
Fast Detection of Dense Subgraphs
with Iterative Shrinking and Expansion

Hairong Liu, Longin Jan Latecki, Senior Member, IEEE, and Shuicheng Yan, Senior Member, IEEE

Abstract—In this paper, we propose an efficient algorithm to detect dense subgraphs of a weighted graph. The proposed

algorithm, called the shrinking and expansion algorithm (SEA), iterates between two phases, namely, the expansion phase and the

shrink phase, until convergence. For a current subgraph, the expansion phase adds the most related vertices based on the average

affinity between each vertex and the subgraph. The shrink phase considers all pairwise relations in the current subgraph and filters

out vertices whose average affinities to other vertices are smaller than the average affinity of the result subgraph. In both phases,

SEA operates on small subgraphs; thus it is very efficient. Significant dense subgraphs are robustly enumerated by running SEA

from each vertex of the graph. We evaluate SEA on two different applications: solving correspondence problems and cluster

analysis. Both theoretic analysis and experimental results show that SEA is very efficient and robust, especially when there exists a

large amount of noise in edge weights.

Index Terms—Dense subgraph, correspondence, point set matching, maximum common subgraph, cluster analysis

Ç

1 INTRODUCTION

GRAPH is an important representation for many real-world
objects, such as the Internet, the shape of natural objects,

and traffic maps. Most of these objects have no correspond-
ing vectorial representations. Even for data in vectorial form,
many algorithms are essentially based on graph representa-
tions such as graph-based image segmentation [1].

Although edges represent pairwise relations, the graph as
a whole can represent very complex relations. A set of
vertices that constitute a complex relation usually forms a
dense subgraph. Dense subgraphs identify cliques of
vertices that are highly related to each other. Such cohesive-
ness of pairwise relations is unlikely to be produced by
accident and is also not easily disturbed by noises and
outliers. Thus, a dense subgraph may robustly indicate key
patterns underlying the graph. For example, in the World
Wide Web, dense subgraphs might be communities or link
spam [2]; in telephone call graphs, dense subgraphs might be
groups of friends or families. In these situations, the graphs
are usually sparse globally, but have many dense subgraphs
of different sizes. These dense subgraphs are the natural
focal points for studying graph structure and extracting the
underlying meaningful patterns.

Dense subgraphs are widely used in many fields. For
example, the community structure [3], which appears in
social and biological networks, is a kind of dense subgraph.
The maximal clique [4], which plays a fundamental role in
many graph problems, is also a kind of dense subgraph. In

machine learning, the one-class clustering/classification
problem [5], which finds small and coherent subsets of points
within a given dataset, is in fact meant to find dense
subgraphs.

Obviously, directly enumerating all dense subgraphs is
time prohibitive. Due to the commonality of the dense
subgraphs, many approximate algorithms have been
proposed for computing dense subgraphs [4], [6], [7], [8].
Among them the most famous work was done by Motzkin
and Straus [9], who proved that solving a dense subgraph
(or, equivalently, a maximal clique) problem on an
unweighted graph is equivalent to finding the maxima of
a quadratic function on the simplex. This result was
extended to weighted graphs by Pravan and Pelillo [10].
These algorithms usually have high complexity, both in
time and space; at the same time, usually they can only find
part of dense subgraphs.

In this paper, we propose the shrinking and expansion
algorithm (SEA) that can enumerate significant dense
subgraphs with low time and memory complexity. The
proposed algorithm is a direct extension of the dominant set
method (DS) [10], with significant improvements in effec-
tiveness and speed. The algorithmic flow of SEA is similar
to mean shift algorithm [11], a well-known nonparametric
feature space analysis technique. Both algorithms can start
from any starting point and optimize their target functions
along certain increasing trajectories. Mean shift operates
directly on the feature space, and its aim is to find the
modes of the data, while SEA operates on the affinity
graphs, and its aim is to detect dense subgraphs. Since both
modes of the vectorial data and dense subgraphs of the
affinity graphs reveal the patterns underlying data, SEA can
be considered to be a complementary method of mean shift.

The main contributions of this paper are manyfold. 1) We
propose the SEA, which can efficiently detect the
dense subgraph from any starting point. 2) Based on SEA,
we propose an algorithm to enumerate significant dense
subgraphs and show its applications in correspondence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 9, SEPTEMBER 2013 2131

. H. Liu and S. Yan are with the Department of Electrical and Computer
Engineering, National University of Singapore, Singapore 119615.
E-mail: lhrbss@gmail.com, eleyans@nus.edu.sg.

