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Abstract In this paper, we propose a new definition of cur-
vature, called visual curvature. It is based on statistics of the

extreme points of the height functions computed over all di-
rections. By gradually ignoring relatively small heights, a

multi-scale curvature is obtained. The theoretical properties

and the experiments presented demonstrate that multi-scale
visual curvature is stable, even in the presence of significant

noise. To our best knowledge, the proposed definition of vi-

sual curvature is the first ever that applies to regular curves
as defined in differential geometry as well as to turn angles

of polygonal curves. Moreover, it yields stable curvature es-

timates of curves in digital images even under sever distor-
tions. We also show a relation between multi-scale visual

curvature and convexity of simple closed curves.
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1 Introduction

Curvatures of curves are the key to detect the salient points
and to compute the shape descriptors. Mathematically, cur-
vature of a point v is defined as (see Fig. 1):

K(v) = lim
�S→0
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(1)

where θ(v) is the tangential angle of the point v and S is the
arc length.

When applied in digital images, three problems arise:

(1) The digital images are usually distorted by noise.
Fig. 2(a) can be regarded as a pentagram heavily dis-
torted by noise; Fig. 2(b) is the pentagram without noise.
For the visual perception, point A is not important, be-
cause it should be flat there. However, the curvature
computed by formula (1) can be very high.

(2) The images may have different level of details. If
Fig. 2(a) is regarded as an image that looks like a penta-
gram in global, the curvature of point A should be low in
the large scale; at the same time, because there is a very
sharp turn in small scale, the curvature should be high.

Fig. 1 Curvature of the curve
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Obviously, formula (1) is hard to compute the curvature
in different scales.

(3) Due to digitalization, the contours of the images are all
stair-like as illustrated in Fig. 3. In such cases formula
(1) cannot be directly applied.

We first characterize desirable properties of the curvature
that are motivated by human visual perception and are useful
in computer vision applications:

(1) The curvature should be multi-scale and reflect the
curviness information of the contour in different scales.
In particular, this means that the curvature estimated at
a certain level should be able to ignore the influence of
small convex and concave parts reflected at lower levels.

(2) The curvature should be suitable for any planar curves,
especially for digital curves; since in computer vision,
most of the curves are polygonal curves, in which case
formula (1) cannot be directly applied.

(3) The curvature should be stable under noise.

The main goal of this paper is to propose a new curva-
ture definition that satisfies all above properties. Moreover,
the proposed definition applies to both smooth and polyg-
onal curves. To our best knowledge, none of the curvature
definitions (including the standard definitions from differ-
ential geometry) has this property. Many existing curvature
estimation methods are inherently single-scale.

We describe now the main idea of the proposed definition
of multi-scale curvature.

Fig. 2 Pentagram

We assume that the contour of a 2D shape is parameter-
ized by arc length:

C(s) = (x(s), y(s)).

We call x(s) the height function in 0° direction and y(s)

the height function in 90° direction. Thus, x(s) measures
the distance to y-axis in 0° direction. When the coordinate
system is rotated by angle α anticlockwise, the new x(s)

becomes the height function of the contour in direction α,
which we denote Hα .

By rotating the coordinate system by angle αi = π i
N

, i =
0, . . . ,N − 1, we obtain a series of height functions Hαi

.
Figure 4(b), (c), (d), (e) shows the height functions of the

contour curve in Fig. 4(a) in 0°, 45°, 90°, 135° directions,
respectively. Every height function reflects partial informa-
tion of the contour. The curvature is related to the local ex-
treme points of the height functions: In more directions the
point is an extremum, the sharper the contour is at the point,
the higher is the curvature of the point. This phenomenon
inspires us to estimate the curvature at a contour point v by
counting the number of directions in which v is an extremum
of the height function.

Obviously, all of the extreme points are not of the same
importance. Noise may perturb the curve and cause small
extreme points in the height functions. However, a point
on a small concave or convex part can not become an ex-
tremum of many height functions, while a point on a large
concave or convex part will be a clear extremum in many
height functions. For example, in Fig. 4(d), point E is not
a clear extreme point, but E is a very important minimum
point in Fig. 4(b). When the number of height functions is
sufficiently large, no important points are ignored, and im-
portant high curvature points are detected. In this paper, we

Fig. 3 Stair-like contours

Fig. 4 The contour of a
pentagram and its height
functions in 0°, 45°, 90°, 135°
directions
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obtain multi-scale curvature by ignoring small heights in the
height functions.

The new definition for curvature, called visual curva-
ture, is based on statistics of the extreme points of the height
functions computed over all directions. Moreover, by gradu-
ally ignoring relatively small heights, multi-scale visual cur-
vature is constructed. The multi-scale visual curvature has
the following properties:

(1) It is suitable for every planar curve. On the regular
curve, when the number of the height functions ap-
proaches infinite, its limit is the standard curvature. On
the polygonal curve, it is identical to turn angle.

(2) It forms a scale space. The scale parameter has a clear
geometric meaning: it is a measure of the depth of con-
vex or concave parts.

(3) The curvature is obtained by ignoring small heights, not
by smoothing. Hence it does not change the original
curve.

The related literature is reviewed in Sect. 2. In Sect. 3, the vi-
sual curvature is defined and its relations to standard curva-
ture and turn angle are proved. In Sect. 4, a scale measure of
extreme point is defined in the point of absolute extreme, and
its geometric meaning is analyzed. In Sect. 5, some proper-
ties of multi-scale visual curvature are described and their
significances are discussed. In Sect. 6, some implementation
details are analyzed and the experimental results are demon-
strated. In Sect. 7, we describe its application in corner de-
tection.

2 Literature Review

Curvature measures how a curve blends, which is one of
the most characteristic property of a curve. Cartan (1935)
proved that a planar differentiable curve is fully determined
by its curvature and the first order derivate of the curvature.
Based on his work, Calabi et al. (1998) proposed the concept
of “signature curve” as “a new paradigm for the invariant
recognition of visual objects”, which is further developed
by Boutin (2000).

In computer vision, we usually deal with curves in digital
space, i.e., curves extracted from images, which are distorted
by noise; however, curvature estimation is known to be very
susceptible to noise. Kovalevsky (2001) even pointed that
“under the conditions typical for digital image process-
ing the curvature can rarely be estimated with a precision
higher than 50%”. This is because under the definition of
curvature, all these methods have much in common with
that of estimating the derivatives of numerical functions.
Another problem for traditional definition of curvature with
derivatives is that it can not be directly applied to digital
curves, as pointed out by Kovalevsky (2001).

