
Int J Comput Vis (2015) 112:319–341
DOI 10.1007/s11263-014-0766-9

Sequential Monte Carlo for Maximum Weight Subgraphs
with Application to Solving Image Jigsaw Puzzles

Nagesh Adluru · Xingwei Yang · Longin Jan Latecki

Received: 19 August 2012 / Accepted: 9 September 2014 / Published online: 10 October 2014
© Springer Science+Business Media New York 2014

Abstract We consider a problem of finding maximum
weight subgraphs (MWS) that satisfy hard constraints in
a weighted graph. The constraints specify the graph nodes
that must belong to the solution as well as mutual exclu-
sions of graph nodes, i.e., pairs of nodes that cannot belong
to the same solution. Our main contribution is a novel infer-
ence approach for solving this problem in a sequential monte
carlo (SMC) sampling framework. Usually in an SMC frame-
work there is a natural ordering of the states of the samples.
The order typically depends on observations about the states
or on the annealing setup used. In many applications (e.g.,
image jigsaw puzzle problems), all observations (e.g., puz-
zle pieces) are given at once and it is hard to define a nat-
ural ordering. Therefore, we relax the assumption of having
ordered observations about states and propose a novel SMC
algorithm for obtaining maximum a posteriori estimate of
a high-dimensional posterior distribution. This is achieved
by exploring different orders of states and selecting the most
informative permutations in each step of the sampling. Our
experimental results demonstrate that the proposed inference
framework significantly outperforms loopy belief propaga-
tion in solving the image jigsaw puzzle problem. In particular,

Communicated by Hiroshi Ishikawa.

N. Adluru
University of Wisconsin, Madison, WI, USA
e-mail: nagesh.adluru@gmail.com

X. Yang
Machine Learning Science Group at Amazon.com,
Seattle, WA, USA
e-mail: happyyxw@gmail.com

L. J. Latecki (B)
Temple University, Philadelphia, PA, USA
e-mail: latecki@temple.edu

our inference quadruples the accuracy of the puzzle assembly
compared to that of loopy belief propagation.

Keywords Sequential Monte Carlo · Particle filtering ·
Sampling importance resampling · Maximum weight clique ·
Jigsaw puzzle problem · Graph search · Graph matching ·
QAP

1 Introduction

Any correspondence problem can be viewed as an instance
of a more general problem of finding maximum weight sub-
graphs (MWSs) in a graph thanks to the formulation in
Horaud and Skordas (1989). An association graph is defined
as a weighted graph G = (V, E, a), where V = P × Q is a
vertex set, E ⊆ V × V is a set of edges, and a : E → R≥0

is the weight function. Hence each vertex vi ∈ V is a cor-
respondence vi = (pi , qi), where pi ∈ P and qi ∈ Q, i.e.,
pi is an index of an element in P and qi is an index of an
element in Q that form the vertex vi .

A specific example is an image jigsaw puzzle problem.
With reference to Fig. 1, given a set of puzzle pieces P , shown
in (b), and a board with square puzzle locations Q, shown
in (c), the goal is to assign the puzzle pieces to “correct”
locations. The original image in (a) is not given and hence
such a prior is also not available.

Our jigsaw puzzle problem formulation follows Cho et al.
(2010) in that the goal is to build the original, unknown image
from non-overlapping square patches. This formulation is
different from most of the previous approaches Kong and
Kimia (2001); Goldberg et al. (2002); Radack and Badler
(1982); Wolfson et al. (1988), where the shape of the puzzle
pieces is utilized. Since our puzzle pieces all have the same
shape of a square, the affinities among the puzzle pieces are

123

320 Int J Comput Vis (2015) 112:319–341

Fig. 1 The goal is to build the original image (a) given the jigsaw puzzle pieces (b). The original image is not known, thus, it needs to be estimated
given the observations shown in (b). The empty squares in (c) form possible locations for the puzzle pieces in (b)

less reliable making our problem more challenging. Since the
original image is not given, we also do not assume any priors
on the target image layout. This is different from Cho et al.
(2010), where such priors are also considered. As shown in
Demaine and Demaine (2007) the jigsaw puzzle problem is
NP-complete if the pairwise affinities among jigsaw pieces
are unreliable.

Another example of a correspondence problem is find-
ing a set of corresponding feature points between two
images, which belongs to fundamental problems in computer
vision. Due to its importance, there exist a huge number of
papers addressing the correspondence problem. Many exist-
ing methods formulate the correspondence problems as prob-
lems of minimizing an energy function of a Markov random
field (Maciel and Costeira 2003; Caetano et al. 2006; Jiang
et al. 2007; Georgescu and Meer 2004; Cross and Hancock
1998; Zaslavskiy et al. 2009).

In the case of the jigsaw puzzle problem, P is a set of puz-
zle pieces and Q is a set of board locations. We identify the
set of puzzle pieces and the set of board locations with their
indices P = {p1, . . . , pn} and Q = {q1, . . . , qn} respec-
tively. Hence V = P × Q is composed of pairs vi = (pi , qi),
where pi is an index of a puzzle piece that is assigned to
a board location qi . For example, the assignment of puz-
zle piece 3 to board location a shown in Fig. 1c, can be
regarded as v1 = (p1, q1) = (3, a). Since we assume that
|P| = |Q| = n, the graph has |V | = n2 nodes. With each
puzzle piece p j , we also have an associated image I j depicted
on that piece. A solution to the jigsaw puzzle problem is a
subset of exactly n pairs v j = (p j , q j). The jigsaw puzzle
problem is an instance of the quadratic assignment problem
(QAP), which is one of fundamental combinatorial optimiza-
tion problems (Burkard et al. 1998). QAP is also known to
be NP-hard (Sahni and Gonzalez 1976).

Here we formulate the QAP, and in particular, the jigsaw
puzzle problem, as a problem of finding maximum weight
subgraph (MWS) in a weighted association graph. In this
formulation, a solution is a subset of the graph vertices, which
represent selected assignment pairs. An important property

of the MWS problem we consider is the existence of hard
constraints that each solution must satisfy. In the case of
the jigsaw puzzle, these are one-to-one matching constraints.
They ensure that no puzzle piece is assigned to two different
locations, and no board location has two puzzle pieces on it.

The main contribution of this paper is a novel inference
framework for solving the MWS problem with hard con-
straints on a weighted graph (not necessarily an association
graph), which is summarized in the algorithm in Fig. 2. We
show that the proposed algorithm is an instance of a family
of algorithms called sequential monte carlo methods. Our
algorithm is inspired by the algorithmic aspects of the par-
ticle filtering (PF) framework and introduces permutations
of states in the samples when exploring a high-dimensional
posterior. We also prove that the algorithm in Fig. 2 approxi-
mates the solution of the constrained MWS problem with any
precision if the number of particles is sufficiently large. The
actual number of particles needed for achieving MAP in a
particular instance depends on how close to the posterior are
the sequential proposals (each permutation of state considers
a different proposal in each iteration).

PF is a recursive Bayesian filter that belongs to Sequential
Monte Carlo (SMC) methods. The classical PF framework
has been developed for sequential state estimation like track-
ing (Isard and Blake 1998; Khan et al. 2004; Smith et al.
2005) or robot localization (Thrun 2002; Fox et al. 2000).
There, the observations arrive sequentially and are indexed
by their time stamps. Then the posterior density over the cor-
responding hidden states is recursively estimated. In many
applications, e.g., image jigsaw puzzle problems, all obser-
vations (e.g., puzzle pieces) are given at once without any
particular order. Therefore, we relax the assumption of hav-
ing ordered observations and extend the PF framework to
estimate the posterior density by exploring different orders
of observations by selecting the most informative permuta-
tions of observations. We thus obtain the SMC algorithm
with state permutations. It significantly broadens the scope
of applications of the PF inference. One of our key ideas
is the fact that it is possible to extend the importance sam-

123

Int J Comput Vis (2015) 112:319–341 321

pling from the proposal distribution so that different particles
explore the state space along different dimensions. Then the
particle weighting and resampling allow us to automatically
determine most informative orders of observations (as per-
mutations of state space dimensions).

It is possible to apply the classical PF framework as sto-
chastic optimization to solve this problem by utilizing a
fix order of states. However, by doing so, we would have
selected an arbitrary order, and the puzzle construction may
fail because of the selected order as can be seen in Sect.
6.2, Figs. 6 and 7. The classical approach would require an
extremely large number of particles to overcome such limi-
tations. Our framework on the other hand works with a rela-
tively small number of particles.

From the point of view of graph search, the proposed algo-
rithm utilizes a mixture of depth first and breadth first search
for finding MWSs. When the weight distribution of particles
is informative (has one or more clear peaks), the PF search
acts like a depth first search but it may explore more than
one graph regions simultaneously. In contrast, if the weight
distribution of particles is close to uniform the PF search acts
like a breadth first search.

The presented experimental results focus on the image
jigsaw puzzle problem. We compare the solutions obtained
by the proposed algorithm to the solutions of the loopy
belief propagation under identical settings on the dataset
from Cho et al. (2010). In particular, we use exactly the same
dissimilarity-based compatibility of puzzle pieces. The pro-
posed PF inference significantly outperforms the loopy belief
propagation in all evaluation measures. The main measure is
the accuracy of the label assignment, where the difference is
most significant. The accuracy using loopy belief propaga-
tion is 23.7 % while that using the proposed SMC inference
is over 95.3 % for puzzles with 108 pieces.

The rest of the paper is organized as follows. The problem
of finding MWSs that satisfy hard constraints is introduced
in Sect. 2. Then it is restated as a maximization problem of a
probability density function (pdf) on a random field in Sect.
3. The proposed algorithm is also introduced in Sect. 3. After
an overview of the PF preliminaries in Sect. 4.1, the extension
to SMC with state permutations is described in Sect. 4.2. The
proposed SMC algorithm with state permutations is formu-
lated in Sect. 4, where we also prove it is able to approximate
the target pdf with any precision. Section 4.3 formally relates
our algorithm with state permutations to PF proposal and PF
weight functions. Based on this fact, we prove in Sect. 4.6 that
our algorithm approximates the solution of the constrained
MWS problem with any precision if the number of particles
is sufficiently large. Related problems and approaches are
described in Sect. 5. Section 6.1 provides implementation
details related to solving the image jigsaw puzzle problem as
a particular instance of the constrained MWS problem. Sec-
tion 6.2 presents experimental results and compares them to

Cho et al. (2010). Section 6.3 presents additional experiments
on graph matching and quadratic assignment problems.

2 Constrained Maximum Weight Subgraphs

A weighted graph G is defined as G = (V, E, a), where
V = {v1, . . . , vm} is the vertex set, m is the number of ver-
tices, E ⊆ V × V , and a : E → R≥0 is the weight func-
tion. Vertices in G correspond to data points, edge weights
between different vertices represent the strength of their rela-
tionships, and self-edge weight respects importance of a ver-
tex. As is customary, we represent the graph G with the cor-
responding weighted adjacency matrix, more specifically, an
m × m symmetric matrix A = (ai j), where ai j = a(vi , v j)

if (vi , v j) ∈ E , and ai j = 0 otherwise. A may be indefinite.
With every vertex vi there is associated an observation zi .

We denote with Z = {z1, . . . , zm} the set of observations
associated with graph vertices. We assume that the affinity
matrix A depends on the observations Z . The observations
are not necessarily different, i.e., two different graph nodes
may have the same observations. For example, in the jigsaw
puzzle problem, the observation zi is the image Ipi on the
puzzle piece pi , where vi = (pi , qi). Since qi varies over all
board locations, all vertices related to the same puzzle piece
have the same observation.

As is often the case, we identify the vertex set V with
its index set, i.e., V = {v1, . . . , vm} = {1, . . . , m}. For
any subset T ⊆ V , GT denotes a subgraph of G with ver-
tex set VT = {vi , i ∈ T } and edge set ET = {(vi , v j) |
(vi , v j) ∈ E, i ∈ T, j ∈ T }. The total weight of subgraph
GT is defined as

f (GT) =
∑

i∈T, j∈T

ai j . (1)

We can express T by an indicator vector x = (x1, . . . , xm) ∈
{0, 1}m such that xi = 1 if i ∈ T and xi = 0 otherwise. Then
f (GT) can be represented in a quadratic form f (GT) =
f (x) = xT Ax.

A neighborhood of vertex set T in graph G is given by a
set of adjacent vertices that are not in T :

N (T) = {v ∈ V | ∃u∈T A(v, u) > 0 and v �∈ T }. (2)

Of course, the neighborhood can be further restricted to a
small number of nearest neighbors.

