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Abstract 

Though arrangement knowledge is well suited 
for qualitative representations of spatial 
situations, if we only use this kind of knowledge, 
we cannot do interesting inferences about 
relative positions of points in the plane. For 
example, if we know the orientation of two 
triangles over four points, we cannot say 
anything about the orientation of the other two 
triangles. In this paper, we show that the 
augmentation of arrangement knowledge by 
qualitative angles leads to interesting and useful 
inferences. 

Introduction 

Qualitative reasoning deals with reasoning on the 
conceptual level. Most approaches in the area of 
qualitative spatial reasoning define a set of spatial 
relations and show the connections of these relations 
in composition tables. Each entry in such a table is 
verified by informal considerations of some pictures 
showing the concepts, or by general quantitative 
considerations. This means there is an implicit 
quantitative semantics underlying the spatial relations. 
In this sense each qualitative inference is semantically 
verified in three steps: 1. definition of the qualitative 
concepts in quantitative terms, 2. quantitative 
reasoning, and 3. qualitative abstraction. Each of these 
steps has its inherent problems: The quantitative 
definition of spatial concepts is often context 
dependent, quantitative reasoning is a difficult 
problem in non-trivial domains, and the qualitative 
abstraction often entails a loss of information. For 
these reasons the underlying quantitative semantics is 
kept implicitly in most systems. 

Our approach takes two cognitively motivated 
spatial concepts, arrangement and angles, and offers a 
context independent well defined mapping of these 

concepts to quantitative regions which can be 
described by angle intervals. The quantitative 
reasoning process is fairly simple due to interval 
arithmetic, and the qualitative abstraction step 
performs without any loss of information due to the 
invertability of the well-defined mapping in the 
definition step. 

Problem description 

Reasoning about cognitive maps means explication of 
implicit relations among spatial objects of the domain. 
One of the possible formal descriptions of two 
dimensional cognitive maps is the abstraction of 
objects to points in the plane. Then spatial relations 
among objects can be represented by relative positions 
of the points. These relative positions are completely 
described by triangles among each triple of points. So, 
the reasoning task can be reduced to the problem of 
finding the descriptions of triangles. In this paper, we 
will concentrate on a basic version of this task: Given 
two triangles over four points in the plane, find the 
description of the other two. For example, in Figure 1 
triangles ABC and CBD are given, and we are looking 
for a description of ABD and ACD. 
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Figure 1. Triangles ABC and CBD are given, and we are looking 
for a description of ABD and ACD. 

It is a well known fact in classical geometry that the 
latter two triangles are completely determined by the 
first two. However, if we model reasoning processes in 
cognitive science, we usually do not deal with 
complete metric knowledge as is the case in classical 
geometry. Since people are able to do geometrical 
reasoning without complete metric knowledge, the 
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question is which kind of knowledge they use. The 
simplest approach in cognitive science is to adopt 
arrangement information as described in [Schlieder, 
1990]. There, relative positions are described in terms 
of the orientation of triangles, clockwise or 
counterclockwise. If, for example, a triangle ABC is 
oriented counterclockwise, then we know that point C 
is to the left of the straight line AB (see Figure 2). The 
distinction of a left and right hand side is clearly a 
cognitively motivated concept. 
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Figure 2. If triangle ABC is oriented counterclockwise, then we 
know that C is to the left of the straight line AB. 

Arrangement knowledge has been successfully 
applied in Artificial Intelligence (see [Levitt and 
Lawton, 1990; Schlieder, 1990]) and in Computational 
Geometry (see [Bokowski and Sturmfels, 1989]). 
Though arrangement knowledge is well suited for 
qualitative representations of spatial situations, if we 
only use this kind of knowledge, we cannot do 
inferences we are interested in, as the following 
example shows. Given the orientation of two triangles 
over four points, it is not possible to say anything 
about the orientation of the other two triangles. In both 
Figures 3a and 3b, triangle ABC is oriented 
counterclockwise and BCD is oriented clockwise, but 
triangle ABD is oriented differently in Figures 3a and 
3b. Of course, the same situation can be constructed for 
triangle ACD.  
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Figure 3. Triangle ABC is oriented counterclockwise and BCD is 
oriented clockwise, but triangle ABD is oriented differently. 