Most existing curvature-estimation techniques are under
the assumption that there is a unique curvature at each point
(Dudek and Tsotsos 1997). In a pure mathematical view, this
is obvious true; however, in both human visual perception
and in computer vision, the curvature of a point may take
on differing values depending on particular goals, e.g., de-
pending whether a given point is regarded as noise or signal
point. Some methods can calculate curvatures at multiply
scales by two steps: (1) Multi-scale approximation of origi-
nal curves; (2) Estimate the curvature at approximate curves.
In the past few decades, many multi-scale shape representa-
tion methods are proposed; we just review some of them
which are very relevant to multi-scale curvatures. These
methods are highly dependent on multi-scale approxima-
tion techniques. One popular way of approximating curves
at multi-scale is the convolution with a smooth kernel. Asada
and Brady have developed a description (Asada and Brady
1986) they refer to as the “curvature primal sketch” as a
fundamental and comprehensive intermediate image repre-
sentation. The description is a multi-scale structure based
on the extraction of changes in curvature. Mokhtarian and
Mackworth (1992) proposed a multi-scale, curvature based
shape representation technique by convolving the contour
with a Gaussian kernel. They proposed a new shape descrip-
tor which is called CSS and demonstrated many of its ap-
pealing properties. However, this method modifies the orig-
inal curve. At the same time, the geometric meaning of its
scale factor which is in fact a parameter of Gaussian kernel is
not obvious. Based on CSS, Adamek and Connor proposed
a method representing contour convexities and concavities
at different scale levels (Adamek and Connor 2004). A sim-
ilar method (Lowe 1988), also using Gaussian kernel, pro-
posed by Lowe, organized the smooth image curves at multi-
ple scales. By instituting Gaussian kernel with dilated-spline
kernel, Yu-Ping Wang proposed a new curve smooth scheme
(Wang et al. 1999), however, since just kernel function is
altered, this method have the same problems as method in
Mokhtarian and Mackworth (1992).

Another popular way of shape representation in digital
grid is curvature based polygonal approximation (Dudek
and Tsotsos 1997; Katzir et al. 1994; Ansari and Delp 1991;
Pinheiro et al. 2000; Bengtsson and Eklundh 1991). In these
methods, the original contour is approximated by simplified
polygon. Obviously, in polygonal arcs, a natural measure of
curvature information is turn angle. The problem with stan-
dard curvature is that it is defined on smooth curve and can
not be applied to polygonal arcs directly. Thus, in all these
methods, they need complicated estimation procedure to es-
timate the curvature of its preimage (which is supposed to
be smooth curves with restricted curvature).

Some researchers use spline curves to approximate orig-
inal curves (Medioni and Yasumoto 1986; Lu and Milios
1991). Based on spline approximation, they calculate the
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curvatures and detect the corners (Lu and Milios 1991).
These methods are usually single-scale and if the approxi-
mation is not good, the precision of estimated curvature is
low.

Now we review some other methods for curvature com-
putation. Since a large number of such methods have been
proposed, it is beyond the scope of this paper to list all of
them. Therefore, we mention only a few beginning with a
very influential method form the early days of computer
vision (Rosenfeld and Johnston 1973) through methods in
Worring and Smeulders (1993), Coeurjolly et al. (2001),
Lewiner (2004), Lowe (1988), Yuille (1989), Lewiner et
al. (2004), Belyaev (2004), Gumhold (2004), Hermann and
Klette (2003). Those approaches can be classified into three
groups, according to definition of curvature they are using
(as done in Worring and Smeulders 1993): tangent direction,
osculating circle, and derivation. Most methods use a sliding
window of 2q + 1 points centered around each point pj .

Methods based on the tangent direction The first group
of methods estimate the derivative of the tangent direction
with respect to the arc-length, which is just the definition
of curvature. For digital images, this requires to estimate
the gradient of a polygonal approximation of an implicit
curve. The precision of estimated curvature by methods in
this group, such as in Worring and Smeulders (1993) and
Gumhold (2004), depends on the precision of estimated tan-
gent direction.

Methods based on Radius of the Osculating Circle The
second group of methods compute the curvature by estimat-
ing the osculating circle touching the curve. In Calabi et al.
(1998), Boutin (2000), Coeurjolly et al. (2001), Hermann
and Klette (2003), some representative methods belonging
to this group are presented. In Coeurjolly et al. (2001), the
radius of the circle passing through pj−q , pj and pj+q is
estimated by:

k̂(pj ) = ∠(pj−qpj ,pjpj+q)

‖pj−qpj‖ + ‖pjpj+q‖ .

This result was improved in Calabi et al. (1998) and Boutin
(2000) by the area formula: k̂(pj ) = ± 4�

abc
, where a, b and c

are, respectively, the norm of the vectors pjpj−q , pjpj+q ,
and pj−qpj+q .

Method based on Derivative of the curve Methods of this
group are based on the first and second derivative estima-
tion of the curve. Basically, they are identical to methods
of the first group. The difference is that the methods of the
first group begin with tangent line estimation, and then es-
timate the angles of these lines. The methods in this group
are estimating derivatives without geometric constructions
of tangent lines. In Worring and Smeulders (1993), the path

method obtains the derivatives by a convolution with a de-
rived Gaussian kernel. In Belyaev (2004), the derivatives are
estimated as weighted local differences among three points
centered at pj .

Note that all these methods rely on the sliding window,
thus they in essence estimate the curvature locally and share
the same problem: the size of the sliding window is usually
hard to choose; if chosen too small, the curvature is not sta-
ble because of noise; if chosen too large, the local geometry
of the curve is highly distorted because of smoothing; at both
situations, the estimated curvature is not stable and of poor
precision.

Hermann and Klette give a comparative study on 2D cur-
vature estimators (Hermann and Klette 2007). According to
their experiments, they validate and reinforce the conclusion
of Kovalevsky (2001) that in digitized images, the estimated
curvature is barely possible with a low error rate, even in
high resolution images. Utcke analyzed the error-bounds of
curvature (Utcke 2003); one interesting result he pointed out
is that, contrary to our intuition, the accurate calculation of
the curvature for low-curvature regions is in fact impossi-
ble for common image-sizes, while reasonable results under
favorable conditions may be obtained for higher-curvature
regions.

We also mention papers that impose constraints on the
digital curves in order to make their shape analysis (in par-
ticular, curvature computation) and comparison to their con-
tinuous preimages possible. Latecki and Rosenfeld (1998)
proposed a class of planar arcs and curves which is general
enough to describe (parts of) the boundaries of planar real
objects. They analyzed the properties of these arcs and ruled
out pathological arcs, thus simplifying the shape represen-
tation problem. They also proposed a definition of global
curvature that applies to both digital and continuous curves.
Gumhold (2004) proposed a curve design system that is
based on an optimization algorithm minimizing a variety of
optimality criteria.