We are also given a symmetric relation M ⊆ V × V
between vertices of the graph. We call M a mutex (short
for mutual exclusion) relation. If M(i, j) = 1 then the two
vertices i, j cannot belong to the same MWS. M(i, i) = 0
for all vertices i . In other words, mutex represents incompat-
ible vertices that cannot be selected together. Formally, this

123

322 Int J Comput Vis (2015) 112:319–341

requirement can be expressed as a constraint on the indicator
vector x ∈ {0, 1}m : if M(i, j) = 1, then xi + x j ≤ 1.

We also define a set of indices of vertices that are incom-
patible with a vertex set T ⊂ V :

mutex(T) = { j ∈ V | ∃i∈T M(i, j) = 1},
and a set of compatible vertices as vertices that can be added
to T without violating the mutex constraints:

com(T) = V \ (mutex(T) ∪ T).

Given a set U ⊆ V of initial vertices that must be selected
as part of the solution, we consider the following maximiza-
tion problem

maximize
x∈{0,1}m

f (x) = xT Ax subject to

(C1) ∀i ∈ U xi = 1 and (C2) xT Mx = 0.

(3)

Constraint (C1) ensures that the initial vertices U ⊆ V are
selected as part of the solution and (C2) ensures that all mutex
constraints are satisfied. We assume that the problem (3) is
well-defined in that there exists x that satisfies the three con-
straints (C1, C2).

The goal of (3) is to select a subset of vertices of graph
G such that f is maximized and the constraints (C1, C2)
are satisfied. Since f is the sum of pairwise affinities of the
elements of the selected subset, the larger is the subset, the
larger is the value of f . However, the size of the subset is
limited by mutex constraints (C2).

A global maximum of (3) is called a constrained maxi-
mum weight subgraph (CMWS) of graph G. Since two ver-
tices i, j such that M(i, j) = 1 cannot belong to CMWS,
it makes sense to set A(i, j) = 0, which makes matrix A
sparser. However, even if A(i, j) = 0, vertices i, j may
both belong to the same maximal clique. Hence constraint
(C2) is stronger than setting A(i, j) = 0. (Of course, set-
ting A(i, j) = −∞ guarantees that mutex constraints are
satisfied, but it is equivalent to our constraints (C2).)

The problem (3) is a combinatorial optimization problem
and is NP-hard Asahiro et al. (2002). Therefore, the discrete
assignment x ∈ {0, 1}m is usually relaxed to x ∈ [0, 1]m , i.e.,
each coordinate xi of x is relaxed to a continuous variable in
the interval [0, 1], for example, this is done in similar prob-
lems of finding dense subgraphs in Cho et al. (2010); Pavan
and Pelillo (2007); Liu et al. (2010); Sontag et al. (2010). The
relaxed problem can be solved with quadratic programming
(QP) for which many solvers exist. However, a solution of
the relaxed problem is usually not guaranteed to satisfy con-
straints (C1, C2). For example, the jigsaw puzzle solutions
obtained by loopy belief propagation (Cho et al. 2010) often
violate the constraint (C2) as demonstrated in our experi-
mental results: one can observe in the second row in Fig. 5

that some puzzle pieces are assigned to several board loca-
tions, although (Cho et al. 2010) utilizes an explicit penalty
to prevent this from happening. Another difficulty is related
to discretization of the relaxed solution in order to obtain the
final discrete assignment. For these reasons, and since for
our application, it is very important that the constraints are
satisfied, we treat (C1, C2) as hard constraints that cannot be
violated, and solve problem (3) directly.

In general, our observation is that the proposed method
performs extremely well when the graph node potentials are
local, i.e., each graph node is only linked to a small num-
ber of other nodes or equivalently the affinity matrix A is
sparse, as is the case for the correspondence graph of the
image jigsaw puzzle problem. In contrast, when the graph
node potentials are more global, i.e., many nodes have large
numbers of neighbors, then we expect the relaxed methods
to perform better.

If G is the association graph of the jigsaw puzzle problem,
then the weight function A(i, j) measures the compatibility
of two assignments vi = (pi , qi) and v j = (p j , q j) for
i �= j :

– If qi and q j are adjacent board squares, i.e., they have
a side in common, then A(i, j) is proportional to the
similarity of two images zi and z j on puzzle pieces pi

and p j along their common side.
– If qi and q j are not adjacent board locations, then

A(i, j) = 0.

In the special case when i = j , A(i, i) measures the com-
patibility of assigning the puzzle piece pi to board location
qi . Since we do not assume any prior on the image to be
constructed, we set A(i, i) = 0 for i = 1, . . . , m. How-
ever, in the problem of matching feature points between two
images, it makes sense to define A(i, i) as a similarity of
texture around points pi and qi , e.g., the similarity of their
SIFT features (Lowe 2004).

The hard constraints in (3) have the following form for the
jigsaw puzzle problem: (C1) expresses an initial assignment,
in particular, in all our experiments, U = {v1} = {(p1, q1)},
where q1 is the top left square and p1 is the puzzle piece that
correctly corresponds to the top left square. We observe that
the selected location in the top left corner is usually less infor-
mative than locations in the middle of the puzzle board. (C2)
simply ensures one-to-one correspondence between puzzle
pieces and board locations.

3 SMC Algorithm for Constrained Maximum Weight
Subgraphs

In this section we express (3) as maximization problem on
a random field and introduce a novel SMC based algorithm
for solving it.

123

Int J Comput Vis (2015) 112:319–341 323

By associating a random variable (RV) Xi with each vertex
i ∈ V of graph G, we introduce a random field with the
neighborhood structure of graph G. Each RV can be assigned
either 1 or 0, where Xi = 1 means that the vertex vi is
selected as part of the solution. The conditional probability
of the assignment of values to all RVs is denoted as

P(X1 = x1, . . . , Xm = xm | Z) = p(x|Z), (4)

where x = x1:m = (x1, . . . , xm) ∈ {0, 1}m is an indicator
vector, and Z = {z1, . . . , zm} is a set of observations associ-
ated with graph vertices.

In Sect. 4.3, we define p(x|Z) so that vector x at which
it obtains its maximum value approximates the maximum of
f in (3). This allows us to focus on maximizing (4). Thus,
our goal becomes to find values x̂i of coordinates xi of the
indicator vector x such that x̂ satisfies constraints (C1, C2)
and

x̂ = argmax
x∈{0,1}m

p(x|Z). (5)

We define a particle (i) at time t −1 for 2 ≤ t ≤ m as vec-
tor x (i)

1:t−1 = (x (i)
1 , . . . , x (i)

t−1) ∈ {0, 1}t−1. The ’particle’ is a
sample from the state space defined by the collection of indi-
cator variables i.e. {0, 1}t . The dimensionality increases with
each iteration t until t = m. We have an associated weight
with every particle w(x (i)

1:t−1) ≥ 0. The goal of the SMC algo-
rithm is to recursively extend the particles starting at t = 1
until t = m so that the weighted particles {x (i)

1:m, w(x (i)
1:m)} for

i = 1, . . . , N represent samples from the target distribution
(4), where N is the number of particles. Finally, we take the
particle with the largest weight as the solution of (5).

The coordinates with value one of vector x (i)
1:t−1 deter-

mine the subset of selected graph vertices for particle (i).
Therefore, in our approach we select a subset of vertices
V (i)

t−1 = { j1, . . . , jl} ⊂ V such that x (i)
j = 1 if and only if

j = j1, . . . , jl .
The proposed algorithm for solving (5) is presented in Fig.

2. For simplicity of presentation we assume that U = {v1}
in (C1), i.e., we assume that the first vertex must belong to
the maximum weight clique.

In the proposal step, each particle (i) is multiplied to many
follower particles, where each follower is obtained by adding
one more vertex s that satisfies mutex constraints (C2).

We observe that if t < m, then x (i)
1:t /∈ {0, 1}m but we

can obtain a solution to Eq. (4) by extending x (i)
1:t to x (i)

1:m ∈
{0, 1}m , where coordinates of x (i)

1:m not present in x (i)
1:t are set

to zero. As can be seen from the above description the vectors
of all obtained particles satisfy the three constraints (C1,C2).
The algorithm in Fig. 2 contains an application depended
constant γ .

Fig. 2 SMC Algorithm for Constrained MWS

Section 4 presents important modules needed to verify the
correctness of the algorithm in Fig. 2. After introducing the
PF preliminaries and SMC with state permutations in Sects.
4.1 and 4.2, respectively, we show that the proposed algo-
rithm is a special instance of the SMC framework. Finally, in
Sect. 4.6 we prove that that the particle with largest weight
obtained by the algorithm approximates the solution of the
constrained MWS problem in (3) with any precision if a suf-
ficiently large number of particles is used.

4 Theory Behind the Algorithm

4.1 Particle Filter Preliminaries

In this section we review preliminary facts about the classic
PF. They will be utilized in the following sections when we
introduce the proposed framework for the main algorithm.

Given a sequence of RVs (X1, . . . , Xm) and a correspond-
ing sequence of observations Z = (z1, . . . , zm), i.e., here the
RVs and the observations are ordered. The goal is to find val-
ues of these RVs that maximize the posterior distribution

123

324 Int J Comput Vis (2015) 112:319–341

P(X1 = x1, . . . , Xm = xm | Z) = p(x1:m | Z),

where x1:m = (x1, . . . , xm) ∈ X m is a state space vector
representing the possible values of the RVs. We also know
that each state xt has a corresponding observation zt for t =
1, . . . , m. Thus, the goal is to find the values x̂t of states xt

such that

x̂1:m = argmax
x1:m

p(x1:m | Z). (9)

Although we will solve (9) in its general formulation, we
should keep in mind that our actual goal is to derive a method
for solving (5). In the PF framework it is a simple task to
ensure that constraints (C1,C2) are satisfied. Since each par-
ticle carries a partial selection of graph vertices, we only
need to check whether these vertices satisfy the constraints
(C1,C2) for each particle. We can easily ensure this when
generating the proposal distribution as is done in the algo-
rithm in Fig. 2.

Equation (9) can be solved by approximating the posterior
distribution with a finite number of samples in the framework
of Bayesian Importance Sampling. Since it is usually difficult
to draw samples from the probability density function (pdf)
p(x1:m |Z), samples are drawn from a proposal pdf q, x (i)

1:m ∼
q(x1:m |Z) for i = 1, . . . , N . Then the approximation is given
by

p(x1:m |Z) ≈
N∑

i=1

w(i)δ
x (i)

1:m
(x1:m), (10)

where δ
x (i)

1:m
(x1:m) denotes the delta-Dirac mass located at

x (i)
1:m and

w(i) = p(x (i)
1:m |Z)

q(x (i)
1:m |Z)

(11)

are importance weights of the samples. Typically the sample
x (i)

1:m with the largest weight w(i) is then taken as the solution
of (9).

Since it is still computationally intractable to draw sam-
ples from q due to high dimensionality of x1:m , Sequential
Importance Sampling is usually utilized. In the classical PF
approaches, samples are generated recursively following the
order of dimensions in state vector x1:m = (x1, . . . , xm):

x (i)
t ∼ qt (x |x1:t−1, Z) = qt (x |x1:t−1, z1:t) (12)

for t = 1, . . . , m, and the particles are built sequentially
x (i)

1:t = (x (i)
1:t−1, x (i)

t) for i = 1, . . . , N . The subscript t in
qt indicates from which dimension of the state vector the
samples are generated. Since q factorizes as

q(x1:m |Z) = q1(x1|Z)

m∏

t=2

qt (xt |x1:t−1, Z), (13)

we obtain that x (i)
1:m ∼ q(x1:m |Z). In other words, by sam-

pling recursively x (i)
t from each dimension t according to

(12) we obtain a sample from q(x1:m |Z) at t = m.
Since at a given iteration we have a partial state sample

x (i)
1:t for t < m, we also need an evaluation procedure of this

partial state sample. For this we observe that the weights can
be recursively updated according to Thrun et al. (2005):

w(x (i)
1:t) = p(zt |x (i)

1:t , z1:t−1)p(x (i)
t |x (i)

1:t−1)

qt (x (i)
t |x (i)

1:t−1, z1:t)
w(x (i)

1:t−1). (14)

The above equation is derived from (11) using Bayes rule.
Consequently, when t = m, the weight w(x (i)

1:m) of particle (i)
recursively updated according to (14) is equal to w(i) (defined
in (11)). Hence, at t = m, we obtain a set of weighted (impor-
tance) samples from p(x1:m |Z), which is formally stated in
the following theorem Crisan and Doucet (2002):

Theorem 1 Under reasonable assumptions on the sampling
(12) and weighting functions (14) given in Crisan and Doucet
(2002), p(x1:m |Z) can be approximated with weighted sam-
ples {x (i)

1:m, w(x (i)
1:m)}N

i=1 with any precision if N is sufficiently
large. Thus, the convergence in (15) is almost sure:

p(x1:m |Z) = lim
N→∞

N∑

i=1

w(x (i)
1:m)δ

x (i)
1:m

(x1:m). (15)

In many applications, the weight equation (14) is simpli-
fied by making a common assumption that qt (x (i)

t |x (i)
1:t−1, z1:t)

= p(x (i)
t |x (i)

1:t−1), i.e., we take as the proposal distribution
the conditional pdf of the state at time t conditioned on the
current state vector x (i)

1:t−1. This assumption simplifies the
recursive weight update to

w(x (i)
1:t) = w(x (i)

1:t−1)p(zt |x (i)
1:t , z1:t−1), (16)

and implies that the samples are generated from

x (i)
t ∼ pt (x |x (i)

1:t−1). (17)

Analogous to (12), pt in (17) indicates the dimension of the
state space from which the samples are generated.

