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Abstract

The paper deals with grouping of edges to contours of
shapes using only local symmetry and continuity. Shape
skeletons are used to generate the search space for a ver-
sion of the Markov Chain Monte Carlo approach utilizing
particle filters to find the most likely skeleton. Intuitively
this means that grouping of edge segments is performed by
walking along the skeleton. The particle search, which is
an adapted version of a successful algorithm in robot map-
ping, is assisted by a reference model of a shape, which
is expressed as the sequence of sample points and radii of
maximal skeleton disks. This model is sufficiently flexible to
represent non-rigid deformations, but restrictive enough to
perform well on real, noisy image data. The order of skele-
ton points (and their corresponding segments) found by the
particles defines the grouping.

1. Introduction
The goal of the algorithm presented in this paper is to

group pixels from an edge map of some digital image to a
contour of a given target object. We interpret the problem of
contour grouping as a SLAM (Simultaneous Localization
and Mapping) problem as it is stated in the field of robot
mapping. Recently breakthrough solutions to the SLAM
problem have been obtained using particle filters [19, 7, 5].
Our algorithm adapts these approaches, which iterate over
the processes of localization of the robot in the existing par-
tial map, followed by a map update based on new obser-
vations. The initial guess of a new robot location is ob-
tained from its previous location and from odometry read-
ings. Since these odometry readings may be noisy, it is then

corrected using new observations (usually obtained with a
laser range finder). After this correction, the new observa-
tions are added to extend the existing partial map.

Our adaption treats the contour as the map that needs
to be constructed. However since we do not have any real
robot walking, the robot path is not explicitly given in our
framework as is in the case of SLAM and hence do not have
any odometry information. Therefore, further constraints
on the robot path are needed in our framework. We set these
constraints by assuming that our (virtual) robot is walking
along the medial axis (MA). At every point of the MA (that
is not endpoint or a junction point) the traversal direction
is uniquely determined, and each MA point is equidistant
to at least two different boundary points. Thus, we replace
the odometry information with the constraint on the direc-
tion of traversal, which is obtained from a reference model.
We replace the robot observations with the local symme-
try constraint, which allows our robot to perceive only pairs
of locally symmetric contour segments, and with a contour
continuity constraint, which can be viewed as practical re-
alization of Gestalt grouping principles [20].

The local symmetry constraint is based on the fundamen-
tal property of the MA that dates back to Blum [3]. Ac-
cording to Blum’s definition, the medial axis, also called a
skeleton S of a set D, is the locus of the centers of maximal
disks. A maximal disk in D is a closed disk contained in D
that is interiorly tangent to the boundary of D and that is not
contained in any other disk in D. Each maximal disc must
be tangent to the boundary in at least two different points.
With every skeleton point s ∈ S we also store the radius
r(s) of its maximal disk. An important property is that the
skeleton can be computed for every planar shape. In order
to generate a shape model, we first compute a skeleton of a



(a) Bird (b) Bottle (c) Swan

Figure 1: We use skeletons as our shape models.

given 2D shape with the method described in Bai et al. [1].
We use this method, since it produces very stable skeletons
with only relevant branches. Another important property
of this method is that all skeleton endpoints lie on the ob-
ject contour. For example, three skeletons computed by this
method are shown in Fig. 1.

Our shape model is a set of skeleton paths. For example,
the shape model of the bottle is composed of two paths end-
ing in the head. Each path is represented as a sequence of
N sample points and the radii of maximal disks at the sam-
ple points. As stated above, we use a single model path as
our reference model that replaces odometry for our virtual
robot. Therefore, to group contours based on models with
more than one path, we perform the proposed algorithm for
each path separately. However, if one path is found, we
know the approximate starting positions for the other paths
in the image.

The processing flow of the proposed approach is as fol-
lows. For a given input image, we compute a gray level
edge image. Then we group edge pixels to linear structures
by applying an extended EM (Expectation Maximization)
algorithm [9]. The obtained line segments are the input to
the proposed contour grouping algorithm.

2. Related work

There is a huge number of papers on contour grouping
that are based on various optimization principles. There-
fore, we only review papers related to symmetry and parti-
cle filters. We also stress that the problem of contour group-
ing still remains an open problem.