To summarize, although there are many methods to com-
pute curvature in digital images, they can be viewed as
heuristics that apply the standard (continuous) definitions of
the curvature to digital curves. Thus, they can not be directly
applied to digital or polygonal curves and need to smooth the
polygonal arcs (that directly represent digital curves), either
by curve fitting or by convolution. This results in parameters
that are hard to control, such as the size of sliding window,
and displacement of contour points.

3 Visual Curvature

As described in Sect. 1, by rotating the coordinate system,
we can obtain a series of height functions Hαi

, αi = π i
N

,
i = 0, . . . ,N − 1.
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Fig. 5 The relation between
tangential angle and extreme
point

Definition 1 For a point v on the curve C, suppose S(v)

is its neighborhood of size �S on the curve C, the visual
curvature of the point v is defined as:

KN,�S(v) = π

∑N−1
i=0 #[Hαi

(S(v))]
N�S

(2)

where #[Hαi
(S(v))] represents the number of local extreme

points of the height function Hαi
in the neighborhood S(v).

This definition also points out how to compute the visual
curvature. For a point v on the contour, we estimate its visual
curvature in its small neighborhood S(v). In every height
function, we find its extreme points and count the number
of the extreme points that are in the neighborhood S(v). We
sum up all the numbers and calculate the visual curvature
using formula (2). The theorem reveals the relation between
visual curvature and the standard curvature on the regular
curve. It states that when the number of the height func-
tions is sufficiently large, the visual curvature approaches
the standard curvature, denoted by K(v). Regular curve is
a curve which is differentiable and the derivative never van-
ishes.

Theorem 1 For each point v on the regular curve C, we
have

K(v) = lim
�S→0

lim
N→∞KN,�S(v).

Proof Let θ be the tangent angle at point v. Assume θ �= 0.
If θ = 0, we rotate the coordinate system so that it satisfies
this assumption. Since the curve is regular, by properly ro-
tating coordinate system, there exists a small neighborhood
S(v) such that the range of the tangent angle in this neigh-
borhood is a monotonically increasing subset of the half-
open interval [0,π), devoted by (θ1, θ2), see Fig. 5.

If a point v1 ∈ S(v) is the extreme point of the height
function Hαi

, then αi ∈ (θ1, θ2) and vice versa. Hence the
number of the extreme points of all the height functions
in the neighborhood S(v) is identical to the number of di-
rection angles αi that belong to the open interval (θ1, θ2).
The direction angle series {αi = πi

N
|i = 0, . . . ,N − 1} of

the height functions is a uniform sampling of the half-open

interval [0,π). Suppose αn = πn/N and αm = πm/N are
the smallest and largest sampling direction angles in the
open interval (θ1, θ2), respectively. Then π(m − n + 1)/N

is an estimation of θ2 − θ1. We now prove that the limit of
π(m− n + 1)/N is θ2 − θ1 when N approaches infinity. We
just need to prove:

(a) π lim
N→∞

m
N

= θ2.

(b) π lim
N→∞

n
N

= θ1.

Both (a) and (b) can be proved in the same way, thus, we just
prove (a). Because αm = πm/N is the largest angle in the set
{αi = πi

N
|i = 0, . . . ,N − 1} which is in the interval (θ1, θ2),

then αm = πm/N ≤ θ2 and αm+1 = π(m + 1)/N > θ2,

lim
N→∞|αm − θ2| ≤ lim

N→∞|αm − αm+1| = π lim
N→∞

1

N
= 0,

π lim
N→∞

m

N
= lim

N→∞αm = θ2.

Since (θ1, θ2) is a monotonically increasing subset of the
tangent angles in [0,π), when �S is small enough, the value
of #[Hαi

(S(v))] is either 0 or 1, thus
∑N−1

i=0 #[Hαi
(S(v))] =

m − n + 1.
Therefore,

lim
�S→0

lim
N→∞KN,�S(v) = lim

�S→0
lim

N→∞π

∑N−1
i=0 #[Hαi

(S(v))]
N�S

= lim
�S→0

π

�S

(

lim
N→∞

m − n + 1

N

)

= lim
�S→0

θ2 − θ1

�S
= K(v).

This proves the theorem. �

The theorem below reveals the relation between visual
curvature and the turn angle of the vertices of polygonal
curves. We first motive this theorem with an example. In
Fig. 6, MON is part of the polygonal curve, the turn angle at
O is α, t is a line whose directional angle, denoted by βt , is
in the interval (0, α) and l is a line whose directional angle,
denoted by βl , is in the interval (α,π). Obviously, O is an
extreme point of height function in the direction π/2 + βt

which is perpendicular to t , but it is not an extreme point of
height function in the direction π/2 + βl which is perpen-
dicular to l. Thus, in Fig. 6, in the direction perpendicular to
β ∈ (0, α), O is an extreme point and total range of β is α.

Theorem 2 For a polygonal curve, if O is one of its vertices
with turn angle α(O), then

α(O) = C lim
N→∞KN,C(O),

where C is a constant which is smaller than the minimal
distance between two consecutive vertices of the polygonal
curve.



Int J Comput Vis (2008) 80: 104–124 109

Fig. 6 Relation between visual
curvature and turn angle

Remark Before we prove this theorem, we make a simple
observation. Since �S = C and C is smaller than the mini-
mal distance between two consecutive vertices, we just need
to count the number of height functions in which O is an
extreme point. This means that we only need to consider
S(O) = {O} as the neighborhood of O in the case of polyg-
onal curves.

Proof Since C is smaller than the minimal distance between
two consecutive vertices of the polygonal curve, we just
need to count the number of height functions in which O

is an extreme point. Let us assume that there are N height
functions and O is an extreme point of M height functions.
Then πM/N is an estimation of the range of the angle in
which direction O is an extreme point. As illustrated in
Fig. 6, such range is α. Following the proof of Theorem 1,
we obtain:

∑N−1
i=0 #[Hαi

(S(O))] = M , thus

α(O) = π lim
N→∞

M

N
= Cπ lim

N→∞
M

CN

= C lim
N→∞KN,C(O).

This proves the theorem. �

Theorem 2 reveals that when �S is smaller than the min-
imal distance between two consecutive vertices of a polygo-
nal curve, at vertices of the polygonal curve, visual curvature
is proportional to turn angle. Especially, we can assume that
C = 1, since we can scale the polygonal curve so that C = 1.
Under this assumption, visual curvature is identical to turn
angle.