. L.J. Latecki is with Department of Computer and Information Sciences,
Temple University, Philadelphia, PA 19122. E-mail: latecki@temple.edu.

Manuscript received 7 July 2012; revised 3 Nov. 2012; accepted 16 Dec. 2012;
published online 4 Jan. 2013.
Recommended for acceptance by T. Cootes.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2012-07-0514.
Digital Object Identifier no. 10.1109/TPAMI.2013.16.

0162-8828/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

problems. 3) Similar to mean shift, the SEA provides a
natural tool for cluster analysis, and we show its excellent
performance in clustering affinity data with large amount of
noises and outliers.

The remainder of the paper is organized as follows: We
first define graph density in Section 2, then we present the
SEA and discuss implementation issues in Section 3. The
algorithm for enumerating dense subgraphs in presented in
Section 4. In Section 5, the experimental evaluations on two
general problems, the correspondence problem and cluster
analysis, are demonstrated. In Section 6, concluding re-
marks are made.

2 GRAPH DENSITY AND DENSE SUBGRAPH

In this section, we first define a unique coordinate for each
subgraph and then give the definition of graph density.

2.1 Embedding Subgraph in Simplex

A graph G is represented as G ¼ ðV ;E;wÞ, where V ¼
fv1; . . . ; vng is a set of n vertices, E � V � V is the edge set,
and w : E ! IRþ is the (nonnegative) weight function over
edge set. Vertices in G correspond to data points, edges
represent pairwise relations, and edge-weight reflects the
strength of pairwise relation. As is customary, we represent
graph Gwith the corresponding weighted adjacency matrix,
A, which is also called the affinity matrix. More specifically,
A ¼ ðaijÞ is an n� n symmetric matrix, where aij ¼ wðvi; vjÞ
if ðvi; vjÞ 2 E, and aij ¼ 0 otherwise. Clearly, if there are no
self-loops, all the diagonal elements of A are zeros. In this
paper, we only consider graphs with no self-loops.

Let I ¼ f1; . . . ; ng be the index set of the vertex set V . For
any subset B � I, a subgraph GB of G with the vertex set
VB ¼ fviji 2 Bg is introduced and the corresponding edge
set is EB ¼ fðvi; vjÞ j ðvi; vjÞ 2 E; i 2 B; j 2 Bg. We denote
the set of all subgraphs of graph G as G.

Let � ¼ fx 2 IRn : x � 0 and kxk1 ¼ 1g be a simplex,
where kxk1 ¼

Pn
i¼1 jxij is the ‘1 norm of x ¼ ðx1; x2; . . . ;

xnÞT . We define an embedding H : G ! � as HðGT Þ ¼ x
such that xi ¼ 1

m if vi 2 VT and xi ¼ 0 otherwise, where m is
the number of vertices in GT . We will denote HðGÞ as �G.
We observe that each coordinate of a point x 2 �G is either
zero or 1

m for some positive integer m, i.e., �G ¼ fx 2
� j 9m > 0 8i ¼ 1; . . . ; n xi ¼ 1

m or xi ¼ 0g.
The indices of all nonzero components of x 2 � con-

stitute its support, denoted as �ðxÞ ¼ fijxi 6¼ 0g. According to
our definition, each subgraph G�ðxÞ has a unique coordinate
x 2 �G, and each point x 2 �G represents a unique sub-
graph of G; thus, in the following text, we will refer to a
subgraph and its coordinate in �G interchangeably.

In particular, each node vi of graph G can be treated as a
one-node subgraph of G. Hence, we identify HðviÞ 2 � with
a vertex ei of simplex �, i.e., HðviÞ ¼ ei is a point in
simplex � with the ith coordinate equal to one and all other
coordinates equal to zero.

2.2 Graph Affinity

We define the affinity value between two points x; y 2 �G as

aðx; yÞ ¼
X
i;j

xiaijyj ¼ xTAy: ð1Þ

Note that aðei; ejÞ ¼ aij, which is consistent with the
definition of the weight of graph edge.

Suppose the number of vertices in the subgraphs G�ðxÞ
and G�ðyÞ are m1 and m2, respectively. Then,

aðx; yÞ ¼ 1

m1m2

X
i2�ðxÞ;j2�ðyÞ

aij: ð2Þ

That is, aðx; yÞ is the average affinity between the
subgraph G�ðxÞ and G�ðyÞ. As a special case, we obtain
the (sub)graph density:

gðxÞ ¼ aðx; xÞ ¼
X
i;j

xiaijxj ¼ xTAx; ð3Þ

which is the average affinity of the subgraph G�ðxÞ. Note
that this definition is the same as the definition of DS [10];
the only difference is that we restrict x 2 �G. Since gðxÞ
reflects the strength of overall internal pairwise relations
in the subgraph G�ðxÞ, we use it as a criterion to detect a
dense subgraph.

