
IEEE Int. Conf. on Data Mining (ICDM’03), Melbourne, FL, USA, November 2003

Tree-structured Partitioning Based on Splitting Histograms of Distances

Longin Jan Latecki
Computer and Inf. Sciences Dept.

Temple University, Philadelphia, PA 19122
latecki@temple.edu

Rajagopal Venugopal
Computer and Inf. Sciences Dept.

Temple University, Philadelphia, PA 19122
vrajagop@temple.edu

Marc Sobel
Dept. of Statistics

Temple University, Philadelphia, PA 19122
sobel@sbm.temple.edu

Steve Horvath
Dept. of Human Genetics and Biostatistics

Univ. of California, Los Angeles, CA 90095-1772
SHorvath@mednet.ucla.edu

Abstract

We propose a novel clustering algorithm that is similar in spirit
to classification trees. The data is recursively split using a cri-
terion that applies a discrete curve evolution method to the his-
togram of distances. The algorithm can be depicted through
tree diagrams with triple splits. Leaf nodes represent either
clusters or sets of observations that can not yet be clearly as-
signed to a cluster. After constructing the tree, unclassified data
points are mapped to their closest clusters. The algorithm has
several advantages. First, it deals effectively with observations
that can not be unambiguously assigned to a cluster by allow-
ing a ”margin of error”. Second, it automatically determines
the number of clusters; apart from the margin of error the user
only needs to specify the minimal cluster size but not the num-
ber of clusters. Third, it is linear with respect to the number of
data points and thus suitable for very large data sets. Exper-
iments involving both simulated and real data from different
domains show that the proposed method is effective and effi-
cient.

1 Introduction and Related Work

Clustering is a division of data into groups of similar objects.
Each group (or cluster) consists of similar objects; objects in
different clusters are dissimilar. Here we discuss clustering un-
der the assumption that clusters are connected regions with a
relatively high density of points separated from other clusters
by sparse regions [2]. Common clustering methods include: k-
means clustering, k-medoid also known as partitioning around
medoids (PAM) clustering [7], self-organizing maps, hierarchi-
cal clustering, and mixture model clustering. For a survey of
different clustering algorithms see for example [12].

We briefly review data partitioning algorithms. These algo-
rithms divide data into several subsets (clusters) based on opti-
mizing an objective function that often is a function of pairwise
distances, e.g. it may measure inter- or intra-cluster relations.
Because checking all possible subset systems is computation-
ally infeasible, greedy heuristics are used to iteratively opti-
mize the objective function. This results in different relocation

schemes that iteratively re-assign points between the k clus-
ters. In iterative schemes pairwise computations may quickly
become computationally too expensive. Using unique cluster
representatives (centroids) resolves the problem: now compu-
tation becomes linear in the number of objects. Depending
on how centroids are constructed, iterative optimization par-
titioning algorithms are subdivided into k-medoid (PAM) and
k-means methods. A medoid is the data point that minimizes
the sum of its distances to all other data points. Representation
by medoids has the advantage that it presents no limitations
on the attribute type and only requires the specification of a
distance measure. When the features are quantitative one may
also represent a cluster by the mean of its points. In k-medoid
(PAM) clustering, one minimizes the median of the distances
between cluster centers and the constituent elements of their
associated clusters. Most partitioning algorithms do not have
built-in margins of error allowing for the possibility of uncer-
tain cluster assignments at various stages of the algorithm. For
example, PAM clustering must assign an observation to a par-
ticular cluster, irrespective of its distances from the different
cluster medoids. Here we propose a partitioning algorithm that
succeeds in building in a margin of error by allowing for ’un-
classified’ nodes.