From Theorems 1 and 2, we know that visual curvature
converges to standard curvature or turn angle in different sit-
uations, the difference is: for regular curve, �S → 0 and for
polygonal curve, �S = C, a small constant. Thus, standard
curvature and turn angle are just two special cases of the
proposed visual curvature.

The difference between standard curvature and turn an-
gle is obvious: standard curvature relies on two factors, an-
gle and arc length. However, turn angle just relies on an-
gle. Since turn angle does not rely on arc length, it is scale-
invariant while standard curvature is scale dependent.

Now for a polygonal curve, at its vertices, we can es-
timate the standard curvature of underlying regular curve,
or we can estimate the turn angle. Especially, when a scale

measure of extreme points is introduced in Sect. 4, we can
estimate the multi-scale curvature and multi-scale turn an-
gle, respectively, which are both special cases of multi-scale
visual curvature. The difference is: when estimating stan-
dard curvature, we must estimate the arc length, which is
sensitive to noise; however, when estimating turn angle, we
do not need to consider the arc length; thus, in very noisy
situation, we can obtain more robust results.

4 A Scale Measure of Extreme Point

In Definition 1, all extreme points are counted, not consid-
ering whether they are important or not. Therefore, Theo-
rems 1 and 2 also explain partially why standard curvature
and turn angle are not robust. In fact, in a certain scale, small
concave or convex parts should be ignored. By imposing a
scale measure for extreme point, the multi-scale visual cur-
vature can be defined as follows:

Definition 2 For a point v on a curve C, suppose S(v) is
its neighborhood of size �S on the curve C, the multi-scale
visual curvature of the point v is defined to be:

Kλ
N,�S

(v) = π

∑N−1
i=0 #[Hλ

αi
(S(v))]

N�S
(3)

where λ is a scale factor and #[Hλ
αi

(S(v))] represents the
number of the extreme points of the height function Hαi

in
the neighborhood S(v) whose scale measure is not smaller
than λ (a precise definition follows below, Definition 5). In
short, the multi-scale visual curvature is computed by count-
ing the number of relative important extreme points. Note
that λ represents scale, the visual curvature at scale λ means
that we ignore details with scales less than λ, thus, it is also
a scale threshold.

When �S is small enough, the value of #[Hλ
αi

(S(v))] is
either 0 or 1. If point v is an extreme point in direction αi

and corresponding scale measure is not smaller than λ, then
the value of #[Hλ

αi
(S(v))] is 1, otherwise 0. Formula (3) can

be rewritten in the following form:

Kλ
N,�S

(v) = π

N�S
{#[Hλ

α0
(S(v))] + #[Hλ

α1
(S(v))]

+ · · · + #[Hλ
αN−1

(S(v))]}.
That is, we in fact decompose the visual curvature into N

components (N directions), each component is associated
with a scale measure. Recall the Fourier Transform in signal
theory, if we consider the signals with small scale measure
to be high frequency signals, and consider the signals with
large scale measure to be low frequency signals, then for-
mula (3) can be regarded as imposing a “low pass” filter on



110 Int J Comput Vis (2008) 80: 104–124

Fig. 7 Two kinds of filters

the visual curvature. Since the value of #[Hλ
αi

(S(v))] is ei-
ther 0 or 1, this “low pass” filter is in fact a stair-like filter,
as demonstrated in Fig. 7(a), where λ is the scale threshold.

In signal theory, we usually consider high frequency sig-
nals as noises and obtain stable signals by “low pass” filter-
ing. As analyzed above, this is just what we do on the def-
inition of multi-scale visual curvature. Thus, by selecting a
proper scale threshold λ, we can get stable visual curvature.
There is one problem with stair-like filter: since the value of
#[Hλ

αi
(S(v))] depends on the relationship between the scale

measure and threshold λ, that is, whether the scale measure
is larger than or smaller than λ, when the scale measure is
close to λ, noise may cause this relationship changes, thus,
the value of #[Hλ

αi
(S(v))] may suddenly change, from 0 to 1,

or from 1 to 0. Just like in signal processing, many other
“low pass” filters can be used; these filters change smoothly
from 0 to 1, Fig. 7(b) demonstrates one such filter. In this
paper, stair-like filter is the default filter.

Just as the importance of frequency in signal theory, the
scale measure is very important for multi-scale visual cur-
vature. Note that according to Definition 2, our curvature
definition seems to be local; however, our scale measure is
defined in global, thus our curvature incorporates the global
information. Definition 2 does not impose any constraints on
scale measure except that it is a global measure, it just gives
a framework; thus, the scale measure can be defined in many
different ways. Definition 5 below presents our choice. The
intuition is that in every height function, the higher the peak
represented by the extreme point is, the more important the
extreme point is. We begin with a definition of a measure
that quantifies the heights of peaks.

Definition 3 The influence region of a local maximum
(minimum) point v in a height function Hα , denoted by
Rα(v), is its maximal neighborhood such that the height of
every point in this neighborhood is not higher (lower) than
the height of the point v. If curve C is open or point v is not
an absolute extremum, Rα(v) is divided into two segments
by v, we denote the left segment by R−

α (v) and the right
segment by R+

α (v), see Fig. 8. If curve C is closed, Rα(v)

may be the whole curve, in which case R−
α (v) and R+

α (v)

both represent the whole curve except point v, in particular,
Rα(v) = R+

α (v) = R−
α (v).

Fig. 8 The influence region and the height of the peak

Definition 4 The height of the peak represented by an ex-
treme point v in the height function Hα , denoted by rα(v),
is defined as:

rα(v) = min[r+
α (v), r−

α (v)],
r+
α (v) = max{|Hα(p) − Hα(v)||p ⊂ R+

α (v)},
r−
α (v) = max{|Hα(p) − Hα(v)||p ⊂ R−

α (v)}.
r+
α (v) and r−

α (v) are the maximal height differences be-
tween v and the points belonging to R+

α (v) and R−
α (v), re-

spectively.