2.3 Continuous Relaxation and KKT Points

Our intuition is that a dense subgraph should have large
average affinity. Since �G is a discrete set, it is hard to
search for x 2 �G with large gðxÞ. To overcome this
problem, we relax x into the continuous space �, and solve
the following standard quadratic optimization problem
(StQP) [12]:

maximize gðxÞ ¼ xTAx;
subject to x 2 �:

�
ð4Þ

That is, we extend the domain of function g to � and search
local maxima of gðxÞ; x 2 � instead. Any local maximizer x�

of gðxÞ; x 2 � indicates a potential dense subgraph. If
x� 2 �G, then the dense subgraph is G�ðx�Þ; otherwise, we
can find the ~x 2 �G closest to x� to identify the dense
subgraph G�ð~xÞ (see Section 4.1).

In [10], the properties of local maximizers of (4) have
been analyzed. Here, we give a brief summary.

By adding Lagrangian multipliers � and �1; . . . ; �n, �i �
0 for all i ¼ 1; . . . ; n, we can obtain its Lagrangian function:

Lðx; �; �Þ ¼ gðxÞ � �
�Xn

i¼1

xi � 1

�
þ
Xn
i¼1

�ixi: ð5Þ

Any local maximizer x� must satisfy the Karush-Kuhn-
Tucker (KKT) conditions [13], i.e., the first-order necessary
conditions for local optimality. That is,

2ðAx�Þi � �þ �i ¼ 0; i ¼ 1; . . . ; n;Xn
i¼1

x�i �i ¼ 0:

8<
: ð6Þ

Since both x�i and �i are nonnegative for all i ¼ 1; . . . ; n,Pn
i¼1 x

�
i �i ¼ 0 is equivalent to saying that if x�i > 0, then

�i ¼ 0. Hence, based on simple algebraic calculations, the
KKT conditions can be rewritten as

ðAx�Þi
¼ �=2; i 2 �ðx�Þ;
� �=2; i 62 �ðx�Þ:

�
ð7Þ

Any point x� 2 � satisfying the KKT conditions (7) is called
a KKT point, and all KKT points constitute a set, denoted by

2132 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 9, SEPTEMBER 2013

�. Obviously, � contains all local maximizers of the function
gðxÞ ¼ xTAx; x 2 �. Thus, by searching for x� 2 � with large
gðx�Þ we can obtain potential dense subgraphs.

The size of � is usually very large and it is impossible to
obtain the whole set. In real applications, our aim is to
enumerate dense subgraphs with large densities, which
correspond to true underlying patterns, and the dense
subgraphs with small densities are usually meaningless.

Note that for the ith coordinate of the vector Ax� the
following holds:

ðAx�Þi ¼
X
j

aijx
�
j ¼ eTi Ax� ¼ aðei; x�Þ; ð8Þ

which is the affinity value between x� and the vertex ei of
simplex �.

To lay the theoretical groundwork for our algorithm, we
further analyze the properties of the KKT point of (4),
especially the relation between the KKT points of G and the
KKT points of its subgraphs. We call riðx�Þ ¼ aðei; x�Þ the
reward at ei. Since g0ðxÞ ¼ 2Ax, riðxÞ is in fact half of the partial
derivative @gðxÞ

@xi
. Equation (7) has an obvious geometric

meaning, which is summarized in the following theorem.

Theorem 1. If x� is a KKT point of (4), then 1) the rewards at

the vertices belonging to the subgraph G�ðx�Þ are identical to

gðx�Þ, and 2) the rewards at the vertices not belonging to the

subgraph G�ðx�Þ are not larger than gðx�Þ. At the same time,

if a point x� satisfies both “1” and “2,” then it is a KKT point

of (4).

Proof. According to (7):

gðx�Þ ¼ x�TAx� ¼
X
i

x�i ðAx�Þi ¼
X
i

x�i �=2 ¼ �=2: ð9Þ

Hence, if x� is a KKT point of (4), the two conditions in
(7) imply the conditions “1” and “2.” According to the
definition of KKT points, if a point x� satisfies both “1”
and “2,” then it is a KKT point. tu
Theorem 1 states that if x� is a KKT point, then the

vertices in graph G enter into an equilibrium. In this
equilibrium, all the vertices belonging to the subgraph
G�ðx�Þ have the same reward gðx�Þ, and the rewards at other
vertices are not larger than gðx�Þ. Fig. 1a illustrates such a
scenario: x� is a KKT point, �ðx�Þ ¼ fv1; v2; v3; v4g, they all
lie on the sphere fyjaðx�; yÞ ¼ gðx�Þg, and other vertices lie
in the space fyjaðx�; yÞ � gðx�Þg.