Liu et al. [11] framed clustering as a supervised learning
problem that uses decision trees to distinguish observed obser-
vations from synthetic observations, which are drawn from the
null distribution of no cluster structure. We pursue a differ-
ent strategy which is reminiscent of using classification trees
but it does not involve synthetic observations or class labels.
The processing flow of our algorithm is similar to the flow of
classification tree algorithms [1]. At each level of the tree, the
data is partitioned into subsets (also called nodes); splits (also
called branches) describe how ’parent’ nodes are partitioned
into ’child’ nodes. The node without a parent is called the root
node; nodes without child nodes are called leaf nodes or termi-
nal nodes [17]. Classification trees recursively split the data by
selecting an optimal feature and corresponding cut-off value.
Tree construction involves starting with a split at the root node
and continuing the splits of resulting child nodes until split-
ting stops; the child nodes which have not been split at the

end of this process become terminal or leaf nodes. Commonly
used node splitting criterion are the Gini index [1] or the in-
formation gain criterion [13]. These splitting criteria partition
the data by hyperplanes that are perpendicular to the coordi-
nate axes in the feature space. We propose a different split-
ting criterion which does not correspond to perpendicular hy-
perplanes. Instead of splitting based on a single feature, our
splitting criterion considers all features simultaneously by tak-
ing as input distances. Thus we propose a novel heuristic for
relocating points which is based on applying a discrete curve
evolution method to the histogram of distances between clus-
ter members and centroids. Even if the histogram of distances
contains more than two modes the discrete curve evolution ro-
bustly finds a cut-off point that divides data into two parts. The
cut-off point is found based on the shape of the histogram func-
tion as ’the most significant local minimum’ of the histogram
function. The discrete curve evolution has been successfully
applied in Computer Vision to obtain shape descriptors [10]
and to characterize video trajectories [9]. Note that alterna-
tive statistical methods such as a mixture model involving two
Gaussians may fail to divide data into two meaningful parts
when there are more than 2 modes.

2. Tree-structured Partitioning
The proposed clustering algorithm consists of two major steps:

1. Recursive Splitting Step: A discrete curve evolution
method (see below) is applied to histograms of distances
to assign observations to two or one temporary cluster. In
case of two temporary clusters, we use a Voronoi splitting
with a margin to obtain two clusters and a margin data
set of unclassified points. If we have only one temporary
cluster, the data is not split, and this cluster becomes a leaf
node.

2. Remapping Step: After the tree is built, ambiguous ob-
servations are mapped to the closest cluster centroids.
This is similar to clustering by k-medoids algorithms such
as PAM (Partitioning Around Medoids) [7].

We will now present our tree-structured partitioning algo-
rithm. Section 2.2 describes the new node splitting criterion.
Finally, Section 2.3 describes how unclassified data points are
remapped. In binary classification trees a parent node gets split
into two child nodes. Our algorithm follows the same pattern
but splits a parent node into three child nodes. The reason for
this modification is to deal with ambiguous observations (out-
liers), which cannot yet be clearly assigned to a cluster. Let us
be more specific. The parent node is split into left, right and un-
classified (uc) child nodes. At least two of the three child nodes
must be present or the parent node will not be split. The unclas-
sified node is a terminal node, which contains the ambiguous
data points. If the left and right child nodes are terminal nodes,
they contain all the data points belonging to a particular cluster.

Each node (except the root node) in the resulting tree struc-
ture has two attributes: (a) the membership information of the
data points and (b) the distances of all the data points in that
node from the representative of the parent node. For the root

node the centroid of the data is selected as the representative.
For each other node

�
, we select the representative point with

respect to its parent node representative ��� as follows. We first
compute the mean of the distances of data points in

�
from

��� . The representative data point for
�

is the data point in
�

whose distance to ��� is closest to this mean. Ties are broken by
random sampling. For the version of our algorithm that takes
a distance matrix as input, we compute the medoid instead of
the mean. Recall that the medoid is defined to be the data point
that minimizes the sum of its distances to all other data points.

2.1. Algorithmic Details
The input to our algorithm is either a set of attributes or a dis-
tance matrix that contains all pairwise distances between the
data points. Let �����
	��� , for ��������������� , be a set of data
points in an � dimensional feature space, i.e., each feature is
denoted by index 	���� for ��� �!�"��������� . Let 	$#%� be one of
the data points. The distance projection function &(' is defined
as &)'(*,+.-/�0&1*2	1�3+.- , which denotes the distance between + and
	4#5� . Thus a distance projection function represents the dis-
tance of the data points from a singled out data point.