In Fig. 8, v is a local maximum point, the curve segment
P1P2 which is in red is its influence region, the curve seg-
ment vP1 is the left segment of the influence region and
curve segment vP2 is the right segment of the influence re-
gion. Obviously, whether a peak is important or not, depends
not only on the height of this peak, but also on the scale
of the contour or the image. For example, we can scale the
whole shape equably, thus scale the value of rα(v); how-
ever, the importance of the peak remains unchanged. There
are usually two schemes to normalize rα(v). One is dividing
it by a fixed quantity, no matter what directions; this fixed
quantity reflects the scale of the contour or the image, such
as the diameter of a shape; we call this scheme “isotropy
normalization”. The other scheme is in every direction, di-
viding it to a quantity which reflects the scale of the con-
tour or the image in this direction; in the definition below,
it is divided by the height of Hα , denoted by hα , which is
the height difference between the absolute maximum point
and the absolute minimum point of Hα ; we call this scheme
“anisotropy normalization”, since in different directions, in
this scheme, hα usually has different values. Of course, there
are other normalization methods. In this paper, we choose
“anisotropy normalization” scheme as default method, since
it results in some good properties which are presented and
proved in next section. If we choose other normalization
method because of the needs of certain applications, we will
explicitly state this.
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Fig. 9 Example case to discuss the geometric meaning of scale mea-
sure

Definition 5 The scale measure of an extreme point v in the
height function Hα , denoted by λα(v), is the height of the
peak represented by v divided over the height of Hα :

λα(v) = rα(v)

hα

. (4)

The scale measure of point v represents in which scale in
direction α, v can be considered to be important. According
to the definition, λα(v) > 0.

If hα in formula (4) is replaced by the diameter of the
shape, which is denoted by D, we get the “isotropy normal-
ization” version definition of scale measure:

λα(v) = rα(v)

D
. (5)

Definition 6 The representative scale measure of a point v,
denoted by λ(v), is the maximum of its scale measures in all
the height functions.

For a contour point, according to Definition 2, in the scale
larger than its representative scale measure, its visual curva-
ture vanishes and the convex or concave part represented by
this point is ignored. Since whether a point is ignored or not
at a certain scale depends on its representative scale measure
λ(v), it is very important to discuss the geometric meanings
of λ(v).

When isotropic normalization is used (formula (5)), if
rα(v) reaches its maximum, λα(v) also reaches its maxi-
mum. Thus, in this case, we only need to discuss the geo-
metric meaning of r(v), where r(v) = maxα{rα(v)}.

Figure 9 shows a shape with concave parts V1V2V3V4V5;
it is used to show the geometric meaning of the scale mea-
sure. For every point on this shape, we will discuss and
demonstrate its geometric meaning of r(v).

In Fig. 9, Points V1,V5,V6,V7,V8,V9,V10 are all on the
convex hull of this shape, obviously, at these points, the
value of r(v) is the maximal distance of the point v to other
vertices. For points V2, V3, V4, the geometric meaning of

r(v) at these points is demonstrated in Fig. 10, it is the dis-
tance of these points to corresponding red dash lines. Note
that in Fig. 10(a), the red dash line connects point V1 and
V5, not point V1 and V3; this is because point V2 is the
critical point of concave part V1V2V3V4V5, not just concave
part V1V2V3. Intuitionally, r(v) represents the depth of cor-
responding convex or concave part.

For anisotropy normalization, the geometric meaning of
λ(v) is somewhat complicated, since in different directions,
rα(v) is normalized by different values; however, its geo-
metric meaning is similar to isotropy normalization.

5 Properties of Multi-Scale Visual Curvature

This section presents a number of important results on the
multi-scale visual curvature. Since multi-scale curvature and
multi-scale turn angle are just two special cases of multi-
scale visual curvature, there properties are also suitable to
them. It also discusses the practical significance of each of
those results. The properties below are all under the assump-
tion that the number of the height functions is sufficiently
large, thus none of important extreme point is ignored.

Theorem 3 Let C be a closed planar curve and let G be
the boundary curve of its convex hull, v is a point on the
curve C. Then

(1) v ∈ G if and only if λ(v) = 1.
(2) v �∈ G if and only if λ(v) < 1.

Proof First, we prove statement (1).
If v ∈ G, there exists a straight line l going through v

such that the whole curve C is in one of the half-planes parti-
tioned by l. v is then the absolute extreme point of the height
function in the direction perpendicular to l, so λ(v) = 1.

If λ(v) = 1, v is then the absolute extreme point of a
height function, denoted by Hα . Let l is the straight line go-
ing through v perpendicular to α direction, the whole curve
C is then in one of the half-planes partitioned by l, so v ∈ G.

Statement (2) is a corollary of statement (1). Since 0 <

λ(v) ≤ 1, if v �∈ G, then λ(v) �= 1, so λ(v) < 1. If λ(v) < 1,
then v �∈ G. This proves the theorem.

In the digital images, the contour C is in fact a polygon
with a finite number of vertices {Vi |i = 1, . . . ,N}, where N

is the number of the vertices. Let G be the boundary curve
of the convex hull of C. For a contour segment defined by
vertices {Vi |i = m, . . . , n} with Vm and Vn being its two
end points, we call it a maximal concave segment if all
the points except the two end points on the segment do not
belong to G.

In Fig. 11, there are two maximal concave segments,
V1V18V17V16V15V14 and V8V9V10V11V12. Obviously, by
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Fig. 10 The geometric meaning
of r(v) at some contour points

Fig. 11 The concave segments of a polygon

substituting all maximal concave segments with the line seg-
ments connecting their two end points, we obtain the convex
hull of the polygon. �

Definition 7 The scale measure of a concave segment �,
denoted by λ(�), is the maximum of the representative scale
measures of the points which belong to � except the two end
points.

In Fig. 11, the scale measures of the two concave seg-
ments are:

λ(V8V9V10V11V12) = max{λ(V9), λ(V10), λ(V11)},
λ(V1V18V17V16V15V14)

= max{λ(V18), λ(V17), λ(V16), λ(V15)}.

Since except the two end points, the points which belong
to � do not belong to the convex hull, according to Theo-
rem 3, λ(�) < 1.

Definition 8 Given a scale threshold λ, for a closed poly-
gon C, deletes all the vertices V where the visual curvature
vanishes and connects the remaining vertices in sequence.
The new polygon is called a λ-scale approximation of C,
denoted by Cλ.

Fig. 12 The pixel configurations in which a high curvature point dis-
appears after digitization

Theorem 4 On the Cλ, all the concave segments which
scale measures are smaller than λ are substituted by the line
segments connecting their two end points. Specially, C0 = C

and C1 = G.

Theorem 4 is a natural result of Definitions 7 and 8. It
shows that as λ increases, more concave segments are ig-
nored and Cλ becomes simpler until it converges to the
boundary curve of its convex hull. It also points out how
to select the scale threshold λ in the applications: the scale
threshold depends on the scale of the concave segments we
want to ignore.

6 Implementation Details and Experimental Results

As explained in Sect. 3, different methods of dealing with
�S result in different visual curvatures. In particular, we
can obtain multi-scale curvature and multi-scale turn angle.
Since the details of implementation are very similar, thus,
we just demonstrate some details of computing multi-scale
turn angle. When computing the multi-scale turn angle, as
explained before, we let S(O) = {O} for each vertex O .