We summarize the derived standard PF algorithm in
Fig. 3. This procedure is called Sampling Importance Resam-
pling (SIR). Resampling is an important part of any PF algo-
rithm, since resampling prevents weight degeneration of par-
ticles (Thrun et al. 2005). Usually the weights of new parti-
cles after resampling are equal and set to 1/N . However, it is
indicated in Chen (2003) (p. 28) that the performance might

123

Int J Comput Vis (2015) 112:319–341 325

Fig. 3 Standard PF Algorithm

be improved if the resampled particles retain their weights or
some variants of those. The details justifying such a heuristic
can be found in Liu et al. (2001). Therefore, in our approach
the new particles simply inherit weights from their parents.

We observe that from the point of view of finding sub-
graphs, the presented PF algorithm always searches the graph
in the same order, which is simply the order of indices of
graph nodes. While the fixed order is natural in tracking sce-
narios, where the order is determined by the time stamps,
usually there is no such natural order of graph vertices. As an
example consider the correspondence graph G of assigning
6 puzzle pieces to six board locations illustrated in Fig. 1.
G has 36 vertices and each vertex is a pair (puzzle piece
index, location index). If the vertex order happens to be so
that the first vertex is v1 = (p1, q1) = (3, a), the second
vertex is v2 = (p2, q2) = (5, f), and the third vertex is
v3 = (p3, q3) = (1, b), where the puzzle pieces are num-
bered as in Fig. 1b, then Fig. 1c illustrates the state of the
particle x (i)

1:3 = (1, 0, 1), representing the following value
assignments to RVs: X1 = 1, X2 = 0, X3 = 1 This means
the first and the third vertices are selected, and the second is
not selected. Of course, from the point of view of solving the
jigsaw puzzle, this means that puzzle pieces numbered 3 and
1 are assigned locations (a) and (b), correspondingly. The
problem is that v1 is not related to v2, therefore, the value
assignment to X2 is not influenced by the assigned value
to X1. In contrast, the value assignment to X3 is influenced
by the assigned value to X1. Intuitively, we would like to
dynamically determine the order of RVs so that their value
assignment is influenced by the already assigned values.

4.2 Extension to Permuted States

The key idea of the proposed approach is to explore different
orders of the states (xi1 , . . . , xim) such that the corresponding
sequences of observations (zi1, . . . , zim) is most informative.
This way we are able to utilize the most informative obser-
vations first. To achieve this we modify the proposal so that
the importance sampling is performed for every dimension
not yet represented by the current particle.

To formally define the proposed sampling rule, we need
to explicitly represent different orders of states with a per-
mutation σ : {1, . . . , m} → {1, . . . , m}. When t < m, we
actually have an injection σ : {1, . . . , t} → {1, . . . , m},
but we will still call it a permutation, since it is a permu-
tation restricted to a subset. We use the shorthand notation
σ(1 : t) to denote (σ (1), σ (2), . . . , σ (t)) for t ≤ m. Each
particle (i) now can have a different permutation σ (i) of RV
(or state dimensions) represented by vector x (i)

σ (1:t). Observe
that a sequence of states xσ(1:t−1) visited before time t may
be any subsequence (i1, . . . , it−1) of t − 1 different indices
in {1, . . . , m}.

We define σ (i)(1 : t − 1) = {1, . . . , m} \ σ (i)(1 : t − 1),
i.e., the indices in 1 : m that are not present in σ (i)(1 : t − 1)

for t ≤ m. We are now ready to formulate the proposed
importance sampling. At each iteration t ≤ m, for each par-
ticle (i) and for each s ∈ σ (i)(1 : t − 1), we sample

x (i)
s ∼ ps(x |x (i)

σ (1:t−1)). (18)

The subscript s at the posterior pdf ps indicates that we sam-
ple values for state s. We generate at least one sample for
each state s ∈ σ (i)(1 : t − 1). This means that the single par-
ticle x (i)

σ (1:t−1) is multiplied and extended to several follower

particles x (i)
σ (1:t−1),s . Consequently, at iteration t < m parti-

cle (i) may have at least m − t + 1 followers. Each follower
is a sample from a different coordinate of the state vector.
In contrast, in the standard application of rule (17), at each
iteration t particle (i) has followers samples from coordinate
t + 1. We do not make any Markov assumption in (18), i.e.,
the new state x (i)

s depends on all previous states x (i)
σ (1:t−1) for

each particle (i). Figure 4 summarizes the proposed SMC
with state permutations (SMCSP) algorithm.

We observe that the particle weight evaluation in (20) is
analogous to (16) in that the conditional probability of obser-
vation zs is a function of two corresponding sequences of
observations and states plus the state xs . The key difference
is that each particle may have a different order of RVs repre-
sented by the permutation σ (i)(1 : t − 1).

Sampling more than one follower of each particle and
reducing the number of followers by resampling is known
in the SMC literature as prior boosting (Gordon et al. 1993;
Carpenter et al. 1999). It is used to capture multi-modal like-
lihood regions. The resampling in our framework plays an
additional and a very crucial role. It selects the most informa-
tive orders of states. Since the weights of w(x (i,s)

σ (1:t)) are deter-
mined by the corresponding order of observations zσ (i)(1:t−1),
and the resampling uses the weights to selects new particles
x (i)
σ (1:t), the resampling determines the order of state dimen-

sions. Consequently, the order of state dimensions is heav-
ily determined by their corresponding observations, and this
order may be different for each particle (i), i.e., each particle

123

326 Int J Comput Vis (2015) 112:319–341

Fig. 4 SMC with state permutations (SMCSP)

may have a different order of dimensions σ (i)(1 : m). This is
in strong contrast to the classical SMC, where observations
are considered only in one order. Another difference is that
we have a finite dimension of the state space, while classical
SMC methods usually deal with infinite dimensional state
space representing time.

Therefore, at t = m all state dimensions are present in
each sample x (i)

σ (1:m). Hence we can reorder the sequence

of state dimensions σ (i)(1 : m) to form the original order

1 : m by applying the inverse permutation
(
σ (i)

)−1
and

obtain x (i)
1:m = x (i)

σ−1σ(1:m)
, i.e., the state values are sorted

according to the original state indices 1 : m in each sample
(i). This is the key idea in our proof of the following theorem.

Theorem 2 Under reasonable assumptions on the sampling
(19) and weighting functions (20) given in Crisan and Doucet
(2002), p(x1:m |Z) can be approximated with weighted sam-
ples {x (i)

1:m, w(x (i)
σ (1:m))}N

i=1 with any precision if N is suffi-
ciently large. Thus, the convergence in (22) is almost sure:

p(x1:m |Z) = lim
N→∞

N∑

i=1

w
(

x (i)
σ (1:m)

)
δ

x (i)
1:m

(x1:m). (22)

Proof By Theorem 1, we only need to show that {x (i)
1:m,

w(x (i)
σ (1:m))}N

i=1 represent weighted samples from p(x1:m |Z).
The key observation is that p and q are probabilities

on joint distribution of m random variables, and as such
the order of the random variables is not relevant, e.g.,
p(x2, x3, x1|Z) = p(x1, x2, x3|Z). This follows from the
fact that a joint probability is defined as the probability of
the intersection of the sets representing events correspond-

ing to the value assignments of the random variables, and set
intersection is independent of the order of sets. Consequently,
we have for every permutation σ

p(xσ(1:m)|Z) = p(x1:m |Z) (23)

q(xσ(1:m)|Z) = q(x1:m |Z) (24)

According to the proposed importance sampling (19), x (i)
σ (1:m)

is a sample from q(xσ(1:m)|Z). Consequently, by (24), x (i)
1:m =

x (i)
σ−1σ(1:m)

is a sample from q(x (i)
1:m |Z) for each particle (i).

By the weight recursion in (20), and by (23) and (24)

w
(

x (i)
σ (1:m)

)
= p(x (i)

σ (1:m)|Z)

q(x (i)
σ (1:m)|Z)

= p(x (i)
1:m |Z)

q(x (i)
1:m |Z)

. (25)

Thus {x (i)
1:m, w(x (i)

σ (1:m))}N
i=1 represent weighted samples from

p(x1:m |Z).

We would like to note that although the theorem guaran-
tees convergence of the samples to the posterior as N → ∞,
in practice, since we are interested only in MAP, we only
need much smaller N . In fact empirically in our experimen-
tal results we achieve that by around N = 200. We would also
like to note that because of our interest in the MAP, we are not
concerned with the mixing time of the sampling procedure
which in turn depends on the spectral gaps of the transition
matrix or proposal functions (Montenegro and Tetali 2006).
Since each particle will be exploring different permutations
of the state space, the actual number of particles needed in
achieving MAP depends on how many of the proposal func-
tions are close to the posterior. In practice it suffices even if a
small proportion of those are good. Accurately predicting or
achieving precise bounds on the number of particles needed
in such cases would involve characterizing and analyzing
such “distances“ between proposal and the posterior. Except
for special instances of QAP such as Koopmans-Beckmann
QAP, for which a polynomial time approximation scheme
exists (Arora et al. 1996), it is NP-hard even to approximate
the QAP (Sahni and Gonzalez 1976). Hence such analysis of
the behavior is left outside the scope of our current work as it
not clear how to even verify (much less to estimate) such dis-
tances given that the problem is NP-hard. That is not only that
there is no known polynomial time algorithm for the problem
but it is not even in NP (i.e. we can not verify the solution
in polynomial time). Based on our experimental work (both
jigsaw puzzle and synthetic experiments) the empirical evi-
dence suggests that in practice 200 ≤ N ≤ 1,000 works well
for m ∼ 100. Hence N in practice can be much smaller than
m!.

123

Int J Comput Vis (2015) 112:319–341 327

4.3 SMC Algorithm for Constrained MWS as Instance
of SMCSP

The goal of this section is to show that the SMC Algorithm for
Constrained MWS in Fig. 2 is an instance of SMCSP algo-
rithm in Fig. 4. Hence Theorem 2 applies to SMC Algorithm
for Constrained MWS.

Due to Theorem 2, we need to define the proposal distrib-
ution ps(x |x (i)

σ (1:t−1)) in (19) and p(zs |x (i,s)
σ (1:t), zσ (i)(1:t−1)) in

the importance weight formula (20) in order to approximate
our target distribution p(x1:m |Z) with particles according to
(22). Both are defined in this section.

4.4 Proposal

We recall that x in ps(x |x (i)
σ (1:t−1)) can have either value one

or zero. Since x = 0 means not selecting vertex s, which
does not provide much information for our goal of finding
maximal cliques, we set ps(x = 0|x (i)

σ (1:t−1)) = 0. Since in

this case, we must have ps(x = 1|x (i)
σ (1:t−1)) = 1, we obtain

that x (i)
s = 1 if x (i)

s ∼ ps(x |x (i)
σ (1:t−1)).

Consequently, the sampling becomes deterministic. The
other important consequence is that each x (i)

σ (1:t) is just a

sequence of ones, i.e., V (i)
σ (1:t) = {σ(1), . . . , σ (t)} ⊂ V is

the sequence of selected vertices of particle x (i)
σ (1:t).