Algorithm 67�98:);<8�;��98:8=*>�7-
1) Normalize the data � (optional)
2) Compute the centroid (mean or medoid) ?� of the data � .
3) Define the distance projection with respect to ?� : &1*2	 � -@�
&1*A?�B�C	 � - (for �D�E�!�"���������).

5) Create a root node *,�F- , with attributes ?� and & .
6) Apply the function G3�.H,�I;��KJ9&!8=*>�9- (see Section 2.2) to non-

terminal nodes.
7) Let

�
be a non-terminal node computed in (6) that is

either (lc) or (rc) type node. Let ����* � - be the representative
point of the parent node of

�
:

a) Find the mean � of distances &.*L�1�=* � -M�3+.- of the data
points +N# �

b) Select a data point 	 � # � for which O &.*L�1��* � -P�3	 � -RQN�SO
is the smallest as the representative of

�
and label it ��* � - .

c) Define the distance projection function &!�K8
T of all the
data points in

�
with respect to ��* � - , i.e., &!�K8
TB*2-U�V&=W"X�Y[ZM*2- .

d) Replace & with &!�K8
T for that node.
8) Go back to line (6) substituting non-terminal nodes for

the input parameter
9) Compute the centroids for all the clusters
10) Data points in the terminal node that contains the un-

classified (ambiguous) observations get assigned to the cluster
that corresponds to the closest centroid.

In lines 1-5 a root node is created. For each of the non ter-
minal nodes returned by the split function (line 6), the distance
values are updated in lines 7a),b),c),d). Each of the updated
non terminal nodes are split in step 8. Lines 6,7,8 are repeated
until all leaf nodes are found. In lines 9,10 data points labelled
unclassified are mapped to the cluster closest to them.

2.2. Node Splitting by Discrete Curve Evolution
Let
� �\�
+ � , for �4�]�!�"�����C^ be a set of data points in a

node * � - and &)� , for �_�`���������3^ be a set of distances &=�B�
&1*a����* � -M��+.��- , where �1��* � - is the representative point of the

25 30 35 40 45 50 55
0

1

2

3

4

5

6

7

8

9

10
Original Points: 14 Evolved Points: 5

Figure 1: The initial cut-off point obtained by the discrete curve
evolution for NIC41 data described in Section 3.

parent node of
�

. The algorithm for splitting a node in the tree
is outlined below. It computes the function G3�1H>�I;��KJ9&!8=* � - .

There are two user defined inputs � ��� and �.8
� � 8�� ;<	���8 .
The input � ��� defines the minimum number of data points the
user wants to see in a cluster and acts as criterion to stop split-
ting. The parameter �18
� � 8
� ;<	��=8 defines the area in between
the two representative points as ”danger zone”. All data points
falling in this area are considered to be outliers and become an
unclassified terminal node.

The user does not need to specify the number of clusters
since the algorithm determines the number of clusters on the
basis of � ��� and �18
� � 8
� ;<	��=8 . We have found that �18
� � 8
� ;<	��=8
has minor effect on the resulting number of clusters. In our
experiments we set �.8�� � 8
� ;<	���8 to vary from 0.01 (1%) to 0.1
(10%) of the data in a given node. A good default setting is
0.1. But it is obvious that � ��� will in general have a major
effect on the resulting number of clusters. For example setting
� ��� ������� will result in clusters with a minimum cluster size
of 500.

The basic idea of splitting a node consists of three steps
1. Find an initial cut-off point: We first plot the histogram

of distances �:&)�� . We use discrete curve evolution (DCE)
[10, 9] to find a temporary cut point. We treat the graph of
the distance histogram as a polygonal curve � . DCE ellows
us to recursively delete the vertices of � until only 5 vertices
remain that best interpolate the shape of � Figure 1 shows a
sample histogram (frequency plot) and the temporary cut point
(marked with the arrow). The histogram plot of the distances
of all the data points in a node from the representative is shown
as a solid line and the evolved curve resulting from using the
discrete curve evolution is shown as a dashed line. The first
local minimum point in the evolved curve is chosen as the cut
point.