If x� is a KKT point of GB, where GB is a subgraph of G
induced by the index set B � I, then it is easy to judge
whether x� is also a KKT point of G or not. In fact, we have
the following corollary.

Corollary 1. If x� is a KKT point of GB and S ¼ fijaðx�; eiÞ >
gðx�Þ; i 2 Ig, then x� is also a KKT point of G if and only if S

is empty.

This corollary is a direct result of Theorem 1; hence its
proof is omitted.

Note that aðx�; eiÞ ¼ gðx�Þ when i 2 �ðx�BÞ, thus the
vertices in S have stronger relations with x� than
the vertices in �ðx�BÞ. Obviously, all vertices in S violate

the KKT conditions (7). In Fig. 1b, S ¼ fvjg, according to
Corollary 1, x� is not a KKT point of the whole graph G.

In many situations, graph G is very large, that is, it has
many vertices and edges. However, its dense subgraphs
are usually limited to small subsets of vertices of G, that
is, G�ðx�Þ is a small subgraph of G if x� is a KKT point. In
such a case, when computing x� we can limit the
computation on small subgraphs of G, thus greatly
reducing the time complexity.

3 SHRINKING AND EXPANSION ALGORITHM

In this section, we present the SEA, which can efficiently
locate a KKT point of StQP (4) from an initialization xð0Þ.
The characteristic of this algorithm is as follows: It always
works on a small subgraph GB � G, and adaptively
updates GB until a KKT point of G has been located. Each
iteration of SEA includes two phases: the shrink phase and
the expansion phase. In the shrink phase, a KKT point x�B of
current subgraph GB is obtained, and GB shrinks to its
subgraph G�ðx�

B
Þ, while in the expansion phase, the vertices

that have strong relations with the subgraph GB are added
and form the new subgraph GB0 . These two phases iterate
until no vertex can be added in the expansion phase. In
both phases, the density function gðxÞ always increases, and
gðxÞ is upper bounded; thus the convergence of this
algorithm is guaranteed.

3.1 Shrink Phase

In the shrink phase, the aim is to efficiently locate a KKT
point of the current subgraph GB. There are many such
algorithms, and we utilize the most popular one, replicator
dynamics [14]. Given an initialization xBð0Þ, the corre-
sponding local solution x�B of StQP (4) with A ¼ AB can be
efficiently computed by the discrete-time version of the
first-order replicator equation:

ðxBÞiðtþ 1Þ ¼ ðxBÞiðtÞ
ðABxBðtÞÞi

xBðtÞTABxBðtÞ
; i 2 B: ð10Þ

It can be observed that �B is invariant under these
dynamics, which means that every trajectory starting in
�B will remain in �B. Moreover, it has been proven in [14]

LIU ET AL.: FAST DETECTION OF DENSE SUBGRAPHS WITH ITERATIVE SHRINKING AND EXPANSION 2133

Fig. 1. (a) Geometric explanation of a KKT point. If x� is a KKT point, all
vertices (red points) belonging to G�ðx�Þ are on the sphere fyjaðx�; yÞ ¼
gðx�Þg and all other vertices are within the space fyjaðx�; yÞ � gðx�Þg.
(b) The relations between the KKT points of a graph and the KKT points
of its subgraphs. If x� is a KKT point of the subgraph excluding two
square vertices from G, whether it is the KKT point of graph G depends
on the rewards at these two square vertices.

that, when AB is symmetric and with nonnegative entries,
the objective function gðxÞ ¼ xTABx strictly increases along
a nonconstant trajectory, and its asymptotically stable
points are in one-to-one correspondence with strict local
solutions of StQP (4).

Note that (10) has a nice property: If ðxBÞiðtÞ ¼ 0, then
ðxBÞiðtþ 1Þ ¼ 0 and ðxBÞiðtÞ does not affect the computation
of ðxBÞjðtÞ; j 6¼ i, which means that during the evolution
procedure, replicator dynamic (10) can drop vertices; thus the
current graph G�ðxBðtÞÞ shrinks. When the KKT point x�B is
detected, the current graph shrinks to the subgraphG�ðx�

B
Þ. x
�
B

is the KKT point of the subgraphGB, but may not be the KKT
point of graph G. In the latter case, we must expand the
current subgraph, which is described in the following section.