We define ps(x |x (i)
σ (1:t−1)) to ensure that constraints are

satisfied (C1, C2). We simply ensure that (C1) is satisfied
by the initialization. In order to ensure that (C2) is satisfied
we set ps(x |x (i)

σ (1:t−1)) = 0 if s �∈ com(V (i)
t−1). We also set

ps(x |x (i)
σ (1:t−1)) = 0 if |V (i)

t−1| = m, i.e., particle (i) already
has maximal possible number of selected vertices.

Finally, we set ps(x |x (i)
σ (1:t−1)) = 0 if s �∈ N (V (i)

t−1) in
order to ensure computational efficiency. Simply extending
a given particle with a vertex that is not related to its current
vertices does not bring any useful information, therefore, we
do not allow such extensions. Hence a selected subgraph is
always connected.

To summarize, the above definition of the proposal implies
that the proposal is deterministic and for s = 1, . . . , m the
followers of particle (i) are given by

x (i,s)
σ (1:t) = (

x (i)
σ (1:t−1), xs

)
, (26)

where xs = 1 and s ∈ N (V (i)
t−1) ∩ com(V (i)

t−1). Clearly, all

such followers x (i,s)
σ (1:t) or equivalently their corresponding sets

of selected vertices

V (i,s)
t = {σ(1), . . . , σ (t − 1), s} ⊂ V

satisfy constraints (C1, C2). We obtain that the proposal in
Fig. 2 is an instance of the proposal in (19).

4.5 Importance Weight

According to (20), we need to define p(zs |x (i,s)
σ (1:t), z(i)

σ (1:t−1)),

where we recall that σ (i,s)(t) = s. This means we need
to define the probability of observation zs conditioned on
just selected vertex s (having observation zs) and the current
configuration of vertices V (i)

t−1 = {σ (i)(1), . . . , σ (i)(t − 1)}
and their corresponding observations {z(i)

σ (1), . . . , z(i)
σ (t−1)}.

We define

p
(

zs |x (i,s)
σ (1:t), z(i)

σ (1:t−1)

)

= exp
A(s, s) + 2

∑t−1
k=1 A

(
s, σ (i)(k)

)

γ
, (27)

where we recall that A(s, σ (i)(k)) measures how the obser-
vation zs fits the observation z(i)

σ (k) for k = 1, . . . , t − 1. For
example, for the jigsaw puzzle problem vs = (ps, qs), and
(27) is proportional to how well the image zs of puzzle piece
ps fits to the images of already placed puzzle pieces that are
adjacent to board location qs . Since a given board square can
have at most 4 other adjacent squares, at most 4 terms in the
sum in (27) are nonzero. A(s, s) = 0 for all s = 1, . . . , m,
since we have no jigsaw puzzle image prior. We obtain that
the importance weight update in Fig. 2 is an instance of the
weight update in (20).

Therefore, the SMC Algorithm for Constrained MWS is
an instance of SMCSP in Fig. 4. This implies that Theorem 2
applies to the SMC Algorithm for Constrained MWS.

4.6 SMC Algorithm for Constrained MWS Approximates
MWSs

Theorem 3 The particle with the maximum weight obtained
by SMC Algorithm for Constrained MWS in Fig. 2 approxi-
mates the solution of constrained MWS problem (3) with any
precision if the number of particles N is sufficiently large.

Proof Let {(x (i)
σ (1:t), w(x (i)

σ (1:t)))}N
i=1 be a weighted particle

obtained by the algorithm in Fig. 2. Since it is a special
instance of the PF with state permutations algorithm in Sect.
4.2, Theorem 2 applies to it, and we obtain that the set
of weighted particles approximates the target distribution
p(x1:m |Z) with any precision for sufficiently large N . Hence
the particle with the largest weight approximates the maxi-
mum of p(x1:m |Z). Finally, by Lemma 4 (below), this par-
ticle approximates the maximum of the constrained MWS
problem (3).

We denote with [x (i,s)
σ (1:t)] a vector x (i,s)

σ (1:t) padded with zeros
to get a vector of dimension m. Directly from the definition
of f in (1), we obtain

123

328 Int J Comput Vis (2015) 112:319–341

f
(
[x (i,s)

σ (1:t)]
)

= f
(
[x (i)

σ (1:t−1)]
)

+ A(s, s)

+2
t−1∑

k=1

A
(

s, σ (i)(k)
)
. (28)

We can view f ([x (i,s)
σ (1:t)]) − f ([x (i)

σ (1:t−1)]) as the gain in the
target function f obtained after assigning value one to RV Xs ,
i.e., after adding vertex s to the current selection of vertices
in particle. Hence (27) is the exponent of the gain.

Lemma 4 At every iteration t of the algorithm in Fig. 2 it
holds

log w
(

x (i)
σ (1:t)

)
= f

(
[x (i)

σ (1:t)]
)

− t log γ. (29)

Proof We prove the identity by induction. Due to the initial-
ization it holds for t = 1:

w
(

x (i)
σ (1)

)
= exp

A(1, 1)

γ
= exp

f
(
[x (i)

σ (1)]
)

γ
(30)

Hence log(w(x (i)
σ (1))) = f ([x (i)

σ (1)]) − log γ . Let us assume
the identity holds for t − 1:

log
(
w(x (i)

σ (1:t−1))
)

= f
(
[x (i)

σ (1:t−1)]
)

− (t − 1) log γ. (31)

We show the identity for t . By (20) and (27), we have

log
(
w(x (i)

σ (1:t)
)

= log w
(

x (i)
σ (1:t−1)

)

+ log p
(

zs |x (i,s)
σ (1:t), z(i)

σ (1:t−1)

)

= log w
(

x (i)
σ (1:t−1)) + A(s, s) + 2

t−1∑

k=1

A(s, σ (i)(k)
)

− log γ

and by the induction hypothesis (31) and by (28)

= f
(
[x (i)

σ (1:t−1)]
)

− (t − 1) log γ + A(s, s)

+ 2
t−1∑

k=1

A
(

s, σ (i)(k)
)

− log γ = f
(
[x (i,s)

σ (1:t)]
)

− t log γ

5 Related Work

The first work on jigsaw puzzle problem was reported in Free-
man and Garder (1964). Since shape is an important clue for
accurate pairwise relation, many methods Kong and Kimia
(2001); Goldberg et al. (2002); Radack and Badler (1982);
Wolfson et al. (1988) focussed on matching distinct shapes

among jigsaw pieces to solve the problem. The pairwise rela-
tions among jigsaw pieces are measured by the fitness of
shapes. There also exist approaches that consider both the
shape and image content (Makridis and Papamarkos 2006;
Nielsen et al. 2008; Yao and Shao 2003). Most methods solve
the problem with a greedy algorithm and report results on just
one or few images. Our problem formulation follows Cho et
al. (2010). All puzzle pieces have the same shape of a square,
hence only image content is considered. The key difference
of our approach as compared to Cho et al. (2010) lies in the
inference framework. While Cho et al. (2010) uses loopy
belief propagation, we propose a novel inference framework
based on PF. As reported in Sect. 6.2, we are able to quadruple
the accuracy of the puzzle assembly of Cho et al. (2010).

The recent paper by Pomeranz et al. (2011) also follows
the image jigsaw puzzle formulation in Cho et al. (2010),
but does not use the same same affinity relations between
puzzle patches. They focus on image content analysis of par-
tially build puzzles and use a greedy algorithm for puzzle
construction.

Particle filters (PF) belongs to SMC methods for model
estimation based on simulation. There is large number of
articles published on PF and we refer to two excellent books
Doucet et al. (2001), Liue (2001) for an overview. PF is a
powerful inference framework that is utilized in many appli-
cations. One of the leading examples is the progress in robot
localization and mapping based on PF (Thrun et al. 2005).
Classical examples of PF applications in computer vision are
contour tracking (Isard and Blake 1996, 1998) and object
detection (Ioffe and Forsyth 2001). All these approaches uti-
lize PF in the classical tracking/filtering scenario with a pre-
defined order of states and observations.

A preliminary version of the proposed algorithm with state
permutations was published by the authors in a conference
paper Yang et al. (2011), where it was directly applied to
solving the jigsaw puzzle problem. In this paper we con-
sider a more general problem of finding MWSs that satisfy
hard constraints. While (Yang et al. 2011) considers direct
assignment of the jigsaw puzzle pieces to board locations,
here we cast this problem as a vertex selection problem in an
association graph and solve it as a MWS problem.

The MWS problem is more general, since it is not
restricted to association graphs. Our algorithm for solving
this problem is introduced in Sect. 3. In comparison to Yang et
al. (2011), Sects. 2, 3, 4.3, 4.6, and 6.1 are new, and they con-
tain novel theoretical and algorithmic considerations. More-
over, even if focused on solving the image jigsaw puzzle
problem, the Constrained Maximum Weight Clique PF Algo-
rithm, introduced here, differs significantly from the algo-
rithm in Yang et al. (2011). In particular, here our proposal is
deterministic and particle weights are computed differently.
This leads to significant performance improvement as com-
pared to Yang et al. (2011), e.g., the accuracy of the label

123

Int J Comput Vis (2015) 112:319–341 329

Table 1 Comparisons with Suh et al. (2012)

Suh et al. (2012) Ours

Conceptual There are two well-defined graphs which should be matched Do not need well-defined individual graphs

Technical Constraint(s) are simply assertions that one node has only one match Unary inclusion and and mutual exclusion constraints

Technical The proposal uses the association matrix has a
normalization constant Z and a practical constant
α for implementing the transition kernel

The proposal is independent of the association
matrix and is simply driven by the constraints and
is deterministic avoiding additional parameters.

Technical Each particle is extended by only one follower Each particle is extended by multiple followers
based on the permutation of the previous iteration

Technical No explicit notion of importance weighting step Clearly uses the association matrix
for computing importance
weights

Technical Do not retain the weights from the previous step Retains the importance weights after resampling thus
remembering iterations much further into the past

Technical While at each iteration t there are exactly t matches
and the maximum number of matches is
min(n P ,nQ), it is unclear how long the sampling
procedure will need to be run for

The algorithm stops after t = m iterations The
performance comes from the richer exploration of
the search space at each step using the permuted
states and multiple followers for each particle

Conceptual Standard SMC framework A non-trivial modification to the SMC framework by
introducing permuted states

assignment is increased from 69 % to over 95 % for puzzles
with 108 pieces, which is over 25 %.

We have also formulated object detection in images as a
direct assignment problem of edge fragments to model con-
tours in two conference papers Lu et al. (2009); Yang and
Latecki (2010) and solved this problem with two different
variants the PF algorithm in Yang et al. (2011).

Relationship to Other Heuristic Search Frameworks.
Beam search (Bisiani 1987) is a very generic class of heuris-
tic search algorithms so that almost any search for combi-
natorial NP-hard problem can be called as an instance of
beam search or dynamic programming (Tillmann and Ney
2003). Many such beam search algorithms mainly targeted
optimizing memory efficiency (Furcy and Koenig 2005 and
references therein) and not necessarily “navigation” adapt-
ability in search space, which can be viewed as our main
contribution.

There are many sampling algorithms like Gibbs sampler,
Hot Coupling (Hamze and de Freitas 2005), Tree sampling,
Swendsen–Wang sampling etc. But most of them assume
restrictive conditional independence. Hamze et. al. proposed
a very generic importance sampling method called Large Flip
Importance Sampling (LFIS) to sample from the posterior
(Hamze and de Freitas 2007). The main motivation for their
approach comes from N-Fold Way (NFW, Bortz et al. 1975)
and Tabu search (Fred 1989) where they use heuristics to
improve the sampling of the exponential state space using
memory and heuristics to design good moves in the state
space. Since the moves are no-longer MCMC in the tradi-
tional sense they introduce importance weights to the distinct
states visited by N copies of the sampler. Independently we

had discovered a similar strategy using particle filters with
static observations in Lu et al. (2009). In this paper we com-
bined the strengths of both the approaches and presented an
improved SMC that employs better navigational strategy to
explore state space using permutations so as to compute MAP
in an efficient way.

Suh et al. (2012) is the closest framework to our work in
terms of formulating the quadratic optimization formulation
and using SMC. Table 1 below compares and contrasts our
work with Suh et al. (2012).
Relationship to Graph Matching Our objective function
(Eq. 3) is syntactically similar to a Quadratic Assignment
Problem (QAP) and can be used to solve graph matching
problem by creating an association graph as presented in Suh
et al. (2012). Hence we have only one graph and are seeking
to find the MWS that satisfies constraints (see Eq. 3).