The use of symmetry as a key contour grouping cue has
been studied in both human vision and computer vision.
Among others, the results in [13, 16, 10, 21] show that sym-
metry is non-accidental and therefore, can be used to dis-
tinguish salient contour structures from noisy background.
Symmetry analysis of a given object boundary is usually
conducted by computing its symmetry axis.

Symmetry principle expressed as global contour sym-
metry has been used in contour grouping in various ap-
proaches. One of the most recent approach that is based

on global contour symmetry is presented in [18]. It is re-
lated to the proposed work is the grouping method devel-
oped by Mohan and Nevatia [14], where symmetry is con-
sidered along with closure and proximity. Symmetry is ap-
plied as a cue to pair the extracted curves by producing a
set of ribbons. These ribbons are then grouped into some
structures by some heuristic algorithms.

Our work that is related to the grouping method devel-
oped by Liu, Geiger, and Yuille [12] in that local symmetry
axes are used. They identify the local symmetry-axis seg-
ments and then apply a shortest-path algorithm to connect
some of them into a complete symmetry axis. The grouping
cost function is defined as the sum of local costs along the
symmetry axis. In addition to using different measures, we
have a more powerful computational framework in the pro-
posed approach. Integer Quadratic Programming is is used
in [17] to group contour segments based on constrained De-
launay triangulation, where line segments were first fitted to
edge images. The grouping is performed with a reference
model that resembles a skeleton composed of line segments
representing human body parts.

Particle filters (also called sequential Monte Carlo meth-
ods) have extensively been applied for robust object track-
ing. One of the best-known approaches is the Condensa-
tion algorithm [8], which allows tracking object contours
the presence of background clutter. A sophisticated version
of particle filter algorithm was applied to contour detection
in [15]. The detection is performed on edge pixels with par-
ticles following the contour directly. In this paper also a
simple ribbon geometry is used for road extraction.

Particle filtering has become the standard approach for
mobile-robot localization with the main application being
SLAM [19, 7, 5], where probability distributions for the
robot poses (position plus heading direction) and the possi-
ble maps are approximated and propagated by a set of par-
ticles. As stated in the introduction, our approach is closely
related to the SLAM, since we cast contour grouping as map
building, but the geometric interpretation is based on local
symmetry of contours with respect to their medial axes.

In comparison to previous approaches our work has at
least two serious advantages. We are able to group con-
tour segments in the presence of distractor segments be-
tween local symmetric contour pieces. The grouping un-
der such conditions seems to be impossible in [12, 17, 15].
Even if our shape models are derived from complete con-
tours, grouping of only parts of contours is possible in our
framework. This is in contrast with active contours based
methods [2].

3. Contour grouping with particle filtering
Our approach is inspired by the robot mapping ap-

proach in Grisetti et al. [7]. The key idea of the Rao-
Blackwellized particle filter for SLAM is to estimate a pos-



terior p(x1:t|z1:t, u1:t) over potential trajectories x1:t of the
robot given its observations z1:t and its odometry measure-
ments u0:t and to use this posterior to compute a posterior
over maps m and trajectories:

p(x1:t,mt|z1:t, u1:t) = p(mt|x1:t, z1:t)p(x1:t|z1:t, u1:t)
(1)

In our context, the robot trajectory x1:t is a skeleton path
and the contour is the map mt that we need to construct.
We replace odometry measurements u1:t with the compari-
son to a reference model. Our reference model is simply a
sequence of MA points and the radii of maximal disks along
a skeleton path in the reference shape. We do not have any
error in our odometry, since our virtual robot moves pre-
cisely, but our ”odometry” error comes from the reference
model itself, since we weaken the constraints on the model
accuracy. By this the reference model becomes very flex-
ible, since we allow for large inaccuracy in the position
of MA points. Finally, an observation zt at the trajectory
point xt comprises from the estimated radius of maximal
disk with respect to two contour segments and the two tan-
gential points of the maximal disk to the two contour seg-
ments. Thus, our observation at a given trajectory point xt

is based on two contour pieces that are locally symmetric at
xt. Since not every point in a given edge image is a center
of some maximal disk, the robot trajectories are restricted
to a subset of a given digital image.