3.2 Expansion Phase

When we get a KKT point x�B of the subgraph GB, we
extend it to x� by adding zeros to the components whose
indices are in the set I nB. According to Corollary 1, we can
judge whether x� is a KKT point of G by the set S. If S is
empty, then x� is already a KKT point of G and no further
step is required; otherwise, we need to find an update
vector �x such that gðx� þ�xÞ > gðx�Þ.

When S is not empty, to further increase gðxÞ we may
add the vertices in S to the current subgraph. The reward
riðx�Þ ¼ aðx�; eiÞ provides a natural filtering tool to find out
which vertices should be considered, and gðx�Þ is a natural
threshold. To construct S, we only need to compute the
rewards at the neighbors of the current subgraph. The size
of S depends on the threshold gðx�Þ, and as gðx�Þ increases,
the size of S quickly decreases. When gðx�Þ is small (usually
appearing in the first few iterations), the size of S may be
large. To control the time complexity, we must control the
size of current subgraph. Hence, we only add some vertices
with relatively larger rewards into the current subgraph.
Suppose the index set of selected vertices is Z; we can
define a vector � with

�i ¼
0; i 62 Z;
aðx�; eiÞ � gðx�Þ; i 2 Z:

�
ð11Þ

Suppose s ¼
P

i �i, � ¼
P

i �
2
i , and ! ¼

P
i;j2Z �iaij�j.

When Z is not empty, s > 0 and � > 0. We update x� along
the direction

b ¼
�
�x�i s; i 2 �ðx�Þ
�i; i 62 �ðx�Þ ;

that is, to decrease the possibilities of vertices belonging to
current subgraph and increase the possibilities of vertices
with large rewards.

Suppose gðx�Þ ¼ ��, then ðAx�Þi ¼ �� for i 2 �ðx�Þ. Our
goal is to maximize the following difference:

gðx� þ tbÞ � gðx�Þ
¼ ð1� tsÞ2 ��þ 2ð1� tsÞ

X
i

ð ��þ �iÞt�i þ
X
i;j

�iaij�jt
2 � ��

¼ 2tð1� tsÞð� þ ��sÞ � tsð2� tsÞ��þ !t2

¼ �ð ��s2 þ 2s� � !Þt2 þ 2�t:

ð12Þ

When ��s2 þ 2s� � ! � 0, the maximal increase from gðx�Þ
to gðx� þ tbÞ is obtained at t� ¼ 1

s since t � 1
s , which follows

from the fact that x�i � 0 and x�i � tx�i s � 0 for i 2 �ðx�Þ.
When ��s2 þ 2s� � ! > 0, the increase from gðx�Þ to gðx� þ

tbÞ will reach the maximum at t� ¼ minf1
s ;

�
��s2þ2s��!g. There-

fore, we set the update vector to

�x ¼ t�b; ð13Þ

which is called the expansion vector.
In our implementation, we usually set a threshold K1 on

the size of Z and add the vertices with the K1 largest
rewards to Z. As gðx�Þ increases, the size of S decreases,
and when the size of S is smaller than K1, we set Z ¼ S.
Since during the whole procedure of SEA, gðxÞ is con-
tinuously increasing, the final solution is always a KKT
point of the whole graph.

The update from x� to x� þ�x not only increases the
value of gðxÞ, but also expands the support �ðx�Þ to its
neighborhood, and forms the new current subgraph
G�ðx�þ�xÞ. In this procedure, the vertices having strong
relations with the current subgraph are added. Since
such relations are the composite effects of multiple pairwise
relations, they are robust to the noises in pairwise relations;
thus, they are very reliable.

3.3 Iterative Shrinking and Expansion

The SEA iterates between the shrink phase and the
expansion phase, as summarized in Algorithm 1.

Algorithm 1. Shrinking and Expansion Algorithm (SEA)

1: Input: The weighted adjacency matrix A of graph G,
the start point xð0Þ and the parameter K1.

2: Set x ¼ xð0Þ.
3: repeat

4: Evolve x toward a KKT point of the subgraph G�ðxÞ
by replicator dynamics (10);

5: Compute the rewards at the neighbors of G�ðxÞ,

construct S and build the set Z, whose size is

controlled by K1;
6: if Z 6¼ �, compute the expansion vector and update

x; if Z ¼ �, x is already a KKT point of graph G;

7: until x is a KKT point of graph G

8: Output: A KKT point x�.