We observe that not all graph matching formulations in
particular, the ones in Umeyama (1988) and in Almohamad
and Duffuaa (1993); Zaslavskiy et al. (2009), can be used to
find the MWS in a single graph. The key reason being that this
class of graph matching algorithms minimize the following
objective function which expects two well-defined graphs
(A1, A2 ∈ R

m×m), with equal number of vertices.

argmin
P∈Rm×m

||A1 − P A2 PT ||. (32)

Although the assumption of having equal number of vertices
can be relaxed by using dummy vertices, the search space has
to be square permutation matrices which makes it a more
restrictive problem than finding MWS. To emphasize how
such differences matter, we would like to note that some algo-

123

330 Int J Comput Vis (2015) 112:319–341

rithms such as Quadratic Convex Relaxation (QCV) perform
the search in the space of approximate permutation matri-
ces and project the final result back to space of P.1 Hence
the space in which search is performed matters. Although
the final resulting permutation matrix P∗ cannot be used to
obtain a weighted sub-graph in either A1 or A2, it can be used
to obtain a weighted sub-graph in the “association” graph. We
would also like to note that both our and (Suh et al. 2012)
type formulations of association graph do not expect equal
number of vertices either thus reducing one more choice of
dealing with dummy vertices.

In general to match two graphs A1 and A2, they can be
composed into the association graph A , which corresponds
to matrix A in Eq. (3). Examples of such composition are
given in formulas (36), (37) and (41), (42) in the experimental
subsection (Sect. 6.3). However, usually matrix A cannot
be decomposed into two sub-matrices A1 and A2. For any
problem with only one adjacency matrix (A) which can not
be naturally decomposed into two different graphs A1, A2,
our SMCSP procedure can be a natural algorithm. Two real
world examples that are naturally mapped to MWS but not
to graph matching are presented below:

1. Dyer et al. (1985) introduce the problem of finding max-
imum weighted planar subgraph as an important real
world problem of deciding which facilities should be
located adjacently. They propose to solve the problem
by finding a subgraph which maximizes the sum of edge
weights thus maximizing the closeness ratings of the
facilities. This is a real world example of the MWS which
cannot be mapped to a graph matching problem because
we do not have a partitioning of the nodes so as to perform
any type of matching. Our algorithm can be applied to
this method directly with appropriate adjustments to C1
and C2 which in turn only affect the proposal distribution
in our SMCSP algorithm.

2. Another real world example is a Steiner tree problem
where the goal is to finding the minimum edge weighted
subtree. Steiner tree problem models real world prob-
lems of VLSI design, wire length estimation and network
routing (second paragraph of Sect. 1 of Chlebík and Chle-
bíková (2008)). Again in this case as well it is unclear a
priori how to partition the nodes in the graphs so as to
perform any sort of matching. Our SMCSP algorithm can
be applied again to this problem by appropriately modi-
fying C1 and C2 to ensure avoiding simple cycles in the
resultant subgraph.

There are several other real world subgraph problems which
are either equivalent to or very closely related to the MWS

1 Relaxations of P are not necessarily equivalent to relaxations of x.

(sometimes called heaviest subgraphs in the literature (Has-
sin and Rubinstein 1994; Macambira 2002; Vassilevska et al.
2010; Álvarez-Miranda et al. 2013; Williams and Williams
2013; Rysz et al. 2013). In general as long as one can not par-
tition the nodes (e.g., pixels and labels, boys and girls etc.),
a notion of matching is not well defined but the notion of a
subgraph is and hence MWS (or any other subgraph algo-
rithm) can be adapted while matching algorithms cannot be.
Analyzing the full behavior (either theoretical or empirical)
of our algorithm in such problems however is outside the
scope of our current paper.

We would like to note that graph matching is an over-
loaded term. While some instances of graph matching prob-
lem (specifically with quadratic terms) can be represented
using a QAP formulation, in general the complexity of graph
matching is not as simple to understand as the complexity
of solving a QAP. For example the complexity of graph iso-
morphism is not fully characterized i.e. it is not known to be
either in P or to be NP-complete where as the decision ver-
sion of a QAP is NP-complete. The subgraph isomorphism
on the other hand is known to be NP-complete.

Finally we would like to note that in the case of combina-
torial NP-hard problems it is hard for one class of algorithms
to be uniformly superior to all other approaches on different
classes of problems or generic search problems. The term
”graphs” can encapsulate many mathematical objects, for
example something as fundamental as the real line, finite
automata etc. and different problem domains benefit from
different types of representations. Graphical view points of
objects occurring in real world problems have huge benefits
but are not universally effective for all problems. Similar is
the situation with the algorithmic view points of graph match-
ing and MWS. Each has its own benefits and limitations.
However in the application setting such as ours, the SMC
framework with permuted states, presented here yields excel-
lent experimental performance in the jigsaw puzzle problem
and is expected to perform well in other applications where
we do not need two individually well-defined graphs but can
model the application as MWS.

6 Experiments

6.1 Jigsaw Puzzle Details

In order to apply the proposed SMC Algorithm for Con-
strained MWS in Fig. 2 to solve the jigsaw puzzle problem,
it remains to define the affinity matrix A.

In the case of the jigsaw puzzle problem, the set of vertices
V = P × Q of graph G is composed of pairs vi = (pi , qi)

representing (puzzle piece index, board location). Because
we have the same number of board locations as the puzzle
pieces, the number of graph nodes m = n2, where n = |P| =

123

Int J Comput Vis (2015) 112:319–341 331

|Q|. The obtained MWS has n nodes, since (C2) represents
here one-to-one constraints between two sets of n elements.

The observation zi associated with a vertex vi is simply
the image depicted on the puzzle piece represented by this
vertex, i.e., it is a digital image of size K × K represented
by a K × K × 3 matrix of pixel color values. The set of
observations is Z = {z1, . . . , zm}.

Our goal now is to define the affinity matrix A of graph G
representing the compatibility of the puzzle piece images of
adjacent puzzle pieces. Formally, A is a m × m matrix, but
actually, we only need to store a significantly smaller matrix
of size n ×n ×4 with the third dimension being an adjacency
type, since two puzzle pieces can be adjacent in four different
ways: left/right, right/left, top/bottom, and bottom/top, which
we denote with LR, RL, TB, and BT. Thus, we abstract here
from the actual location on the board of two puzzle pieces.

In order to be able to compare our experimental results
to the results in Cho et al. (2010) we define A following the
definitions in Cho et al. (2010). They first define an image dis-
similarity measure D. Given two images z j and zi on puzzle
pieces p j and pi , D measures their dissimilarity by summing
the squared L AB color differences along their boundary, e.g.,
the left/right (LR) dissimilarity is defined as

D
(

p j , pi , L R
)

=
K∑

k=1

3∑

c=1

(
z j (k, u, c)−zi (k, v, c)

)2
, (33)

where u indexes the last column of z j and v indexes the first
column of zi .

Finally, we are ready to define the affinity between two
graph nodes vi = (pi , qi) and v j = (p j , q j). Let us first
assume that squares qi and q j are LR adjacent. Then

A(i, j) = exp

(
− D(p j , pi , L R)

2δ2

)
, (34)

where δ is adaptively set as the difference between the small-
est and the second smallest D values between puzzle piece
pi and all other pieces in P , see Cho et al. (2010) for more
details. The affinity for RL, TB, and BT adjacent squares is
analogous.

If squares qi and q j are not adjacent, then we set A(i, j) =
0. Finally A(i, i) = 0 for all vertices i ∈ V , i.e., we do not
use any whole puzzle image priors.

6.2 Image Jigsaw Puzzle Results

We compare the image jigsaw puzzle solutions obtained by
the proposed algorithm to the solutions of the loopy belief
propagation used in Cho et al. (2010) under identical settings.
We used the software released by the authors of Cho et al.
(2010) to obtain their results and also to compute the affinities

defined in Sect. 6.1 used in our approach. The results are
compared on the dataset provided in Cho et al. (2010), which
we call MIT Dataset. It is composed of 20 images. We also
compare the results to our previous approach published in
the conference paper Yang et al. (2011).

The experimental results in Cho et al. (2010) are con-
ducted in two different settings: with and without any prior
on the target image layout. In Cho et al. (2008) the prior of
the image layout is given by a low resolution version of the
original image. Cho et al. (2010) utilizes a statistics of the
possible image layout as prior. We focus on the results with-
out any prior of the image layout. Consequently, we focus on
a harder problem, since we only use the pairwise relations
between the image patches, given by pair-wise compatibili-
ties of located puzzle pieces as defined in Sect. 6.1.

We use three types of evaluation methods introduced in
Cho et al. (2010). Each method focuses on different aspects
of the quality of the obtained puzzle solutions. The most
natural and strictest one is Direct Comparison. It simply
computes the percentage of correctly placed puzzle pieces,
i.e., for a puzzle with n pieces, Direct Comparison is the
number of correct solution pairs divided by n. A less stricter
measure is Cluster Comparison. It tolerates an assignment
error as long as the puzzle piece is assigned to a location
that belongs to a similar puzzle piece. The puzzle pieces are
first clustered into groups of similar pieces. Moreover, due
to lack of prior knowledge of target image, the reconstructed
image may be shifted compared to the ground truth image.
Therefore, a third measure called Neighbor Comparison
is used to evaluate the label consistency of adjacent puzzle
pieces independent of their grid location, e.g., the location of
two adjacent puzzle pieces is considered correct if two puz-
zle pieces are left-right neighbors in the ground truth image
and they are also left-right neighbors in the inferred image.
Neighbor Comparison is the fraction of correct adjacent puz-
zle pieces. This measurement does not penalize the accuracy
as long as the adjacent patches in original image are adjacent
in the reconstructed image.

The results on the MIT Dataset are shown in Table 2.
The proposed algorithm significantly outperforms the loopy
belief propagation in all three performance measures. More-
over, the reconstruction accuracy (according to the most nat-
ural measure, Direct Comparison) of the original images by
our algorithm is improved by more than four times. As com-
pared to our previous approach in Yang et al. (2011), the
proposed algorithm increased the Direct Comparison score
by over 25 %.
Effect of initialization The three methods are initialized with
one anchor patch, i.e., with one correct (puzzle piece, grid
location) pair. We always assign a correct image patch to the
puzzle piece at the top left corner of the image. We selected
the top left corner, since this is usually one of the less infor-
mative puzzle pieces. In this experiment we divide each test

123

332 Int J Comput Vis (2015) 112:319–341

Table 2 Comparison of the best scores on MIT Dataset with 108 puzzle pieces, i.e., the image on each puzzle piece is of size 56 × 56 pixels

Cho et al. (2010) Yang et al. (2011) Our algorithm Random location initialization Dropping C1

Direct Comparison 0.2366 0.6921 0.9523 0.7929 0.0110

Cluster Comparison 0.4657 0.7810 0.9889 0.8689 0.2531

Neighbor Comparison 0.6628 0.8620 0.9443 0.8856 0.6777

The last two columns show the performance of our algorithm under two different settings of initialization
We can observe that C1 plays a very useful role although the actual location (top-left, bottom-right etc.) of the initialization does not affect the
performance much

Fig. 5 First row the original images. Second row our solutions. Third row the jigsaw puzzle solutions of Cho et al. (2010)

image into 108 square patches resulting in n = 108 puz-
zle pieces. Following the experimental setting in Cho et al.
(2010), each experiment was repeated three times and best
performance is reported for each of the three methods. In
all our experiments, γ is set to maximal affinity times the
number of patches, i.e., γ = n · maxi, j A(i, j).

In principle, the initialization constraint (C1) is not needed
for our SMCSP framework, but it provides a very useful ini-
tialization step in practice. The navigation through search
space itself does not heavily rely on C1 but rather relies on
C2. The lack of initialization affects the performance of the
algorithm. We randomly matched different puzzle pieces and
locations and repeated the experiment 10 different times. The
results (last two columns of Table 2) as expected are not as
good as when using C1 but comparable to Cho et al. (2010)
under cluster and neighbor comparisons. However the loca-
tion (e.g. top-left, right, center etc.) of the initial ground-truth

does not affect the performance which is still orders of mag-
nitude better than that of Cho et al. (2010). Hence one can
change the location of the initial puzzle as long as the initial
puzzle is in the correct location (i.e. C1 is satisfied).