In our context the posterior over maps p(mt|x1:t, z1:t) is
defined based on contour smoothness, which can be viewed
as a practical realization of the good continuation rule, and
the local symmetry measured with respect to the radii of
maximal disks along a skeleton path in the model. Observe
that we evaluate contour smoothness from a view of centers
of maximal disks, which gives us a better view than viewing
the contour from other contour points (which is usually the
case): since we walk along the skeleton we are also able
to use local symmetry to evaluate the contour smoothness.
The posterior over the potential trajectories p(x1:t|z1:t, u1:t)
is evaluated based on the predicted position with respect to
the reference model.

Although the interpretation of robot mapping terms and
the posterior evaluations are different, our computation
framework is similar to that in SLAM. To estimate the pos-
terior p(x1:t|z1:t, u1:t) over the potential trajectories, an in-
dividual map is associated with every sample. In analogy,
an individual grouping of edge line segments (that is ex-
pected to form the contour) is associated with every sample.
Contour is defined here as a sequence of locally symmetric
line segments. Each contour is built given the observations
z1:t and the trajectory x1:t represented by a corresponding
particle.

Following the approach in [7], we employ one of
the most common particle filtering algorithms: the Rao-
Blackwellized Sampling Importance Resampling (SIR) fil-

ter. It incrementally processes the observations and the
readings from the reference model, which is done by up-
dating a set of samples representing the posterior about the
contour and the trajectory of our virtual robot. The follow-
ing four steps are executed:

1) Sampling: The next generation of particles {x(i)
t } is

obtained from the current generation {x(i)
t−1} by sampling

from a proposal distribution π(x1:t|z1:t, u1:t) which is as-
sumed to satisfy the following recursion based on 1st on
first order Markov assumption:

π(x1:t|z1:t, u1:t) =π(xt|x1:t−1, z1:t, u1:t)·
π(x1:t−1|z1:t−1, u1:t−1) (2)

2) Importance Weighting: An individual importance
weight w(i) is assigned to each particle, according to

w(i) =
p(x1:t|z1:t, u1:t)
π(x1:t|z1:t, u1:t)

(3)

The weights w(i) account for the fact that the proposal dis-
tribution π in general is not equal to the true distribution of
successor states.

3) Resampling: Particles with a low importance weight
w are typically replaced by samples with a high weight.
This step is necessary since only a finite number of parti-
cles are used to approximate a continuous distribution. Fur-
thermore, resampling allows application of a particle filter
in situations in which the true distribution differs from the
proposal.

4) Contour Estimating: For each pose sample x
(i)
t , the

corresponding contour estimate m
(i)
t is computed based on

the trajectory and the history of observations according to
p(m(i)

t |x(i)
1:t, z1:t).

Our approach benefits from two improvements described
in [7]. The first is the computation of the optimal pro-
posal distribution, which has been successfully applied in
FastSLAM-2 [12] for landmark-based mapping. The sec-
ond is adaptive resampling technique, which was introduced
in [7] for Rao-Blackwellized particle filters.

As described in the prediction step (1), we
need to draw samples from a proposal distribution
π(xt|x1:t−1, z1:t, u1:t). Following Doucet [4] the optimal
choice of the proposal distribution with respect to the
variance of the particle weights and under the Markov
assumption is given as

p(xt|m(i)
t−1, x

(i)
t−1, zt, ut) =

p(zt|m(i)
t−1, xt)p(xt|x(i)

t−1, ut)∫
p(zt|m(i)

t−1, x)p(x|x(i)
t−1, ut)dx

(4)
With this optimal proposal the importance weights can be
recursive computed as:

w
(i)
t = w

(i)
t−1

∫

x

p(zt|m(i)
t−1, x)p(x|x(i)

t−1, ut)dx (5)



In the case of a robot equipped with the laser range
finder, the likelihood function of the odometry motion
model p(xt|x(i)

t−1, ut) is very flat while p(zt|m(i)
t−1, xt)

based on laser readings is extremely peaked. The
situation is similar in our application, therefore, we
follow the solution introduced in [7]. Since the
product p(zt|m(i)

t−1, xt)p(xt|x(i)
t−1, ut) is dominated by

p(zt|m(i)
t−1, xt), we can approximate the integral in Eq. (5)

as:

w
(i)
t ≈ w

(i)
t−1

K∑

j=1

p(zt|m(i)
t−1, xj) (6)

where xj ∈ {xt|p(xt|xt−1, ut) > α}, where α is a thresh-
old related to the accuracy of the reference model. More-
over, since obtaining a closed form for the optimal proposal
(Eq. (4)) is very hard it is approximated by a Gaussian dis-
tribution.