2. Adjust the data partition: After splitting the data tem-
porarily into two child nodes (child1 and child2) the final split
is found based on three criteria.

I) If the number of data points in one of the child nodes
child1 or child2 is zero, the parent node

�
is labelled as a clus-

ter and no further splitting is performed.
II) If criterion I) is not satisfied, then two representative

points �
	 � ��� of the temporarily split data are computed. �	
is a closest data point in child1 to the mean of the distances

&1*a����* � -M�3	=��- of points 	=� in child1 to the representative of the
parent node �1�=* � - . Similarly we determine ��� .

III) We declare a point +.� in � ambiguous, if it is is within
the margin region

O &1*>+ � � � 	 - QS&1*>+ � � � � -"O�� �18
� � 8
� ;<	��=8�� &1* � 	 � � � -P�

If it is not ambiguous and closer to �	 than to ��� , then it is
mapped to cluster newchild1 else to newchild2.

3. Tests on minimal number of points:
Finally we eliminate clusters that have less points than � ��� .

2.3. Remapping
This is the final stage of our algorithm. We arrive here when all
nodes are terminal leaf nodes. The centroids of all terminal leaf
nodes (lc) and (rc) are computed and the data points from the
leaf nodes labeled unclassified (uc) are mapped to their closest
centroids in the feature space.

3 Comparison to PAM Clustering

Here we apply our partitioning method to 3 different data sets.
On all of these data sets the proposed method performs bet-
ter than PAM clustering. For our analysis we used the PAM
function in the cluster library of the freely available software
R (url: http://cran.r-project.org/). PAM takes as input a dissim-
ilarity matrix between the observations and requires that the
user specify the number of clusters k to be generated. In all of
our analysis we used the Euclidean distance metric between the
observations as dissimilarity matrix.

Our first test data set will be referred to as ChallengeIII.
This simulated data set contains 2 clusters. Each cluster con-
tains 50 observations. There are 4 features but only the first
2 features contain a signal while features 3 and 4 are random
draws from a standard normal distribution. For cluster 1 and
cluster 2 observations, the first 2 features are random draws
from a beta distribution with shape parameters (2,5) and (5,2),
respectively. When choosing input parameters � ��� ����� and
�18
� � 8
� ;<	��=8N����� ��� , our proposed method misclassifies only
one point. The adjusted Rand index [14] between assigned
clusters and ground truth is .96 which reflects the very high
agreement between cluster label and ground truth.

When using the same distance matrix in � ��� medoid
(PAM) clustering we find that 3 observations are misclassified
which lowers the adjusted Rand index to .88. Thus our pro-
posed method outperforms PAM on this data set.

The second data set is a subset of the NCI60 gene ex-
pression data from the National Cancer Institute (see [15] and
http://genome-www.stanford.edu/nci60). We considered only
6 kinds of cancers and used the gene expression values of the
1375 genes that were available in the data set referred to as
”T matrix”. Our data set which could be referred to as NCI41
consisted of 41 cancer cell lines (a classical multi-dimensional
scaling (MDS) plot is shown in Figure 2): 6 central nervous
system (denoted by CN), 7 colon (CO), 6 leukemia (LE), 8
melanoma (M), 6 ovarian (O), and 8 renal (R) cancer cell lines.

Figure 2: Classical MDS plot of the 41 samples in NIC41.

CN CO LE M O R
1 5 0 0 0 0 0
2 0 6 0 0 3 0
3 0 0 6 0 0 0
4 0 0 0 7 0 0
5 0 1 0 0 4 0
6 1 0 0 1 2 8

Figure 3: Our algorithm disagrees with the ground truth infor-
mation for NIC41 in only five points.

We normalized the features so that they have mean zero and
variance one. Our algorithm with the parameters � ��� � �
and �18
� � 8
� ;<	���85� �(� �(� is very close to the ground truth: it
misclassified 5 points resulting in an adjusted Rand index of
.82; see Figure 3, where the rows correspond to the obtained
clusters and the columns show the ground truth.