In order to demonstrate that the considered image jigsaw
puzzle problem is also very challenging to humans, we show
some example results in Fig. 5. There, we show the origi-
nal images, but we would like to emphasize that the origi-
nal images are not used during the inference. Figure 5 also
demonstrates that the reconstructed images obtained by the
proposed algorithm compare very favorably to the results of
Cho et al. (2010). We observe many repeated patches in the
results of Cho et al. (2010). Often the same patch is assigned
to many locations, and some patches are not assigned at
all. This fact demonstrates that the loopy belief propagation
inference cannot enforce its solutions to satisfy global mutex
constraints.

123

Int J Comput Vis (2015) 112:319–341 333

Table 3 Results (direct comparison / cluster comparison/ neighbor
comparison) of our algorithm for different numbers of particles

No. Particles Max score Mean score

200 0.9088 / 0.9528 / 0.9250 0.8392 / 0.8980 / 0.8967

400 0.9194 / 0.9657 / 0.9344 0.8495 / 0.9137 / 0.9098

600 0.9463 / 0.9843 / 0.9405 0.8926 / 0.9461 / 0.9212

800 0.9500 / 0.9931 / 0.9482 0.8856 / 0.9426 / 0.9236

1000 0.9523 / 0.9889 / 0.9443 0.9218 / 0.9682 / 0.9330

The only case when the proposed approach does not yield
good solutions is when repeated patches are present, i.e.,
patches that are nearly perfectly identical. This is the case for
the image in the last column in Fig. 5. Although the image in
the first column seems to contain repeated patterns, they are
not identical, so that our approach has no problems with this
image. Of course, this limitation is due to the local nature of
the puzzle patch affinities, and could be addressed by con-
sidering more global relation among the patches as is done in
Pomeranz et al. (2011). However, we want to stress that our
main focus is on evaluating the proposed SMC inference, and
we view the challenging problem of the image jigsaw puzzle
as formulated in Cho et al. (2010) as an excellent testbed for
evaluating random fields inference methods.

Our best result reported in Table 2 is obtained for
N =1,000 particles. As illustrated in Table 3 this seems to
be a sufficient number of particles for this experiment. The
performance increase from N = 800 to N =1,000 parti-
cles is minor, and the difference between best score and the
average scores for N =1,000 particles is small. Our average
computing time for one image with 1,000 particles is 90 s
in a mixed Matlab/C++ implementation on a Windows PC
Core i7 with 3.40 GHz.

The largest puzzle considered in Cho et al. (2010) con-
tains 432 puzzle pieces. Since the size of whole images did
not change, the image patches on the puzzle pieces are of
size 28 × 28 pixels, which significantly reduces the discrim-

inative power of the patch affinities. They are only based on
color differences of 28 pixel pairs along one common edge.
Therefore, the performance of Cho et al. (2010) drops sig-
nificantly. It is about 0.10 / 0.30 / 0.55 (Direct Comparison /
Cluster Comparison / Neighbor Comparison). We estimated
it from the graph in Fig. 8 in Cho et al. (2010). Our perfor-
mance also dropped to 0.50 / 0.65 / 0.69 with 800 particles.
However, we observe that our result for direct comparison is
still five times better than the result of loopy belief propaga-
tion in Cho et al. (2010).

In order to demonstrate the dynamic of the proposed PF
inference, we show reconstructed images of the best particle
at different iterations in Fig. 6. As stated above it is also
possible to apply the standard PF algorithm, in which all
particles follow the same order, to the jigsaw puzzle problem.
Figure 7 illustrates the results when all particle follow the TV
scan order. As in Fig. 6 we show the best particle at selected
iterations. Fig. 7 clearly demonstrates that the standard PF
algorithm is unable to provide a solution to the challenging
jigsaw puzzle problem when executed with the same number
of particles as the proposed algorithm.
Time Complexity For a given image jigsaw puzzle with n
pieces, the time complexity of the proposed algorithm in Fig.
2 is O(n2 N), where N is the number of particles, as we now
show.

The time complexity of a single iteration t for one particle
is bounded from above by the size of the neighborhood of
the particle. We first observe that each particle at iteration
t has exactly t vertices. Since each vertex is a pair (puzzle
piece index, board location), and each board location can
have at most 4 adjacent board locations, each node can have
at most 4(n − t) neighbors, where n − t bounds the number
of puzzle pieces. Hence the neighborhood size is bounded by
t ·4(n−t). Since the maximum of t ·4(n−t) over t = 1, . . . , n
is of order n, the neighborhood size of each particle is O(n).
Since the number of iterations is n, the time complexity for
one particle is O(n2). We obtain that the time complexity of
the proposed algorithm in Fig. 2 is O(n2 N).

Fig. 6 The reconstructed images of the best particles of our algorithm at different iterations

123

334 Int J Comput Vis (2015) 112:319–341

Fig. 7 The reconstructed images of the best particles at different iterations with the standard PF algorithm in which all particle follow the TV scan
order

6.3 Graph Matching Experiments Using Synthetic Graphs

Although as discussed Sect. 5, the two formulations (graph
matching and MWS) have some important differences
(search space, utilizing the optimal solution), since our
SMCSP framework can be used for graph matching, we com-
pare its performance to that of two different graph matching
packages using synthetic graphs. We compare to a total of
thirteen different graph matching algorithms.

We compare the performance of our method to the factor-
ized graph matching (FGM) package2 in which nine different
algorithms (including the most recent Zhou and De la Torre
2013) listed below are available.

1. Graduated Assignment (GA) Gold and Rangarajan (1996)
2. Probabilistic Graph Matching (PM) Zass and Shashua

(2008)
3. Spectral Matching (SM) Leordeanu and Hebert (2005)
4. Spectral Matching with Affine Constraints (SMAC) Cour

et al. (2007)
5. Integer Projected Fixed Point method initialized with

solution used for FGM-U (item 8 below) (IPFP-U)
Leordeanu et al. (2009)

6. Integer Projected Fixed Point method initialized with SM
(IPFP-S) Leordeanu et al. (2009)

7. Re-weighted Random Walk Matching (RRWM) Cho et
al. (2010)

8. Factorized Graph Matching for Undirected graphs (FGM-
U) Zhou and De la Torre (2012)

9. Factorized Graph Matching for Undirected graphs (FGM-
D) Zhou and De la Torre (2013)

The package allows to generate a random synthetic graph
with a pre-defined edge density and number of nodes. We
use their default settings (number of nodes=10, edge den-

2 http://www.f-zhou.com/gm.html.

0

5

10

15

20

25

30

O
b

je
ct

iv
e

[a
rb

. u
n

it
s]

GA
PM SM

SM
AC

IP
FP−U

IP
FP−S

RRW
M

FGM
−U

FGM
−D

SM
CSP−2

00

SM
CSP−5

00

SM
CSP−8

00

SM
CSP−1

10
0

Fig. 8 The average performance (with error bars) as measured by the
objective value achieved by the nine different algorithms available in the
FGM package and our SMCSP using 200, 500, 800 and 1,100 particles.
The averages and error bars are estimated using 20 random synthetic
graphs with fixed number of nodes (=10) and edge density (=0.5)

sity=0.5) and generate 20 different random graphs and per-
form the graph matching. Their formulation is similar to that
of Suh et al. (2012) and ours. So we can directly apply our
algorithm to their association graphs. The Fig. 8 shows the
results of the average objective value (the higher the better)
and the error bars. We can observe that SMCSP outperforms
many of the classical graph matching algorithms and is only
outperformed by the latest work Zhou and De la Torre (2013),
even when we reduce the number of particles to 200.

The other package we compare to is theGraphM3 package
which implements four different algorithms viz. Umeyama

3 http://cbio.ensmp.fr/graphm/.

123

http://www.f-zhou.com/gm.html
http://cbio.ensmp.fr/graphm/

Int J Comput Vis (2015) 112:319–341 335

0 1000 2000 3000 4000
−0.1

−0.05

0

0.05

0.1

0.15

MWS (Avg. (SMC,Umeyama)) [arb. unit]

M
W

S
 (

S
M

C
−U

m
ey

am
a)

 [
ar

b
. u

n
it

] n=18, # of particles=800

μ=0.046
μ±1.96xσ (=0.051)

0 1000 2000 3000 4000
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

MWS (Avg. (SMC,RANK)) [arb. unit]

M
W

S
 (

S
M

C
−R

A
N

K
)

[a
rb

. u
n

it
]

n=18, # of particles=800

μ=0.030
μ±1.96xσ (=0.050)

0 1000 2000 3000 4000
−0.15

−0.1

−0.05

0

0.05

0.1

MWS (Avg. (SMC,QCV)) [arb. unit]

M
W

S
 (

S
M

C
−Q

C
V

)
[a

rb
. u

n
it

]

n=18, # of particles=800

μ=−0.026
μ±1.96xσ (=0.041)

0 1000 2000 3000 4000
−0.2

−0.15

−0.1

−0.05

0

0.05

MWS (Avg. (SMC,PATH)) [arb. unit]

M
W

S
 (

S
M

C
−P

A
T

H
)

[a
rb

. u
n

it
]

n=18, # of particles=800

μ=−0.079
μ±1.96xσ (=0.046)

Fig. 9 Bland–Altman plots comparing the performance of our SMC
method to Umeyama, RANK, QCV and PATH algorithms in computing
the MWS. On average we can observe that the SMCSP algorithm per-

forms better than Umeyama and RANK and slightly worse than QCV
and PATH. As in the case of GDist we can observe that the performance
is made worse by extremal graphs

(1988), PATH, QCV Zaslavskiy et al. (2009) and RANK
Singh et al. (2007). We report the data generated from the
following two specific experiments.

1. Utilize SMCSP-MWS to perform graph matching by
using an association graph.

2. Utilize the resulting optimal permutation (P∗) from the
four other graph matching algorithms and compute the
weight of the subgraph in the association graph.

Since the formulation of graph matching in this setting
is not the same as ours, the key implementation detail in
utilizing SMCSP-MWS algorithm for matching two graphs
defined using adjacency matrices A1 and A2 is in construct-
ing an association graph (A) such that finding an MWS in
A would result in P∗. Equation (35) presents the objective
function which is a generalized and normalized form of Eq.
(32) that is optimized in the GraphM package.

argmin
P∈Rm×m

(1 − α)
||A1 − P A2 PT ||2
||A1||2 + ||A2||2 − α

tr(CT P)

||C || . (35)

C(i, j) denotes the score of matching vertex i ∈ A1 to vertex
j ∈ A2 and α is used to weigh the node-matching and edge-
matching. We now describe the construction of A . Since
our framework does not require the graphs to have the same
number of vertices in general, if A1 and A2 have m1 and m2

number of vertices respectively, A ∈ R
m1m2×m1m2 . Since

A requires non negative entries, we set

A (i j, i j) = α exp

(
C(i, j)

||C ||
)

, for diagonal elements

(36)

A (i j, ab) = (1 − α) exp

(
− (A1(i, a) − A2(j, b))2

||A1||2 + ||A2||2
)

,

for off − diagonal elements.

(37)

123

336 Int J Comput Vis (2015) 112:319–341

0 0.5 1 1.5 2 2.5 3

x 10
6

−3

−2

−1

0

1
x 10

5

GDist (Avg. (SMC,Umeyama)) [arb. unit]

G
D

is
t

(S
M

C
−U

m
ey

am
a)

 [
ar

b
. u

n
it

]

n=18, # of particles=800

μ=−74810.678
μ±1.96xσ (=82696.258)

0 0.5 1 1.5 2 2.5

x 10
6

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

5

GDist (Avg. (SMC,RANK)) [arb. unit]

G
D

is
t

(S
M

C
−R

A
N

K
)

[a
rb

. u
n

it
]

n=18, # of particles=800

μ=−37230.995
μ±1.96xσ (=60427.730)

0 0.5 1 1.5 2 2.5

x 10
6

−1

−0.5

0

0.5

1

1.5

2
x 10

5

GDist (Avg. (SMC,QCV)) [arb. unit]

G
D

is
t

(S
M

C
−Q

C
V

)
[a

rb
. u

n
it

]

n=18, # of particles=800

μ=43382.250
μ±1.96xσ (=67852.070)

0 0.5 1 1.5 2

x 10
6

−4

−2

0

2

4

6

8

10
x 10

5

GDist (Avg. (SMC,PATH)) [arb. unit]

G
D

is
t

(S
M

C
−P

A
T

H
)

[a
rb

. u
n

it
]

n=18, # of particles=800

μ=164548.228
μ±1.96xσ (=253168.882)

Fig. 10 Bland-Altman plots comparing the performance of the
SMCSP method to Umeyama, RANK, QCV and PATH algorithms in
computing the GDist with out using any dummy nodes. We can notice

the improvements in the performance of the algorithm when compared
to the μs (represented by dark lines) obtained using the dummy nodes
in Fig. 11

The following objective is then optimized using our SMCSP
framework.

argmax
x∈{0,1}m1m2

xT A x. (38)

After the optimization, P(i, j) is set to 1 if node i j of A
is selected in the MWS solution i.e. if x∗(i j) = 1. Similarly
x(i j) is set to 1 if P∗(i, j) obtained from the other algorithms
is 1. For the other algorithms, based on theGraphM package,
we use the settings in which dummy nodes play a minimal
role i.e. just add |N−M | isolated dummy nodes to the smaller
graph with zero values in the corresponding entries of C .

