variation 
based algorithm remains stable with higher dimensions of input data, which is not 
necessarily the case for an EM type algorithm, used for Gaussian model estimation. 
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