p(xt|m(i)
t−1, x

(i)
t−1, zt, ut) ≈ φ(µ(i)

t , Σ(i)
t ). (7)

The Gaussian parameters, µ(i)
t , Σ(i)

t , are computed using the
K samples as:

µ
(i)
t =

1
ν(i)

K∑

j=1

xjp(zt|m(i)
t−1, xj) (8)

Σ(i)
t =

1
ν(i)

K∑

j=1

(xj − µ
(i)
t )T (xj − µ

(i)
t )p(zt|m(i)

t−1, xj)

(9)

where ν(i) =
∑K

j=1 p(zt|m(i)
t−1, xj).

Consequently, in each update of the particle filter, we
only need to compute p(zt|m(i)

t−1, xj) and p(xt|x(i)
t−1, ut).

Both probabilities are directly computed using our geomet-
ric model.

We also use selective resampling in our approach. Dur-
ing resampling, particles with a low importance weight are
usually replaced by samples with a high weight. Resam-
pling is necessary since only a finite number of particles is
used. However, after resampling several times only very
few particles might be duplicated and good samples might
be deleted from the sample set, causing ”particle depletion”
problem. To reduce this effect in selective resampling, re-
sampling operations are only performed when needed. As
the criterion to decide when the resampling is needed we
use the Neff measure [11]:

Neff =
1∑N

1=1(w(i))2
, (10)

where N is the number of particles. It is based on the
observation that if the samples were drawn from the true
posterior, the importance weights of the samples would be

equal to each other. The worse the approximation the higher
the variance of the importance weights. Since Neff can be
regarded as a measure of the dispersion of the importance
weights, it is a useful measure to evaluate how well the par-
ticle set approximates the true posterior. Following [7] and
[4], we resample each time Neff drops below a threshold
of N/2.

4. Geometric construction of center points

For a given set of line segments (which approximate
edge pixels), we describe a construction of all potential me-
dial axis (MA) points. Since our construction only approx-
imates MA points, we call the constructed points center
points. Center points are candidates for the reconstructed
skeleton points, i.e. the set of center points defines the
search space for particles. In other words, each particle is a
sequence of center points.

Center points are determined for pairs of line segments,
their construction is motivated by the classical definition
of skeleton points on closed curves [3] (centers of maxi-
mal inscribing disks). In contrast, our construction of cen-
ter points is performed for a non-connected set of line seg-
ments. Since the line segments are obtained by fitting edge
pixels, their directions do not precisely represent the direc-
tions of the true contours. Hence the task of computing the
center points is non trivial. The following definitions refer
to Fig. 2.
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Figure 2: Construction of center points.

Let S1, S2 be two line segments and P1, P2 two sets
of points on S1 and S2 respectively, gained from equidis-
tant sampling of S1, S2 with a sample size ε. Then the
set C(S1, S2) of segment center points of S1 and S2 is
the union ∪c(p1, p2) of center points of all pairs of sample
points (p1, p2) in (P1 × P2), which is defined as follows:



Let p1, p2 ∈ (P1 × P2), and d1, d2 be the direction vec-
tors of S1, S2. Let Q be the intersection between the lines
containing S1, S2, and B the bisecting half straight that
halves the angle ∠(Qp1, Qp2). Let p′1, p

′
2 be the projection

points of p1 and p2 onto B, orthogonal to d1 and d2 respec-
tively (not orthogonal to B). Then the center point c(p1, p2)
of points p1, p2 is defined as the mid point (p′1 + p′2)/2 be-
tween p′1 and p′2. In the case of S1 ‖ S2, c(p1, p2) is defined
as (p1 + p2)/2, which is a continuous extension and in ac-
cordance with the construction.