Algorithm 1 is an EM-style procedure; the expansion
phase expands the current subgraph to its neighborhood,
thus providing a larger lower bound of gðxÞ, which
corresponds to a KKT point of current subgraph, while
the shrink phase evolves toward this lower bound and
guarantees to reach this lower bound. These two steps
iterate until a KKT point of the whole graph is reached. In
the expansion phase, we control the number of vertices and
always add the nearest neighbors to the current subgraph,
while in the shrink phase, some vertices may be dropped,
and only a very compact cluster of vertices is retained.
Thus, our SEA always operates on small subgraphs; hence it
is very efficient, both in time and memory. Since in real
applications the graph is usually very sparse, the main
computational load lies in the shrink phase, which evolves
toward a KKT point of the current subgraph. Suppose the
number of edges in the subgraph is h and the number of

2134 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 9, SEPTEMBER 2013

iterations for the replicator equation is t1, then the time
complexity of the shrink phase is Oðt1hÞ and the space
complexity is OðhÞ. The total time complexity of SEA
algorithm is then Oðt1t2hÞ, where t2 is the number of
iterations for the shrink and expansion phases.

4 ENUMERATING DENSE SUBGRAPHS

When a KKT point x� is obtained, the consequent problem
is how to recover the corresponding dense subgraph. If
x� 2 �G, then the dense subgraph is G�ðx�Þ. However,
usually x� 62 �G. Thus, we need to find a ~x 2 �G that
approximates x� to identify the corresponding dense
subgraph G�ð~xÞ. There exist many ways to define what
approximation means and we select a particularly simple
one. We require that �ð~xÞ � �ðx�Þ and gð~xÞ ¼ ~xTA~x is large.

The KKT point x� can be interpreted as having
probabilistic meanings: x�i is the probability of the dense
subgraph containing vertex vi. Thus, we adopt a greedy but
efficient algorithm to calculate ~x and recover the dense
subgraph G�ð~xÞ, which is summarized in Algorithm 2. It
adds vertices to the dense subgraph one by one (from large
to small) according to the values of the corresponding
components in x� until the density of the subgraph reaches
maximum. Note that in step 4 of Algorithm 2, at iteration i,
the number of vertices in the set C [fvg is i since one vertex
is added in each iteration. Thus, each component of ~x is
equal to 1

i to let ~x 2 �G.

Algorithm 2. Recover corresponding dense subgraph from

a KKT point

1: Input: The weighted adjacency matrix A of graph G,
the KKT point x�.

2: Sort the components of x� in descending order, set

C ¼ ; and f ¼ �1;

3: for i ¼ 1 � � �n do

4: Construct ~x where ~xj ¼ 1
i if j 2 C [fvg, where v is

the i-th component of x�; otherwise ~xj ¼ 0.

5: If ~xTA~x > f , then set f ¼ ~xTA~x and add v into C;

otherwise, break;
6: end for

7: Output: the point ~x 2 �G.

To enumerate important dense subgraphs, we need to
tessellate the simplex � to generate multiple initializations.
Obviously, there are many methods to accomplish this task.
In this paper, we utilize a simple and natural one, that is,
taking every vertex as a starting point. In total, there are
n initializations for a graph with n vertices.

5 APPLICATIONS

The SEA is a nonparametric graph analysis technique.
Although it has a parameter K1, this parameter only
controls the complexity of the algorithm. This algorithm is
application independent, and thus can be used to develop
algorithms for a wide variety of tasks.

In this paper, we focus on two general tasks, correspon-
dence problem and cluster analysis. In the correspondence
problem, all the correct correspondences are compatible,
thus, the correct correspondence configurations naturally

form significant dense subgraphs of the graph whose
vertices represent possible correspondences. In cluster
analysis, all the vertices belonging to the basin of
attraction of the same KKT point naturally form a cluster,
and the dense subgraph corresponding to this KKT point,
forms the core of this cluster.

5.1 Correspondence Problem

Establishing feature correspondences between two images
is a long standing fundamental problem in computer vision.
The general correspondence problem can be described as
follows: Given two sets of feature points obtained from two
images, P and Q, with nP and nQ feature points,
respectively, the task is to obtain the correct correspon-
dences between them.

Because of the importance of the correspondence
problem, there exist a huge number of papers addressing
this problem. Most of them formulate the correspondence
problem into the problem of minimizing the energy
function of a Markov random field [15], [16], [17], [18],
[19], [20]. Since the Markov random field is well studied,
this kind of formulation has a solid theoretical foundation.
However, this kind of formulation requires that every point
in one image must have a correspondence in the other
image, which is usually not true in many real-world
applications. At the same time, there may be multiple
correspondence configurations. Due to these two issues,
Markov random field-based formulations cannot lead to
satisfactory results in many applications.