Now the question is whether one can find another 
cognitively motivated concept for representing spatial 
situations without using metric information. There is 
psychological evidence that people are able to 
recognize the right angle (especially while treating the 
angle from the vertex perspective), and so are able to 
distinguish an acute angle from an obtuse angle.  

Therefore, it is straightforward to augment the 
concept of arrangement information by the qualitative 

distinction of acute and obtuse angles. These two 
concepts of arrangement and qualitative angles fit 
together quite well, since both describe orientation 
information.  

Notation 

When introducing a system integrating arrangement 
and qualitative angles, for reasons of simplicity and 
transparency, we will treat neither the concept of 
collinearity of three points, nor the concept of right 
angles. This means that we will distinguish situations 
in which a point C is to the left or to the right of a 
straight line AB, but we will exclude situations where 
point C is on the line. In the same manner we will 
distinguish situations where three points form an 
acute or an obtuse angle, but we will exclude 
situations where they form exactly the right angle. The 
augmentation of the system by these concepts is 
straightforward. 

Similar to the representation of arrangement 
information, the relative positions of triples of points 
will be described by triangles in our system. Each 
triangle will be represented by qualitative information 
about its three angles and its orientation. Orientation 
will be denoted by "+" for counterclockwise and "-" for 
clockwise. Qualitative angles will be abbreviated by 
"ac" for acute and "ob" for obtuse. For example, the 
representation of the triangle presented in Figure 4a is 
shown in Figure 4b. An obvious observation is the fact 
that if one angle is obtuse, the other two have to be 
acute.  
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ABC = + 
A = ac 
B = ac 
c = ob  

 a) b) 
Figure 4. Representation of triangle ABC. 

Since our inference processes are based on qualitative 
angles, we will introduce a special notation for a single 
angle. We will denote an angle XYZ by an ordered pair 
consisting of the orientation of points XYZ and the 
qualitative angle in Y. For example, angle CAB of the 
triangle presented in Figure 4 will be described as 
CAB(+, ac). As it is easy to note, if we know the 
orientation of one angle, we know the orientation of 
the whole triangle, so we can infer the orientation of 
the other angles. This simple fact together with the fact 
that every triangle can have only one obtuse angle 
forms some useful inference rules for reasoning about 
a single triangle. 
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Reasoning  Inference Rule 

The following examples show the profit in the 
reasoning process we get from combining arrangement 
and qualitative angle information. We have shown 
that given the orientation of two triangles over four 
points, it is not possible to infer anything about the 
orientation of a third triangle. However, the following 
example will demonstrate that when arrangement 
information is augmented with qualitative angles, we 
can conclude arrangement information about the third 
triangle. If we get the constellation presented in Figure 
5, where ABC as well as CBD form counterclockwise 
oriented acute angles, then we know that D is to the 
left of line AB (i.e. triangle ABD is oriented counter-
clockwise), though we do not know whether angle 
ABD is acute or obtuse, idicated by the dotted line 
(which will be denoted by "*"). 

Now we present a rule that formalizes the above 
inferences. The general inference schema is to add two 
adjacent angles ABC and CBD in the vertex B to obtain 
a third angle ABD, as the following figure illustrates: 

 

ABC 
CBD 
 
ABD  

Figure 8. The general inference schema is to add two adjacent 
angles ABC and CBD in the vertex B to obtain a third angle ABD. 