We also applied our partitioning method to the Euclidean
distance matrix of the normalized feature space. With the pa-
rameters � ��� � � and �18
� � 8
� ;<	���8V� �(� ��� the clustering
method misclassified 9 points which resulted in an adjusted
Rand index of .58. When applying PAM clustering (k=6) to
the same distance measure we found that PAM misclassifies 12
observations, which lowered the adjusted Rand index to .47.
Thus our proposed method outperforms PAM on this data set.

The third data set is the classical data set called Irises.
It is composed of 150 observations with 4 feature measure-
ments. As ground truth we have three clusters, each with 50
points. There is one clearly separated cluster A and two clus-
ters B and C that are hard to distinguish. We applied our al-
gorithm to the distance matrix of the data computed without
feature normalization. It misclassified 10 observations from
clusters B and C with a corresponding adjusted Rand index of
.82. The results obtained with the parameters � ��� � ��� and
�18
� � 8
� ;<	��=8 ���(� �(� are summarized in the table shown in Fig.
4, where the rows correspond to the obtained clusters and the
columns show the ground truth.

When using the same distance measure in PAM �_� � clus-
tering, we find 16 misclassifications and a the adjusted Rand

1 2 3
1 50 0 0
2 0 49 9
3 0 1 41

Figure 4: Our algorithm disagrees with the ground truth infor-
mation for Irises data in 10 points. Adjusted Rand index is .82.

index was lowered to .73. Again, our proposed method outper-
forms PAM. Matlab source code of our algorithm can be found
at www.cis.temple.edu/˜latecki/Clustering.

References

[1] Breiman, Leo, Friedman, J.H., Olshen, R.A., and Stone, C.J.
Classification and Regression Tree’s. Wadsworth, 1984.

[2] B.S.Everitt Cluster analysis Heinemann, London 1974.

[3] C. Hennig and L. J. Latecki. The choice of vantage objects for
image retrieval Pattern Recognition 36, pp. 2187-2196, 2003.

[4] Hand, D.J. Discrimination and Classification. Wiley, 1981.

[5] Hand, D.J. Construction and Assessment of Classification Rules.
Wiley, 1997.

[6] Hartigan, J. Clustering Algorithms. Wiley, 1975.

[7] L. Kaufman and P.J. Rousseeu. Finding Groups in Data. Wiley,
New York, 1989.

[8] Kohonen, T. Self-Organizing Maps. Springer, Berlin, 1995.

[9] L. J. Latecki and D. de Wildt. Automatic Recognition of Unpre-
dictable Events in Videos Proc. ICPR, Vol. 2, 2002.

[10] L. J. Latecki and R. Lakamper Shape Similarity Measure Based
on Correspondence of Visual Parts IEEE Trans. Pattern Analysis
and Machine Intelligence (PAMI) 22, pp. 1185-1190, 2000.

[11] Bing Liu, Yiyuan Xia and Philip S. Yu. CLTree - Cluster-
ing through decision tree construction IBM Research Report
RC21695, 20/3/2000.

[12] B. Pavel. Survey of clustering data mining techniques. Accrue
Software Inc 2002.

[13] J. R. Quinlan. C4.5: program for machine learning Morgan
Kaufmann 1992.

[14] W.M. Rand. Objective criteria for the evaluation of clustering
methods. J. of the American Statistical As. 66, 846-850, 1971.

[15] D. T. Ross, U. Scherf, M. B. Eisen, C. M. Perou, P. Spellman,
V. Iyer, S.S. Jeffrey, M. V de Rijn, M. Waltham, A. Pergamen-
schikov. Systematic variation in gene expression patterns in hu-
man cancer cell lines. Nat Genet 24, 227–234, 2000.

[16] Classification Trees Electronic Statistic Textbook, Statsoft Inc.
”http://www.statsoftinc.com/textbook/ stathome.html”

[17] Classification Trees: Slide notes
”http://medg.lcs.mit.edu/hamish/6872LECT/sld001.htm”