In the case of sub sampling with a sample size of ε → 0
this definition is a generalization of the classical definition:
if PC1, PC2 denotes a pair of points on a continuous poly-
gon that define a maximal disk, then the above construction
yields the center point of this disk (using the tangent direc-
tions of the polygon at PC1, PC2 as the directions d1, d2).
Hence we generate a superset of the skeleton points if the
set of sample points (here: on the polygon) contain PC1

and PC2. This is guaranteed if ε → 0. The distance e be-
tween p′1 and c (or p′2 and c, see Fig. 2) can be interpreted
as a quality measure for c(p1, p2) to be the center of a max-
imal disk. If e = 0 (best value), the segments S1 and S2 are
tangents to the circle defined by the center c and the points
p1, p2. The smaller e, the closer is c to a skeleton point in
the classical sense. Since in real applications we use a sam-
ple size ε > 0, most center points in C will gain a measure
e > 0. To extract a set of center points that represents intu-
itive skeleton candidates, we allow e to be in [0, Te] with a
certain threshold Te. Point combinations exceeding Te will
be removed and not be used as skeleton candidates. The
special cases of Te = 0 or ε → 0 lead to the following
relations between C and skeleton points:

1. ε → 0, Te > 0 ⇒ C ⊃ CS;

2. ε → 0, Te = 0 ⇔ C = CS;

3. ε > 0, Te = 0 ⇒ C ⊂ CS.

Fig. 3 shows a set C of generated skeleton candidates of
two segments. The sample points on the two segments are
shown in black, while the skeleton candidates (or center
points) are shown in red. The dashed line shows the center
points which are generated by the outer segments. Observe
that the middle segment (which could be seen as noise if the
outer segments are part of the true contour) generates ad-
ditional skeleton candidates, which have to be disregarded
during the particle filtering process.

5. Contour smoothness
This section describes the geometric construction of the

contour smoothness measure S(c1, c2), defined for pairs of
center points (c1, c2). It describes the symmetry or prop-
erty of good continuation of the transition from the seg-

Figure 3: Skeleton candidates of three segments (solid
lines). The sample points on the two segments are shown
in black, while the skeleton candidates (or center points)
are shown in red.

ments S1, S2 corresponding to center point c1 to the seg-
ments S3, S4 corresponding to center point c2. All defini-
tions in this section refer to Fig. 4.
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Figure 4: Evaluation of contour smoothness.

The smoothness measure is composed of two parts, tak-
ing into account the distance and the angle of continuation.
First we define the distance compound.

Let c1 = c(p1, p2) be the center point induced by points
p1 ∈ S1, p2 ∈ S2. We call the pair (S1, S2) the source
segments of c1. Let (S3, S4) be the source segments of the
second center point c2. We define the source segment dis-
tance DS(c1, c2) as the minimal sum of distances of possi-
ble continuations of S1, S2 on S3, S4:

DS(c1, c2) = (11)
min(dS(S1, S3) + dS(S2, S4), dS(S1, S4) + dS(S2, S3))

with the distance dS(Si, Sj) between two line segments
Si, Sj defined below. DS defines a distance value as well
as the pairing of the segments, i.e. the configuration of con-
tinuation. For example, in Fig. 4, S1 continues S3, S2 con-



tinues S4, since dS(S1, S3) + dS(S2, S4) < dS(S1, S4) +
dS(S2, S3)).

Let Si, Sj be two line segments with endpoints e1i, e2i

and e1j , e2j . The distance de(pi, Sj) of a point pi ∈ Si to a
segment Sj is defined as the minimal Euclidean distance be-
tween pi and all points pj ∈ Sj . Then the distance between
two line segments is defined as

dS(S1, S2) = (12)
min(de(e1i, Sj), de(e2i, Sj), de(e1j , Si), de(e2j , Si))

The second compound measures the angular distance based
on the segment configuration established by DS . With ev-
ery center point c1, we have two vectors associated that
emanate from c1 to its two line segments S1, S2. Let
p1 ∈ S1, p2 ∈ S2 be the points that construct the cen-
ter point c(p1, p2). We call p1, p2 the source points of
c(p1, p2) = c1. We define Vi = pi − c(pi, pj) and
Vj = pj − c(pi, pj), (e.g. Fig. 4, V3 = p3 − c(p3, p4)).
Then the angular distance between two center points is de-
fined as AS(c1, c2) = ∠(V1, V2)+∠(V3, V4). For example,
in Fig. 4, A(c1, c2) is the sum of the angles α + β. Finally,
the smoothness measure C(c1, c2) is defined as mixture of
two Gaussians:

C(c1, c2) = η φσ1(DS(c1, c2)) + (1− η) φσ2(AS(c1, c2))
(13)

with η steering the influence of the distance and angular
terms. In all our experiments, we set η = 0.5.