Horaud and Skordas [21] first formulated the correspon-
dence problem into the problem of finding maximal cliques
in the correspondence graph, which naturally eliminates the
requirement that every point in one image must have a
correspondence in the other image; thus it is inherently more
suitable for many applications, especially when the number
of outliers is large. Pavan and Pelillo [10] proposed finding
the maximal clique by replicator equation. They also utilized
this formulation to match free trees [22], and in their recent
work [23], they proposed a new iterative method to obtain
the DS. Since these methods operate directly on the whole
graph, they are inefficient on large graphs.

Each correspondence ci 2 C is a pair ðPi;Qi0 Þ, where Pi 2
P and Qi0 2 Q. For a correspondence ci ¼ ðPi;Qi0 Þ, the
similarity function, denoted by f1ðPi;Qi0 Þ, measures the
similarity of the feature points Pi and Qi0 . Since the correct
correspondences generally have similar features, we may
only consider a much smaller set M ¼ fcjc 2 C; f1ðcÞ > "g,
where " is a manually set threshold. For two correspon-
dences ci ¼ ðPi;Qi0 Þ and cj ¼ ðPj;Qj0 Þ, the compatibility
function, denoted by f2ðci; cjÞ, measures the compatibility
of the correspondences ci and cj. Note that both f1 and f2 can
take various forms, depending on the need of applications.

Based on set M, the correspondence graph G is
constructed as follows: Each vertex of G represents a
correspondence in M, and the weight of the edge between
node i and node j is set to f2ði; jÞ. The correspondence
graph G usually has a large number of vertices (the number
of possible correspondences); however, the number of
vertices in the dense subgraphs (correct correspondences)
is usually very small. Our proposed SEA is especially
suitable to this kind of graphs; thus it is a powerful tool for
the correspondence problem.

LIU ET AL.: FAST DETECTION OF DENSE SUBGRAPHS WITH ITERATIVE SHRINKING AND EXPANSION 2135

For simplicity, we regard each vertex as a starting point.
Thus, for the graph G with n vertices, we can get n KKT
points. Since the correspondence configurations correspond
to significant dense subgraphs, we usually select K2 largest
KKT points to further analyze whether they correspond to
true correspondence configurations or not. Note that among
these K2 largest KKT points, there may be duplicate ones or
overlapping ones that corresponding to the same corre-
spondence configuration, which is easy to verify.

Since a KKT point x� represents the core of a cluster, we
can judge how much a vertex vi belongs to this cluster by
its reward riðx�Þ ¼ aðx�; eiÞ. In the correspondence pro-
blem, since each vertex represents a possible correspon-
dence, we can recover the correct correspondences from
the vertices with large rewards, and usually we consider
K3 largest rewards vertices. The algorithm to recover the
correspondence configuration from a KKT point x� is
summarized in Algorithm 3, which is similar as the
spectral method (SM) in [24].

Algorithm 3. Recover correspondences from a KKT point x�

1: Input: The KKT point x�, the parameter K3.

2: Compute the reward riðx�Þ for each vertex vi and

initialize a set C1 to be empty;

3: for i ¼ 1; . . . ; K3 do

4: Select the ith largest reward vertex, and check

whether the correspondence corresponding to this

vertex is compatible with all correspondences

already in C1, that is, the edges connecting this

vertex to vertices in C1 have large weights. If yes,

then add this vertex into the set C1;

5: end for

6: Output: The correspondence configuration C1;

Based on Algorithms 1 and 3, the overall algorithm for

correspondence problem is then described in Algorithm 4.

Note that in this application, we do not really need dense

subgraphs; thus we skip Algorithm 2 and directly recover

correspondences from KKT points. However, in other

applications we may need Algorithm 2 to reconstruct dense

subgraphs.

Algorithm 4. SEA-based Correspondence Algorithm

1: Input: Two feature point sets P and Q, the similarity

function f1 and the compatibility function f2, the

threshold ", the parameters K1, K2, and K3.

2: According to f1 and ", construct the correspondence

set M;

3: According to M and f2, construct the correspondence
graph G;

4: for i ¼ 1; . . . ; n do

5: Evolve from the vertex i, and obtain a KKT point x�

by Alg. 1;

6: end for

7: Select the K2 largest KKT points and add them into the

set S1;

8: For each KKT point in S1, recover the correspondence
configuration C1 by Algorithm 3.