The constraint (C1) is empty and (C2) is designed to
enforce one-one correspondence. Hence our algorithm picks
n = min(m1, m2) nodes as part of the MWS, i.e x∗ has
exactly n ones. For simplicity of comparison with other meth-
ods we include the dummy nodes in our experiments for the

most part but also report some results without using dummy
nodes.

We performed 18 synthetic graph matching experiments
available in the GraphM package which provides the values
for A1s, A2s and Cs. Since for the majority of the graphs C is
not provided we set α = 0 (as such the diagonal elements of
A are also set to 0) for our experiments. Since (a) both Eq.
(35) and Eq. (43) are NP-hard, that is not only are they com-
putationally hard but the solutions can not even be verified
efficiently in polynomial time (unless P = NP), (b) the syn-
thetic graphs are fixed and not randomly generated (as those
in FGM package), we resort to comparing the performance
between the different algorithms using Bland-Altman (BA)
plots Altman and Bland (1983). BA plots are used to capture
the relationship between the magnitude of a measure and
difference using two methods of obtaining the measure. The
X-axis shows the average of the measure using the two meth-
ods and the Y-axis plots the difference between the measure.

123

Int J Comput Vis (2015) 112:319–341 337

0 0.5 1 1.5 2 2.5 3

x 10
6

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

5

GDist (Avg. (SMC,Umeyama)) [arb. unit]

G
D

is
t

(S
M

C
−U

m
ey

am
a)

 [
ar

b
. u

n
it

] n=18, # of particles=800

μ=−74041.090
μ±1.96xσ (=75379.213)

0 0.5 1 1.5 2 2.5

x 10
6

−3

−2

−1

0

1

2
x 10

5

GDist (Avg. (SMC,RANK)) [arb. unit]

G
D

is
t

(S
M

C
−R

A
N

K
)

[a
rb

. u
n

it
]

n=18, # of particles=800

μ=−36461.406
μ±1.96xσ (=70371.523)

0 0.5 1 1.5 2 2.5

x 10
6

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

5

GDist (Avg. (SMC,QCV)) [arb. unit]

G
D

is
t

(S
M

C
−Q

C
V

)
[a

rb
. u

n
it

]

n=18, # of particles=800

μ=44151.838
μ±1.96xσ (=65507.708)

0 0.5 1 1.5 2 2.5

x 10
6

−4

−2

0

2

4

6

8

10
x 10

5

GDist (Avg. (SMC,PATH)) [arb. unit]

G
D

is
t

(S
M

C
−P

A
T

H
)

[a
rb

. u
n

it
]

n=18, # of particles=800

μ=165317.816
μ±1.96xσ (=256877.961)

Fig. 11 Bland–Altman plots comparing the performance of our SMC
method to Umeyama, RANK, QCV and PATH algorithms in computing
the GDist. We can observe that on average (represented by the dark line)
our SMC method performs better compared to Umeyama and RANK

but slightly worse than QCV and PATH. But if we notice carefully in
the case of QCV and PATH the average performance is made worse by
a couple of extremal graphs that have large GDist

The mean bias or difference and the 95 % deviations of the
difference (magenta lines) computed using the entire sample
are also plotted. If there is no systematic relationship between
the magnitude and difference the scatter looks uniform and
random within the standard deviation lines. The bias of a
method can be inferred based on mean bias (dark line).

Figure 11 shows the BA plots for GDist (||A1

− P∗ A2 P∗T ||2F), which does not have the second term
involving C since α = 0. Figure 9 shows the same for
MWS (x∗T A x∗). We can observe that (on average) our
SMC method performs better than Umeyama and RANK
but slightly worse than QCV and PATH. But if we notice
carefully in the case of QCV and PATH the average perfor-
mance is made worse by a couple of extremal graphs that
have large GDist. As in the case of GDist we can observe
that the performance is made worse by extremal graphs even

for MWS. The slight performance difference is only in an
average sense and not in a uniform sense as is to be expected
with such problems. Figure 10 shows the BA plots for GDist
when not using dummy nodes in the SMCSP. We can notice
the improvements in the performance of the algorithm when
compared to the μs obtained using the dummy nodes in Fig.
11. We do not show BA plots for MWS without dummy nodes
because MWS is computed on A and the other algorithms
require dummy nodes according to their current implemen-
tations in the GraphM package.

In addition to the above graph matching experiments we
also tested the performance of the SMCSP algorithm on the
QAPLib instances4. The QAP objective is

4 http://www.seas.upenn.edu/qaplib/inst.html.

123

http://www.seas.upenn.edu/qaplib/inst.html

338 Int J Comput Vis (2015) 112:319–341

0.0e+00
5.0e+06
1.0e+07
1.5e+07
2.0e+07

0e+00
5e+04
1e+05

0
500

1000
1500
2000
2500

0
5000

10000
15000

0
50000

100000
150000
200000

0
4000
8000

12000

0
500000

1000000
1500000

0e+00
5e+04
1e+05

0.0e+00
5.0e+08
1.0e+09
1.5e+09

0e+00
2e+05
4e+05

0
25000
50000
75000

100000

bur
chr

esc
had

kra
nug

rou
scr

tai
tho

w
il

12 12
b

12
c

14 15 15
b

15
c

16 16
b

16
c

16
d

16
e

16
f

16
g

16
h

16
i

16
j

17 18 18
b 20 20
b

20
c

21 22 22
b 24 25 25
b 26 26
b

26
e

26
f

26
g

26
h 27 28 30 30
b 32 32
e

32
g 35 35
b 40 40
b 50 50
b 60 60
b

64
c

Problem instance

Q
A

P
 o

bj
ec

tiv
e

[a
rb

. u
ni

ts
]

QAPSln SMCSP

Fig. 12 The performance of SMCSP on QAPLib instances. The Y -axis
shows the QAP objective values (Eq. (40)) obtained by our algorithm
(SMCSP) and the reported values (QAPSln) on the QAPLib website.
The values are in arbitrary units. The closer the sizes of the red and
green bars, the better is the performance of our algorithm. The facets

are used to show the clusters of problem instances given by different
groups of authors. The right side of the facet shows the group name
which is the first three characters of the name of the first author of the
group. The numerical values of the X -axis ticks show the size of the
QAP problem instance i.e. the value of m

min
P
tr

(
F P D PT

)
(39)

= min
P

∑

i, j

F(i, j)D(P(i), P(j)), (40)

where F and D are called the ”flow” and ”distance” matri-
ces and P is a permutation matrix. The key implementation
detail is exactly as before when we ran our algorithm on the
instances from GraphM package except now we have the F
and D square matrices instead of A1, A2 and C . If F and D
are in R

m×m , then the entries in A ∈ R
m2

are computed as,

A (i j, i j) = exp (−F(i, j)) , for diagonal elements (41)

A (ia, jb) = exp (−(D(i, a) + D(j, b))) ,

for off − diagnoal elements. (42)

Then we solve the MWS objective (reproduced below for
convenience),

argmax
x∈{0,1}m1m2

xT A x. (43)

As before, after the SMCSP optimization, P(i, j) is set
to 1 if node i j of A is selected in the MWS solution i.e. if
x∗(i j) = 1. C1= φ and C2 is designed to enforce one-one
correspondence so that x∗ has exactly m ones.

The QAPLib is a collection of heterogeneous set of prob-
lems collected from different groups of authors. In addition
to providing the F and D matrices, the collection presents
either optimal or heuristic solutions reported by the groups.
We present the performance of our algorithm on 80 prob-
lem instances from the library. The SMCSP based objective
values (bluish green bars) are compared against the reported

123

Int J Comput Vis (2015) 112:319–341 339

objective values (red bars) as shown in Fig. 12. Except for
instances from the group ’tai’ whose size ≥ 30, all the
solutions are reported to be optimal so the best we can hope
for SMCSP is to match the size of the red bars. For those
specific large instances of ’tai’ the reported solutions are
from special implementations of tabu search (Taillard 1991,
1995; Misevicius 2005, 2012).

We can observe that in almost all the 80 instances our
SMCSP algorithm matches the reported objective values
quite closely. It performs somewhat poorly on some problem
instances from the group ’chr’. After further investigation
into that class of instances we noticed that they are special set
of QAP instances where one matrix is the adjacency matrix
of a weighted tree and the other of a complete graph. Exploit-
ing that special structure Christofides and Benavent (1989)
devised exact QAP algorithm. Our SMCSP could in princi-
ple take full advantage of any such structure but we just ran
our algorithm ’as is’ using only 800 particles consistently
for all the problem instances. Even then the results of our
algorithm are comparable to best possible results, which is
remarkable considering the variety of all the instances and
their sizes. The Matlab scripts used in our project are made
publicly available5.

7 Conclusions

We introduce a novel inference framework for solving max-
imum weight subgraph problems with hard constraints. Our
key contribution is an extension of the SMC framework
to work with unordered observations. Weighted particles
explore the state space along different dimensions in dif-
ferent orders, and resampling allows the particles to focus on
most promising search regions. We prove that the obtained
importance samples represent samples from the original tar-
get distribution. We evaluate the performance of the pro-
posed algorithm on a problem of image jigsaw puzzles. As
the experimental results demonstrate, it significantly outper-
forms the loopy belief propagation.

Image jigsaw puzzle problem is an instance of a con-
strained correspondence problem, which can also be viewed
as a search problem on the correspondence graph. In this con-
text, the proposed algorithm can be viewed as a randomized
graph search algorithm, which keeps time complexity low
by effectively exploiting the sparsity of the adjacency matrix
(induced by the local nature of the neighborhood relation) on
instances of NP-hard problems.

Acknowledgments The authors would like to thank Taeg Sang Cho
for providing the code for the method in Cho et al. (2010). We would

5 http://brainimaging.waisman.wisc.edu/~adluru/SMCSP.

like to acknowledge the Waisman Core Grant P30 HD003352-45, the
NSF under Grants IIS-1302164 and OIA-1027897.

References

Almohamad, H. A., & Duffuaa, S. O. (1993). A linear programming
approach for the weighted graph matching problem. IEEE TPAMI,
15(5), 522–525.

Altman, D., & Bland, J. (1983). Measurement in medicine: the analysis
of method comparison studies. Statistician, 32, 307–317.

Álvarez-Miranda, E., Ljubić, I., & Mutzel, P. (2013). The maximum
weight connected subgraph problem. In: Facets of Combinatorial
Optimization, pp. 245–270. Berlin: Springer.

Arora, S., Frieze, A., & Kaplan, H. (1996). A new rounding proce-
dure for the assignment problem with applications to dense graph
arrangement problems. In: IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 21–30.

Asahiro, Y., Hassin, R., & Iwama, K. (2002). Complexity of finding
dense subgraphs. Discrete Applied Mathematics, 121, 15–26.

Bisiani, R. (1987). Beam search. In S. C. Shapiro (Ed.), Encyclopedia
of Artificial Intelligence (pp. 56–58). New York: Wiley.

Bortz, A. B., Kalos, M. H., & Lebowitz, J. L. (1975). A new algo-
rithm for monte carlo simulation of ising spin systems. Journal of
Computational Physics, 17, 10–18.

Burkard, R. E., Pardalos P. M., Cela, E., & Pitsoulis, L. (1998). The
quadratic assignment problem. In: P. Pardalos, D.Z. Du (eds.)
Handbook of combinatorial optimization, pp. 241–338. Philip
Drive Norwell, MA: Kluwer Academic.

Caetano, T., Caelli, T., Schuurmans, D., & Barone, D. (2006). Graphical
models and point pattern matching. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(10), 1646–1663.

Carpenter, J., Clifford, P., & Fearnhead, P. (1999). Building robust
simulation-based filters for evolving data sets (pp. 1–27). Depart-
ment of Statistics, University of Oxford.

Chen, Z. (2003). Bayesian filtering: From Kalman filters to particle
filters, and beyond. Technical report, McMaster University.