In the remainder of this section, we will show how 
arrangement and qualitative angle information will be 
passed through this schema. We are looking for a basic 
concept that underlies the above two concepts. 
As we mentioned above, arrangement information 
splits the plane into two disjoint regions, the left and 
the right hand side (of line AB in Figure 9a). Another 
observation is also that angle information splits the 
plane into two disjoint regions (at line perpendicular 
to line AB in Figure 9b). For any point C below the 
perpendicular line, angle ABC is acute, whereas for 
any point C above that line angle ABC is obtuse. If we 
combine these two observations, we obtain a division 
of the unit circle into four quadrants, which for 
computational reasons we name 0, 1, 2 and 3 as shown 
in Figure 9c. 
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CBD(+, ac) 
 
ABD(+, *)  

 a) b) 
Figure 5. If ABC and CBD form counterclockwise oriented acute 
angles, then we know that D is to the left of line AB, though we do 
not know whether angle ABD is acute or obtuse. 

This inference is valid, because if we add two acute 
angles with the same orientation, we obtain an angle of 
less than 180o, which means that D stays to the left of 
line AB.  
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As another example consider a configuration as 
depicted in Figure 6. Point C is to the right of line AB 
and angle ABC is acute. 
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ABC(-, ac) 
CBD(+, ac) 
 
ABD(*, ac)  

 a) b) c) 

 a) b) 

Figure 9. a) Arrangement information splits the plane into the left 
and the right hand side of line AB. b) Angle information splits the 
plane into two disjoint regions at line perpendicular to line AB. c) 
If we combine these two observations, we obtain a division of the 
unit circle into four quadrants. 

Figure 6. If ABC is a negatively oriented acute angle and CBD is a 
positively oriented acute angle, then we can conclude that angle 
ABD will be acute, though we do not know the orientation of 
triangle ABD. 

Quadrant 0 corresponds to a position of point C 
forming a negatively oriented acute angle ABC, 
quadrant 1 to a negatively oriented obtuse angle, 
quadrant 2 to a positively oriented acute angle and 
quadrant 3 to a positively oriented obtuse angle.  

Now, if point D is to the left of line CB and angle CBD 
is acute, then we can conclude that angle ABD will be 
acute too. This is valid, because the difference of two 
acute angles is an acute angle itself. The dotted line 
shows that we cannot say anything about the position 
of D with respect to line AB, which will be denoted by 
"*". 

Now remember the example presented in Figure 6, 
where ABC was a negatively oriented acute angle and 
CBD a positively oriented acute angle. Using 
quadrants, we can express ABC(-, ac) as ABC(0) and 
CBD(+, ac) as CBD(3). The resulting angle ABD is 
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acute, but without any orientation information, so 
either ABD(0) or ABD(3) holds, which we will denote 
ABD(0 | 3). This result can also be computed by the 
following general rule: 

If ABC(q1) and BCD(q2), then ABD(q3), where  

q3 = ( (q1+q2 ) mod 4 |  (q1+q2+1)  mod 4 )  

and q1, q2 and q3 vary over quadrants 0, 1, 2 and 3. 

The correctness of this rule can easily be proved by 
simple angle interval addition, since the quadrants can 
be described as angle intervals of 90o magnitude. 
Because the quadrants of the resulting disjunction are 
always adjacent, the disjunction can be expressed in 
terms of either arrangement or qualitative angles. 
Therefore, we have the following correspondence: 

ABC(-, *) � ABC(0 | 1) 
ABC(*, ob) � ABC(1 | 2) 
ABC(+, *) � ABC(2 | 3) 
ABC(*, ac) � ABC(3 | 0) 

Figure 10. The correspondence between triangle description and 
adjacent quadrants.  

To demonstrate how to use this rule, we will go back 
to the example in Figure 5. Using quadrants, the two 
positively oriented acute angles ABC(+, ac) and 
CBD(+, ac) will be represented as ABC(3) and CBD(3). 
By our inference rule, the resulting angle will be 
ABD(2 | 3), which means that angle ABD is positively 
oriented and we do not know anything about the 
qualitative angle: ABD(+, *), as expected, due to the 
above example.  The inference is illustrated in the 
following figure: 

ABC(+, ac) � ABC(3) 
CBD(+, ac) � CBD(3) 
   _______ 

ABD(+, *) � ABD(2 | 3) 

Figure 11. Two positively oriented acute angles ABC and CBD 
result in a positively oriented triangle ABD. 