When computing visual curvature, digitalization is the
first step. Because of digitalization, some high curvature
points may disappear. Let us consider two example cases
in Fig. 12.

In Fig. 12(b), the turn angle at point O is about 117°;
however, the original vertex O of the angle formed by two
line segments is not represented by a pixel at the same lo-
cation. The digitalization process mapped it to one of digital
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points M and N or possibly to both of them. Neither the turn
angle at M nor at N is equal to the turn angle of O , but their
sum is. This observation motivates the following approach
to compute visual curvature in digital images.

For a given scale λ and a given threshold T , for every
point v we consider its neighborhood U(v) of radius T . If
the representative scale measure λ(v) is the largest among
all points in U(v), then the new digital visual curvature at v

is sum of all curvature values in U(v), i.e.,

DKλ
N,�S

(v) =
∑

u∈U(v)

Kλ
N,�S

(u) (6)

At the same time we set the digital visual curvature value
of all other points in U(v) to zero. Actually, we compute
in formula (6) the total visual curvature over the arc deter-
mined by the neighborhood U(v), and assign it to a single
point. Note that just according to representative scale mea-
sure, sometimes we may choose a wrong central point and
set the curvature value of correct one to zero, thus, in some
applications, such as corner or salient point detection, the
true location may be displaced; however, according to our
experiments, in the most of cases, the location of corner and
salient point is correct.

Now we illustrate on our example in Fig. 12 that our pro-
cedure for selecting a digital point whose visual curvature
best represents the original point O is correct. After digital-
ization, O disappears and its information is lost. However,
the turn angle of M and N is high in a relative high scale.
Point M is selected as best representing O based on the fact
that λ(M) > λ(N) and the distance between M and N is
less than T . We show that the proposed approach modifies
the turn angle of M to be the turn angle of O in the orig-
inal continuous contour. For simplicity, let us assume that
neighborhood U(M) just contain P,M,N . We obtain

DKλ
N,�S(M) = Kλ

N,�S(M) + Kλ
N,�S(N) + Kλ

N,�S(P )

and DKλ
N,�S(N) = DKλ

N,�S(P ) = 0.

The computed digital visual curvature of M is π ×
117/180. According to Theorem 2, this yields correctly the
value of about 117° for the turn angle of M . The justifica-
tion for this is as follows. In a height function Hα , if one
of the points among P,M and N is an extreme point, we
increase the count number of M . From the figure, we can
observe that if O is an extreme point of the height function
of the original continuous object in direction α, then either
M or N will be an extreme point of the height function of
the digital object in direction α. Thus, the computed turn
angle of M is about 117° now. We need to assign 0 to other
points in this neighborhood, such as point N and P , since
their contribution is added to M . Since parameter T is used
to eliminate the negative side-effect of digitalization, and the
negative side-effect can be predicted by analyzing possible

similar configurations as demonstrated in Fig. 12, parameter
T is usually fixed. In the experiments of this paper, the de-
fault value of T is 10. In some cases, we need to choose a
smaller T because of the need of the applications; for exam-
ple, in corner detection, if there are two salient corners very
close to each other, we may need to choose a smaller T to
detect both of them.

In our method, the main computation load is to compute
the scale measures for all the extreme points in all the direc-
tions. There are N directions, and in every direction, we just
need to be concerned about extreme points. We denote the
average number of extreme points by m. Then in the worst
case, the time complexity is O(Nm2). Obviously, for polyg-
onal curves, m 	 n, where n is the number of vertices on the
curve. Note that even for a regular curve, when it is sampled
or digitized, it becomes a polygonal curve. When the scale
measures have been computed, given a scale threshold λ,
the visual curvature for all the points can be computed in the
complexity of O(n).

As pointed out in Sect. 3, for a polygonal curve, at its
vertices, we can compute the multi-scale curvature of un-
derlying regular curve, or we can compute the multi-scale
turn angle. There are all multi-scale visual curvatures. The
only difference is whether we compute �S for each vertex.
Since �S is local and very sensitive to noise, thus, in very
noisy situation, we usually use multi-scale turn angle. In our
experiments below, we first demonstrate the multi-scale cur-
vature for the regular curve, and then we demonstrate the
power of multi-scale turn angle in very noisy situations.

Figure 13 shows the multi-scale curvature of a regu-
lar curve, whose polar equation is: r = 1 − 0.8 cos(4θ).
We sample this curve by evenly sampling θ in the inter-
val [0,2π), the number of sampling points is 628. We first
compute the curvature at each sample point by derivatives as
ground truth. To compute standard curvature by our method,
two factors must be considered: N and �S. In this experi-
ment, we use a simple method to estimate �S: for a ver-
tex of the polygonal curve sampled from the regular curve,
suppose the lengths of the two edges adjacent to a vertex
are a and b, respectively, we simply let �S = (a + b)/2;
Fig. 13(b) shows that at scale λ = 0, as N increases, the
error between computed visual curvature and the curva-
ture computed by derivatives decreases; however, no matter
how large N is, we cannot reduce the error to zero, since
some errors result from the error in estimating �S. From
Fig. 13(b), we also find that as N increases, the influence of
N quickly decreases; which implies that we do not need very
large N . Figures 13(c) and (d) show the computed curva-
ture as arc length function at scale 0.03 and 0.4, respectively.
Corresponding multi-scale approximations of this curve are
demonstrated in Figs. 13(e) and (f), respectively. The four
larger peaks in Figs. 13(c) and (d) correspond to concave
points while the four smaller peaks correspond to convex
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Fig. 13 Multi-scale visual curvature of a regular curve

points. By looking at plots in Figs. 13(c) and (d), one can

observe that as λ increases, the curvature value decreases.

Since N only affects the precision of computed visual

curvature, in all our experiments below, we set N = 128. As

demonstrated in Fig. 13, when estimating standard curva-

ture, part of error results from the error of estimating �S,

which is very sensitive to noise, thus, in noisy situation, we

put our focus on multi-scale turn angle; because of this rea-
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Fig. 14 Visual curvatures in
different scales

Fig. 15 Visual curvature for the
two pentagrams in Fig. 2

son, in the following experiments, visual curvature refers to
turn angle.