Chlebík, M., & Chlebíková, J. (2008). The steiner tree problem on
graphs: Inapproximability results. Theoretical Computer Science,
406(3), 207–214.

Cho, T. S., Avidan, S., & Freeman, W. T. (2010). A probabilistic image
jigsaw puzzle solver. In: CVPR.

Cho, T. S., Butman, M., Avidan, S., & Freeman, W. T. (2008). The patch
transform and its applications to image editing. In: CVPR.

Cho, M., Lee, J., & Lee, K. M. (2010). Reweighted random walks for
graph matching. In: Proceedings of the 11th European conference
on Computer vision: Part V, pp. 492–505.

Christofides, N., & Benavent, E. (1989). An exact algorithm for the
quadratic assignment problem on a tree. Operations Research,
37(5), 760–768.

Cour, T., Srinivasan, P., & Shi, J. (2007). Balanced graph matching.
Advances in Neural Information Processing Systems, 19, 313–320.

Crisan, D., & Doucet, A. (2002). A survey of convergence results on
particle filtering methods for practitioners. IEEE Transactions on
Signal Processing, 50(3), 736–746.

Cross, A., & Hancock, E. (1998). Graph matching with a dual-step EM
algorithm. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(11), 1236–1253.

Demaine, E. D., & Demaine, M. L. (2007). Jigsaw puzzles, edge match-
ing, and polyomino packing: Connections and complexity. Graphs
and Combinatorics, 23, 195–208.

Doucet, A., Freitas, N. D., & Gordon, N. (2001). Sequential Monte
Carlo methods in practice. Berlin: Springer.

123

http://brainimaging.waisman.wisc.edu/~adluru/SMCSP

340 Int J Comput Vis (2015) 112:319–341

Dyer, M., Foulds, L., & Frieze, A. (1985). Analysis of heuristics for
finding a maximum weight planar subgraph. European Journal of
Operational Research, 20(1), 102–114.

Fox, D., Thrun, S., Dellaert, F., & Burgard, W. (2000). Particle filters
for mobile robot localization. In A. Doucet, N. de Freitas, & N.
Gordon (Eds.), Sequential Monte Carlo Methods in practice. New
York: Springer.

Fred, G. (1989). Tabu search—part i. ORSA Journal on Computing,
1(3), 190–206.

Freeman, H., & Garder, L. (1964). Apictorial jigsaw puzzles: The com-
puter solution of a problem in pattern recognition. IEEE TEC, 13,
118–127.

Furcy, D., & Koenig, S. (2005). Limited discrepancy beam search. In:
Proceedings of the 19th international joint conference on Artificial
intelligence, pp. 125–131.

Georgescu, B., & Meer, P. (2004). Point matching under large image
deformations and illumination changes. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 26, 674–688.

Gold, S., & Rangarajan, A. (1996). A graduated assignment algo-
rithm for graph matching. IEEE Transactions Pattern Analysis and
Machine Intelligence, 18(4), 377–388.

Goldberg, D., Malon, C., & Bern, M. (2002). A global approach to auto-
matic solution of jigsaw puzzles. In: Symposium on Computational
Geometry.

Gordon, N., Salmond, D., & Smith, A. (1993). Novel approach to
nonlinear/non-gaussian bayesian state estimation. IEE Proceed-
ings of Radar and Signal Processing, 140, 107–113.

Hamze, F., & de Freitas, N. (2005). Hot coupling: A particle approach
to inference and normalization on pairwise undirected graphs of
arbitrary topology. In Advances in Neural Information Processing
Systems, Vol. 18, pp. 1–8.

Hamze, F., & de Freitas, N. (2007). Large-flip importance sampling. In
Uncertainty in Artificial Intelligence, Vol. 1, pp. 167–174.

Hassin, R., & Rubinstein, S. (1994). Approximations for the maximum
acyclic subgraph problem. Information Processing Letters, 51(3),
133–140.

Horaud, R., & Skordas, T. (1989). Stereo correspondence through fea-
ture grouping and maximal cliques. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 11(11), 1168–1180.

Ioffe, S., & Forsyth, D. (2001). Probabilistic methods for finding people.
International Journal of Computer Vision, 43, 45–68.

Isard, M., & Blake, A. (1996). Contour tracking by stochastic propa-
gation of conditional density. In: Proceedings of the 4th European
Conference on Computer Vision, ECCV, pp. 343–356.

Isard, M., & Blake, A. (1998). Condensation—conditional density prop-
agation for visual tracking. International Journal of Computer
Vision, 29(1), 5–28.

Jiang, H., Drew, M., & Li, Z. (2007). Matching by linear program-
ming and successive convexification. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 29(6), 959–975.

Khan, Z., Balch, T., & Dellaert, F. (2004). An mcmc-based particle filter
for tracking multiple interacting targets. In European Conference
on Computer Vision, Vol. 3024, pp. 279–290.

Kong, W., & Kimia, B. B. (2001). On solving 2d and 3d puzzles using
curve matching. In IEEE Conference on Computer Vision and Pat-
tern Recognition, Vol. 2, pp. 583–590.

Leordeanu, M., Hebert, M., & Sukthankar, R. (2009). An integer pro-
jected fixed point method for graph matching and map inference.
In Advances in Neural Information Processing Systems, Vol. 1, pp.
1114–1122.

Leordeanu, M., & Hebert, M. (2005). A spectral technique for corre-
spondence problems using pairwise constraints. Proceedings of
the Tenth IEEE International Conference on Computer Vision, 2,
1482–1489.

Liu, H., Latecki, L. J., & Yan, S. (2010). Robust clustering as ensembles
of affinity relations. In Advances in Neural Information Processing
Systems, Vol. 1, pp. 1414–1422.

Liu, J. S., Chen, R., & Logvinenko, T. (2001). A theoretical framework
for sequential importance sampling with resampling. In A. Doucet,
N. de Freitas, & J. Gordon (Eds.), Sequential Monte Carlo methods
in practice (pp. 223–233). Berlin: Springer.

Liue, J. (2001). Monte Carlo strategies in scientific computing. Berlin:
Springer.

Lowe, D. G. (2004). Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60, 91–110.

Lu, C., Latecki, L. J., Adluru, N., Yang, X., & Ling, H. (2009). Shape
guided contour grouping with particle filters. In IEEE International
Conference on Computer Vision, Vol. 1, pp. 2288–2295.

Macambira, E. M. (2002). An application of tabu search heuristic for the
maximum edge-weighted subgraph problem. Annals of Operations
Research, 117(1–4), 175–190.

Maciel, J., & Costeira, J. (2003). A global solution to sparse corre-
spondence problems. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25(2), 187–199.

Makridis, M., & Papamarkos, N. (2006). A new technique for solv-
ing a jigsaw puzzle. In IEEE International Conference on Image
Processing, Vol. 1, pp. 2001–2004.

Misevicius, A. (2005). A tabu search algorithm for the quadratic assign-
ment problem. Computational Optimization and Applications,
30(1), 95–111.

Misevicius, A. (2012). An implementation of the iterated tabu search
algorithm for the quadratic assignment problem. OR Spectrum,
34(3), 665–690.

Montenegro, R., & Tetali, P. (2006). Mathematical aspects of mixing
times in markov chains. Foundations and Trends in Theoretical
Computer Science, 1(3), 237–354.

Nielsen, T. R., Drewsen, P., & Hansen, K. (2008). Solving jigsaw puz-
zles using image features. PRL, 29, 1924–1933.

Pavan, M., & Pelillo, M. (2007). Dominant sets and pairwise clustering.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
29, 167–172.

Pomeranz, D., Shemesh, M., & Ben-Shahar, O. (2011). A fully auto-
mated greedy square jigsaw puzzle solver. In IEEE Conference on
Computer Vision and Pattern Recognition, Vol. 1, pp. 9–16.

Radack, G. M., & Badler, N. I. (1982). Jigsaw puzzle matching using a
boundary-centered polar encoding. Computer Graphics and Image
Processing, 19(1), 1–17.

Rysz, M., Mirghorbani, M., Krokhmal, P., & Pasiliao, E. L. (2013).
On risk-averse maximum weighted subgraph problems. Journal
of Combinatorial Optimization, 43, 1–19.

Sahni, S., & Gonzalez, T. (1976). P-complete approximation problems.
Journal of the Association of Computing Machinery, 23, 555–
565.

Singh, R., Xu, J., & Berger, B. (2007). Research in computational
biology. Pairwise global alignment of protein interaction net-
works by matching neighborhood topology, vol. 4453. Berlin:
Springer.

Smith, K., Gatica-Perez, D., & Odobez, J. M. (2005). Using particles to
track varying numbers of interacting people. In IEEE Conference
on Computer Vision and Pattern Recognition, Vol. 1, pp. 962–969.

Sontag, D., Globerson, A., & Jaakkola, T. (2010). Introduction to dual
decomposition for inference. In S. Sra, S. Nowozin, & S. Wright
(Eds.), Optimization for Machine Learning. Cambridge, MA: MIT
Press.

Suh, Y., Cho, M., & Lee, K. M. (2012). Graph matching via sequential
monte carlo. ECCV, 7574, 624–637.

Taillard, E. (1991). Robust taboo search for the quadratic assignment
problem. Parallel Computing, 17(4), 443–455.

123

Int J Comput Vis (2015) 112:319–341 341

Taillard, E. D. (1995). Comparison of iterative searches for the quadratic
assignment problem. Location Science, 3(2), 87–105.

Thrun, S. (2002). Particle filters in robotics. In: Proceedings of the 17th
Annual Conference on Uncertainty in AI (UAI).

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. Cam-
bridge: MIT Press.

Tillmann, C., & Ney, H. (2003). Word reordering and a dynamic pro-
gramming beam search algorithm for statistical machine transla-
tion. Computational Linguistics, 29(1), 97–133.

Umeyama, S. (1988). An eigendecomposition approach to weighted
graph matching problems. IEEE TPAMI, 10(5), 695–703.

Vassilevska, V., Williams, R., & Yuster, R. (2010). Finding heaviest h-
subgraphs in real weighted graphs, with applications. ACM Trans-
actions on Algorithms (TALG), 6(3), 44.

Williams, V. V., & Williams, R. (2013). Finding, minimizing, and count-
ing weighted subgraphs. SIAM Journal on Computing, 42(3), 831–
854.

Wolfson, H., Schonberg, E., Kalvin, A., & Lamdam, Y. (1988). Solving
jigsaw puzzles by computer. Annals of Operations Research, 12,
51–64.

Yang, X., & Latecki, L. J. (2010). Weakly supervised shape based object
detection with particle filter. In European Conference on Computer
Vision, Vol. 1, pp. 757–770.

Yang, X., Adluru, N., & Latecki, L. J. (2011). Particle filter with state
permutations for solving image jigsaw puzzles. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, Vol. 1, pp.
2873–2880.

Yao, F. H., & Shao, G. F. (2003). A shape and image merging technique
to solve jigsaw puzzles. PRL, 24, 1819–1835.

Zaslavskiy, M., Bach, F., & Vert, J. (2009). A path following algorithm
for the graph matching problem. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(12), 2227–2242.

Zass, R., & Shashua, A. (2008). Probabilistic graph and hypergraph
matching. In IEEE Conference on Computer Vision and Pattern
Recognition, Vol. 1, pp. 1–8.

Zhou, F., & De la Torre, F. (2012). Factorized graph matching. In IEEE
Conference on Computer Vision and Pattern Recognition, Vol. 1,
pp. 127–134.

Zhou, F., & De la Torre, F. (2013). Deformable graph matching.In IEEE
Conference on Computer Vision and Pattern Recognition, Vol. 1,
pp. 2922–2929.

123

	Sequential Monte Carlo for Maximum Weight Subgraphs with Application to Solving Image Jigsaw Puzzles
	Abstract
	1 Introduction
	2 Constrained Maximum Weight Subgraphs
	3 SMC Algorithm for Constrained Maximum Weight Subgraphs
	4 Theory Behind the Algorithm
	4.1 Particle Filter Preliminaries
	4.2 Extension to Permuted States
	4.3 SMC Algorithm for Constrained MWS as Instance of SMCSP
	4.4 Proposal
	4.5 Importance Weight
	4.6 SMC Algorithm for Constrained MWS Approximates MWSs

	5 Related Work
	6 Experiments
	6.1 Jigsaw Puzzle Details
	6.2 Image Jigsaw Puzzle Results
	6.3 Graph Matching Experiments Using Synthetic Graphs

	7 Conclusions
	Acknowledgments
	References