Problem Solution 

In this section, we will return to our original problem 
of finding the qualitative description in terms of 
arrangement and angles of the remaining triangles 
when given two triangles over four points in the plane. 
We will demonstrate that our inference rule provides a 
solution. 

The general problem is depicted in Figure 1. 
Knowing the orientation of a triangle ABC and the 
qualitative angles in A, B and C as well as the 

orientation and angles of a triangle BCD, we ask for 
the orientation and the angles of triangle ABD (the 
case for ACD will be treated analogously). The 
inference is based on the angle addition rule. 
Obviously, we can apply this rule only at point B, since 
this is the only point where two angles with one side 
in common are given, namely ABC and CBD. As 
an illustration, let us treat the situation presented in 
Figure 12.   
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C  
Figure 12. The angle addition is done at point B. 

Concerning the angles in point B, the situation is the 
same as in Figure 5. The resulting angle ABD can 
therefore be computed as shown in Figure 11. The 
obtained result ABD(+, *) will be interpreted as a 
counterclockwise orientation of triangle ABD. Let us 
note once more that knowing only orientation of 
triangles ABC and CBD, we could not make any 
inference, since a clockwise orientation of triangle 
ABD would be consistent with these orientation 
assumptions as well (cf. Figure 13). 
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Figure 13. We would not know anything about the orientation of 
triangle ABD in Figure 12 if we only knew the orientation of 
triangles ABC and CBD. 

Another example where qualitative angles can be 
inferred is depicted in Figure 14: triangle ABC is 
oriented positively with an obtuse angle in B, whereas 
triangle CBD  is oriented positively with an acute 
angle in B. 
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Figure 14. The angle addition is done at point B. 

Again we can use our rule for angle addition in the 
vertex B, which leads to the following inference: 
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ABC(+, ob) � ABC(2) 
CBD(+, ac) � CBD(3) 
   _______ 

ABD(*, ob) � ABD(1 | 2) 

Figure 15. Two positively oriented angles, an acute ABC and an 
obtuse CBD, result in an obtuse angle ABD. 

So, we obtain the qualitative angle information that 
angle ABD is obtuse. Knowing that one triangle can 
have at most one obtuse angle, we can additionally 
infer that the other two angles in triangle ABD are 
acute. In this situation, we do not obtain any 
orientation information, as expected, because triangle 
ABD can be oriented positively  (cf. Figure 14) as well 
as negatively (cf. Figure 16). 
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Figure 16. We do not know anything about the orientation of 
triangle ABD in Figure 14. 

Applications 

In the problem description we introduced triangles to 
describe relative positions of points in the plane. Now 
the question arises as to which relative positions of 
points can be described with arrangement and 
qualitative angle knowledge. Figure 17 shows the 8 
possible positions of a point C with respect to a pair of 
points A and B that are distinguishable using our 
representation. 
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Figure 17. Subdivision of the plane induced by arrangement and 
qualitative angle knowledge. 

The vertical line AB divides the plane into two regions 
which correspond to possible positions of point C with 
regard to arrangement knowledge (of course, we refer 
to the line as "vertical" for purposes of illustrations, but 
it can in fact be oriented arbitrarily). If point C is to the 
left of AB, then triangle ABC is oriented 
counterclockwise, whereas if point C is to the right of 
AB, then triangle ABC is in clockwise orientation. The 
qualitative angle information provides further 

subdivision: If triangle ABC has an obtuse angle in B, 
then point C has to be above the horizontal line in B. In 
the same way, if the angle in A is obtuse, then C has to 
be below the horizontal line in A. In the case where 
both angles in A and B are acute, point C will be in the 
region between the horizontal lines. This region can be 
further subdivided into regions inside and outside of 
the circle, depending on whether the angle in C is 
obtuse or acute. Note that if point C were on one of the 
horizontal lines or on the circle, then one of the angles 
in triangle ABC would be a right angle, but for reasons 
of simplicity we have not yet extended our 
representation to those singular cases. For the same 
reasons, we do not treat collinearity of A, B and C, 
which corresponds to the vertical line AB. 