Figure 14(b) shows the multi-scale turn angle of the four
points A,B,C,D in the Fig. 14(a) calculated in different
scales. Obviously, the turn angle of these four points on a
pentagram without noise should be 72°, 0°, 0° and 144°,
respectively. Because of noise, B and C have a large turn
angle in small scales. For example, when λ = 0.01, the
turn angle of these points are 77°, 121°, 142°, 140°, re-
spectively. As scale increases, turn angle decreases. Since
λ(C) < λ(B) < λ(A) < λ(D), the turn angle of C vanishes

first, then B and A, the turn angle of D never vanishes since
it’s a point on the convex hull of the pentagram. As the value
of λ increases, the obtained turn angle estimation is not ac-
curate. However, increasing λ is very useful for dominant
point detection, e.g., as can be seen in Fig. 14(b). The most
dominant point is D and then A.

Figure 15 demonstrates the multi-scale turn angle as arc
length functions for two pentagrams in Fig. 2 in two scales.
A is a start point and we follow the contour clockwise.
Obviously, there are ten peaks in all graphs; the noise in
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Fig. 16 Part of the contour of a hand and its visual curvatures

Fig. 17 Multi-scale
approximation of the shape in
Fig. 4(a)

Fig. 2(a) is suppressed, especially when the scale is large,
see Figs. 15(a) and (c).

Our method can also be applied to open curves without
modifications, only at two end points, the curvature is unde-
fined. Figure 16 demonstrates part of the contour of a hand
and its visual curvature as arc length function at scale 0.01
and 0.1.

Figure 17 demonstrates the multi-scale approximation of
the shape in Fig. 4(a) obtained by connecting the points with
representative scale measure larger than λ. As λ increases,
the visual curvature of more points vanishes and Cλ be-
comes simpler until it converges to the boundary curve of
its convex hull.

7 Application in Corner Detection

Corner points, which have high curvature on the contour,
play very important roles in shape analysis. It is believed

that most of information on a contour is concentrated at its
corner points.

There are usually five criteria to evaluate corner detec-
tors, for a detailed description about corner detector, please
refer to Marji (2003):

1. All “true corners” should be detected and no “false cor-
ners” should be detected.

2. Corner points should be well localized.
3. Detector should have a high repeatability rate (good sta-

bility).
4. Detector should be robust with respect to noise.
5. Detector should be computationally efficient.

Corner points have high curvature, but not all high cur-
vature points are corner points. Noise usually results in high
curvature points in small scale; at the same time, high cur-
vature points in small scales are usually not as important as
the high curvature points in large scale. Therefore, in our
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Fig. 18 The evolution
procedure of a horse

Fig. 19 The corners of a
butterfly detected in different
scales

framework, we define corners as high curvature points at a
relative large scale.

In the past few decades, many corner detectors have been
reported. In general, there are two approaches to this prob-
lem. One is to detect the corner points directly through angle
or comer detection schemes (Rosenfeld and Johnston 1973;
Rosenfeld and Weszka 1975; Freeman and Davis 1977;
Sankar and Sharma 1978; Anderson and Bezdek 1984;
Cederberg 1978; Kruse and Rao 1978). The other approach
is to obtain a piecewise linear polygonal approximation of
the digital curve subject to certain constraints on the good-
ness of fit (Pavlidis 1980; Dunham 1986); corner points then
correspond approximately to the actual or extrapolated in-
tersections of adjacent line segments of the polygon. Many
methods are local; they estimate the angle or approximate
the curve in the neighborhood of the central point. Hermann
and Klette attempt to detect the corner based on global cur-
vature estimation (Hermann and Klette 2005) and reported
better results.

Many existing corner detectors are single scale, thus, they
just work well for objects that have similar size features.

However, most of objects consist of multiple size features.
Hence they may either miss “true corners” or detect “false
corners”. To overcome this drawback, multi-scale scheme
is needed. Rattarangsi proposed a multi-scale corner detec-
tor based on Gaussian scale space (Rattarangsi and Roland
1992) and demonstrated very impressing results. Mokhtar-
ian and Suomela proposed a multi-scale corner detector
based on CSS (Mokhtarian and Suomela 1998), they first
extract the contours from grey images by Canny edge detec-
tor, then find the high curvature points on large scale. Since
this method modifies original curves, they need to track the
point location through several lower scales to improve local-
ization.

Our method can estimate the visual curvatures at a con-
tinuum of scales. By selecting a relative large scale, the noise
can be suppressed and thus “false corners” are eliminated.
Since our method does not modify the original curve, the de-
tected corner points are well localized, and there is no need
for tracking the corner points over the scales. Note that in
the application of corner detection, when we refer to visual
curvature, we always mean the multi-scale turn angle.



118 Int J Comput Vis (2008) 80: 104–124

Fig. 20 Eight shapes used in
the tests

Fig. 21 Results of RJ73

Cong and Parvin (1998) pointed out that certain kinds
of curve evolution can be used to enhance the corners. As
the curve evolves, small convex or concave parts disappear,
similar to skeleton pruning method (Bai et al. 2007). In Defi-
nition 8, we define the multi-scale approximation of contour
using multi-scale visual curvature, which is in fact a curve
evolution method (without displacing the curve points).

Figure 18 shows the evolution procedure of a horse by
gradually deleting the points where visual curvature van-
ishes. As λ increases, some less important corners disap-
pear, but important corners remain, which illustrates the fact
that our method can distinguish “true corners” from “false
corners”.

It is a hard task to compare different corner detectors,
since whether a point is a “true corner” or a “false corner”
sometimes depends on the applications. Thus, after multi-
scale visual curvature of a curve is calculated, we have dif-
ferent schemes to choose corner points. In our method, a
contour point is described both by its visual curvature and
corresponding scales. The simplest scheme is: in a relative
large scale λ, we consider the points whose digital visual
curvature is above a threshold DK0 as corner points. Note
that in many other corner detectors, they regard the curva-
ture maxima as corner point and thus not need the curvature
threshold parameter; however, our experiments show that

there are points which are curvature maxima, but have low
curvature value at relative large scales. In our scheme, para-
meter λ is easy to set; it is used to eliminate the influence of
noise and remove small details, thus, it only depends on the
strength of noise or small details we want to eliminate. As
for how to select parameter DK0, according to the prior in-
formation we know, there are at least three methods: first, we
can set DK0 directly, according to how large the curvature
the point is considered to be corner points; second, we can
limit the number of corner points and then set DK0 accord-
ingly; third, as DK0 increases, the number of corner points
decreases, we can select the curvature where the number of
corner points varies slowly as DK0.

Figure 19 demonstrates the corners of a butterfly detected
in different scales. In this experiment, curvature threshold
DK0 = 17π/64(48◦).

Obviously, the lower scale we choose, the more cor-
ner points are detected, the number of corner points in
Fig. 19(a), (b), (c) are 18, 16, 12, respectively. Another im-
portant fact is that the corners detected in higher scales re-
main in the corner set of lower scales.