6. Particle evaluation
In this section, we describe the computation of

p(zt|m(i)
t−1, xj) needed for particle weight computation in

formula ((5)). The particle x
(i)
t−1 is represented as a se-

quence of t − 1 center points, and their associated radii of
maximal disks. Let c1 be the last center point in this se-
quence. m

(i)
t−1 represents the line segments grouped so far

by x
(i)
t−1. These are the pairs of line segments that gener-

ated the center points. In our framework, the observation
zt represents the expected radius Rt of a maximal disk that
we retrieve from the reference model. We consider xj as a
center point c2 that is a possible continuation of x

(i)
t−1. Let

Rj be the radius of the maximal disk at the center point c2.
We define the model fit with a single Gaussian

M(c2) = φσ3(Rj −Rt), (14)

where σ3 defines the tolerance related to the model accu-
racy. Finally, we obtain

p(zt|m(i)
t−1, xj) = C(c1, c2)M(c2) (15)

Thus, each particle is judged for fitness by two criteria. The
first is the contour smoothness, the second the reference

model fitness. The two distributions C and M are indepen-
dent, since the probability of a certain sequence of radii is
not related to smoothness in a given gray level edge image.

It remains to define the distribution p(xt|x(i)
t−1, ut). As

stated in Section 3, we replace the inaccuracy in the odom-
etry readings ut with the imprecision of our shape model.
In our context, p(xt|x(i)

t−1, ut) is simply a 3D Gaussian dis-
tribution over x and y coordinates of the location of sample
points on a model skeleton path and the radii at the sam-
ple points. Here we have a clear tradeoff between the shape
generality of our model and its precision. The more precise
our model is, the less general is the shape class represented
by the model. It is possible to learn the model from a given
class of shapes, by first aligning the shapes, and then com-
puting the distributions at given sample points. We simply
constructed our models by computing skeletons of single
binary shapes [1], and setting the model variance manually.

7. Experimental results
We provide experimental results illustrating the pro-

posed contour grouping. We used images form the ETHZ
database [6], since it contains a gray level edge map for each
image, which allows for a fair performance comparison. It
also contains model object, which we used to generate our
shape reference models. The reference models we used are
the skeleton paths shown in Fig. 1. Each path was repre-
sented as a sequence of 50 equidistant sample points and
the radii of maximal disks centered at the sample points.

Fig. 5 illustrates several contour grouping examples
computed with the proposed method. The grouped contour
line segments are shown in red. Their connections to corre-
sponding center points are also shown in red. We also see
the computed skeleton paths as blue circles, the set of all
center points, and all the input edge segments. The original
input images and the input gray level edge maps are shown
in Fig. 6. The first two examples show grouping of two
different objects in the same image (Fig. 5(a,b)). It is possi-
ble in our framework, since two sets of particles follow two
different reference models. In all our experiments we used
100 particles for each shape reference model and 50-100
time steps.

Fig. 7 shows the particles as filtering progresses for the
swan in Fig. 5(e). Each trajectory (particle) is shown in dif-
ferent color. We can observe that all through the process
sufficiently diverse particles (hypotheses) are maintained
while ”bad” particles disappear towards the end as the filter
converges.

8. Conclusions
We map the problem of contour grouping to a SLAM

problem as it is stated in the field of robot mapping. We
extend the particle filters based approach to SLAM so that



(a) (b) (c)

(d) (e) (f)

Figure 5: The grouped contour line segments are shown in red. Their connections to corresponding center points are also
shown in red. We also see the computed skeleton paths as blue circles, the set of all center points, and all the input edge
segments. The original images are shown in Fig. 6.

Figure 6: The input images and the input edge maps for grouped contours shown in Fig. 5.

statistical inference based on a reference model is possible.
In comparison to previous approaches our work has at least
two serious advantages that are demonstrated in our exper-

imental results. We are able to group contour segments in
the presence of distractor segments between local symmet-
ric contour pieces. Even if we our shape models are derived



Figure 7: The evolution of particles at iterations 16, 61, and 96. Only center points and the trajectories of particles are shown
for clarity of presenting.

from complete contours, grouping of only parts of contours
is possible.
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