The obtained subdivision of the plane can be 
interpreted as a refinement of the system of disjoint 
orientation relations used by Freksa [1992]. Freksa 
starts with a left/right and front/back dichotomy in a 
point B with respect to a reference vector AB. He ends 
up with 15 disjoint qualitative locations depicted in 
Figure 18. 
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Figure 18. Subdivision of the plane used by Freksa [1992]. 

In Freksa´s system, the 15 locations have natural 
language correspondences, for example, straight-front 
of B (1), left-front of B (2), left-neutral of B (3), left-back of 
B, and left-front of A (4), and so on. Spatial inferences 
are done through the same schema as in our 
representation (see Figure 8). Each inference step can 
be encoded in a table showing the composition of the 
15 qualitative locations. Freksa uses a neighborhood 
relation of the qualitative locations to reduce the size 
of the composition table. Since our inferences are 
based on an analytic calculus, we do not need any 
table look-ups. 

Freksa and Zimmermann [1992] use these qualitative 
descriptions for route finding purposes. They illustrate 
the problems they treat by the following example: 
"Walk down the road (ab). You will see a church (c) in 
the front of you on the left. Before you reach the 
church turn down the path that leads forward to the 
right (bd)." The question is where the church is with 
respect to the path (bd): 
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Figure 19. Route finding scenario used in [Freksa and 
Zimmermann, 1992]. 

To answer this question, Freksa and Zimmermann use 
special operations to transform the input information 
that (d) is right-front of vector (ab) to an expression 
based on vector (bd): (a) is right-back of (bd). Knowing 
this together with the input fact: (c) is left-front of (ab), 
we can infer that (c) is to the left of (bd), which 
answers the question.  

Due to the circle, our representation leads to a finer 
subdivision of the plane. If Freksa´s system is 
augmented by this circle, it turns out that the 
composition of the operations used to transform the 
input information is internal, and that these operations 
form an algebraic group. This is not the case in the 
original formalism of Freksa and Zimmermann. These 
algebraic properties simplify the route finding process. 
The description of these properties and their impact on 
the reasoning process will be the topic of a 
forthcoming paper. 

Arrangement knowledge is used successfully in 
[Levitt and Lawton, 1990] for qualitative navigation for 
mobile robots. Having augmented arrangement 
knowledge by qualitative angles, which leads to a finer 
subdivision of the plane, we expect further advantages 
in qualitative route finding. 

As the above example illustrates, our formalism can 
be used for performing inferences based on qualitative 
information treated from the observer´s perspective. 
Recently Jungert [1992] presented an extension of 
symbolic projections of [Chang et al., 1987] which is 
especially concerned with the observer´s point of view. 
We conjecture that combining these two formalisms 
would allow us to obtain a powerful system for 
qualitative spatial reasoning which could be used in 
motion planning and in building qualitative maps by 
autonomous systems. A big advantage of such a 
formalism is that it would not need any global 
coordinate system. 

It is also easy to incorporate arrangement and 
qualitative angle knowledge into a hybrid system for 
spatial reasoning which combines propositional and 
depictorial inferences, as presented in [Latecki and 
Pribbenow, 1992]. This is due to the propositional 
inference rule presented here and to the fact that using 
a finite grid as a representation frame for depictorial 

inferences, we can represent and retrieve arrangement 
and qualitative angle information in a simple way. 
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