We compare our method with five other corner detec-
tors on eight test images which are from Chetverikov and
Szabo (1999), the other five corner detectors are Rosenfeld
and Johnston RJ73 (Rosenfeld and Johnston 1973), Rosen-
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Fig. 22 Results of RW75

Fig. 23 Results of FD77

feld and Weszka RW75 (Rosenfeld and Weszka 1975),
Freeman and Davis FD77 (Freeman and Davis 1977),
Beus and Tiu BT87 (Beus and Tiu 1987) and IPAN99
(Chetverikov and Szabo 1999). We did not implement
them, we used the online version of these algorithms
http://visual.ipan.sztaki.hu/corner/cornerweb.html provided
by Chetverikov. In summary, these algorithms all have two
procedures: “Corner Strength” estimation and “Corner Se-
lection”. Note that “Corner Strength” is closely relative to
curvature. These five detectors all have parameters which
are proportional to arc length, these parameters decide the
minimum spacing of adjacent corner points; FD77, BT87
and IPAN99 have another parameter similar to “curvature
threshold” in our method. The eight test shapes are shown
in Fig. 20. Figures 21, 22, 23, 24, and 25 show the results of
these five corner detectors. We are aware of the fact that the
existence or nonexistence of certain corners is very subjec-
tive, but a consistent decision can be made in clear cases. We
marked obviously wrong corners in Figs. 21–25 with circles.
In addition, these methods miss many important corners,
e.g., on the sharp peak at the top left of the seventh shape
in Figs. 23 and 24 and on the tail of the plane (the eighth
shape) in Figs. 21–24.

Figure 26 shows the detected corners using our method.
In this experiment, λ = 0.01, since the noise is small. The
curvature threshold DK0 is 21π/128(30◦); only for shape 5,
DK0 is 28π/128(39◦). For the fourth shape, our corner de-
tector finds the six true corners, no false corner is found,
because at scale 0.01, small noise is suppressed; however,
the other five detectors all detect some false corners, these
false corners are true curvature maxima, but they are not im-
portant shape features; In Figs. 21–25, for the fourth shape,
these false corners are marked by red circles.

Figure 27 shows the detected corners using our method
at two scales 0.07 and 0.11 with curvature threshold DK0 is
21π/128(30◦). As we stated, the scale is in fact a measure
of importance of corner points. In Fig. 26, at scale 0.01, all
corners around the four engines of the plane are detected; In
Fig. 27(a), at scale 0.07, for each engine, we just detect two
corners, one at the convex part and the other at the concave
part; at even large scale 0.11, shown in Fig. 27(b), there are
no corners for engines, since engines are considered to be
small details at this scale. Obviously, this makes sense for
shape description.

In our method, the geometric meaning of the representa-
tive scale measure is the depth of corresponding convex or
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Fig. 24 Results of BT87

Fig. 25 Results of IPAN99

Fig. 26 Results of our method

Table 1 The scale parameters for the experiments in Fig. 28

No. (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Parameters 0.04 0.03 0.07 0.03 0.07 5 15 (4,7) (10,13) 8 30
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concave part; thus, we can suppress relative large noise or
shape details by calculating the curvature at a larger scale.

Fig. 27 The corners of the plane test images at different scales

This is the main advantage of our method in the presence
of noise. The five other corner detectors all have parame-
ters which are proportional to arc length, these parameters
decide the minimum spacing of adjacent corner points. Ac-
cording to our experiments, by increasing these parameters
some large noise can be suppressed, thus, these parameters
function like scale parameters; however, they are definitely
not good scale parameters, since there may be important cor-
ners which are very close to each other. To illustrate the de-
tected corners in such a situation, we add significant noise
to the eighth test images (plane) and the results are shown in
Fig. 28.

Since the noise is significant, in our method, λ = 0.04,
the result is shown in Fig. 28(a). For other five corner detec-

Fig. 28 The detected corners
for plane image with significant
noises

Fig. 29 The detected corners
on open curves
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Fig. 30 Corner detection results on twenty articulated shapes from Asian and Tari (2005). For each shape we also show its copy with significant
noise added
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tors, it is hard to choose a proper scale, since their scale pa-
rameters are proportional to arc length. When they are large,
many corners can not be detected; when they are small,
many noisy points are detected as corners. For the purpose
of comparison, for each detector, we illustrate in Fig. 28 the
results on two scales, one scale is small and many true cor-
ners are detected, the other is large and many false corners
caused by noise are eliminated. Table 1 shows the values of
scale parameters for the experiments in Fig. 28.

Figure 28 shows that our corner detector works well even
under significant noise. The other five corner detectors do
not yield good results; they either have many false corners
or miss some true corners.

To demonstrate the results of our method on open curves,
we extracted contour parts of some in Fig. 20. The detected
corners are shown in Fig. 29. In this experiment, we used
the same parameters as for the complete shapes. According
to our curvature definition, the curvatures of the endpoints of
open curves are undefined, however, because they are very
important, they are considered as corner points. When end-
points are ignored, all other corner points detected are iden-
tical to the corner points detected on corresponding parts
of complete contours. This demonstrates the stability of the
proposed approach.

To further demonstrate the stability of our method in the
presence of articulation and noise, Fig. 30 demonstrates the
corner detection result on 20 articulated shapes from Asian
and Tari (2005). For each original shape, we also created its
copy with significant contour noise added.

8 Conclusion

This paper proposes a new curvature definition which can be
considered to be a geometric explanation of the standard cur-
vature definition rooted in differential geometry. Based on
this definition, a natural multi-scale curvature is introduced.
In analogy with denoising method by “low pass” filter in
signal theory, our multi-scale curvature can be considered to
be a “low pass” filter. This analogy also explains why curva-
ture is hard to be estimated accurately and robustly, because
it usually contains small-scale signals caused by noise.

We proved for regular curves that the limit of visual cur-
vature is the standard curvature, and that visual curvature is
identical to turn angle at vertices for polygonal curves. Thus,
standard curvature and turn angle are just two special cases
of proposed visual curvature. In this way, we unify the de-
finition of curvature on both regular curves and polygonal
curves.

The properties of the multi-scale visual curvature are
investigated and their practical significances are demon-
strated. Especially, we discuss the geometric meaning of our
scale measure. Since the scale measure is defined in global,
multi-scale visual curvature is in fact estimated globally.

Finally, we discussed the application of multi-scale visual
curvature in corner detection, and show that using multi-
scale visual curvature, we can detect intuitive corners of var-
ious shapes at different scales robustly.
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