9: Output: All correspondence configurations.

The main flowchart is illustrated in Fig. 2. Differently

from many existing algorithms, this algorithm can naturally

deal with large amount of outliers, and can also simulta-

neously detect multiple correspondence configurations;

thus it is very suitable for many applications.

5.1.1 Point Set Matching

We compare our method with seven methods, namely, the

SM [24], the DS [10], the IPFP method [25], the ESS game

method (ESS) [23], the tensor matching method (TM) [26],

the RRWH method [27], and the HGM method [28]. The

codes for five methods, namely, SM, IPFP, TM, RRWH, and

HGM, are downloaded from the web, and the codes for

other methods were implemented by us. For IPFP, we run it

from different initializations, namely, uniform initialization

(IPFP), the result of SM (SM+IPFP), the result of DS

(DS+IPFP), and the result of ESS (ESS+IPFP). In total, there

are 11 methods.
The experimental setting is described as follows: First,

generate a dataset Q of 2D model points by randomly

selecting niQ inliers in a given region of the plane, then

obtain the corresponding inliers in P by independently

2136 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 9, SEPTEMBER 2013

Fig. 2. Illustration of the main idea for correspondence problem. First, find all candidate correspondences shown in (a) by SIFT features (for
clarity, only a small subset of the candidate correspondences are shown), and then form the correspondence graph G in (b) and weighed
adjacency matrix A in (c). The correct correspondences shown in (d) form a dense subgraph T of G, and thus correspond to the dense block B
of A after some permutations.

disturbing the niQ points from Q with white Gaussian noise
Nð0; �Þ, and then rotate and translate the whole dataset Q
with a random rotation and translation. Next, we add noQ
and noP outliers in Q and P , respectively, by randomly
selecting points in the same region as the inliers from Q
and P , respectively, from the same random uniform
distribution over the x-y coordinates. The range of the x-y
point coordinates in Q is 256

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nQ=10

p
to enforce an

approximately constant density of 10 points over a 256�
256 region, as the number of points varies. The total
number of points in Q and P is nQ ¼ niQ þ noQ and
nP ¼ niP þ noP . The parameter � controls the level of
deformation between two point sets, while noP and noQ
control the numbers of outliers in P and Q, respectively.

Since the points themselves are not distinctive, we set
f1ðciÞ ¼ 1, i ¼ 1; . . . ; n, and set " ¼ 0; thus M ¼ C. We rely
fully on the geometric consistency information to find the
correspondences, and the compatibility function is defined
as follows:

f2ðci; cjÞðsÞ ¼ 4:5� ðlij � sli
0j0 Þ2

2�2
d

; if jlij � sli0j0 j < 3�d;

0; otherwise;

8<
:

ð14Þ

where lij is the distance between Pi and Pj, li0j0 is the
distance between Qi0 and Qj0 , and s is the scale factor.
The parameter �d controls the sensitivity of the function
value to deformations. The larger the �d is, the more
deformations we can accommodate, but also the more
pairwise relationships between incorrect assignments will
get positive values.

For fair comparisons, we first do the experiments on the
same scale, that is, we fix s ¼ 1. We also keep the sensitivity
parameter fixed, �d ¼ 5. All algorithms ran on the same
datasets over 30 trials for each value of the varying
parameter, and the mean performance curves are plotted.
We score the performances of all methods by counting how
many matches agree with the ground truths. Fig. 3
illustrates the performance curves of all methods. In the
first row, we vary the noise � from 0 to 20 (in step of 1), and
in the second row, we change the number of outliers.
Obviously, five methods, namely, SM+IPFP, IPFP, TM,
RRWH, and our proposed method, are robust to both noises
and outliers. Note that our method does not utilize the
matching constraint (one-to-one) in the process of finding
dense subgraphs, while the other four methods incorporate
the matching constraint (one-to-one) in the optimization
procedure. This is why these methods perform better than
our method when noise is large. Incorporating correct
matching constraints into the optimization procedure can
increase the performance; however, it also limits the flexility
of the matching methods since the matching constraints
may not exist or may be not be known in advance. Our
method is nearly not affected by outliers, while SM, ESS,
and DS are sensitive to outliers. Note that these four
methods operate on the same matrix A and optimize the
same quadratic function fðxÞ ¼ xTAx. The differences may
come from three aspects. First, the constraints on x are
different. In SM, the constraint is jxj2 ¼ 1, while in our
method, the constraint is jxj1 ¼ 1. Since our aim is to find

dense subgraphs, the ideal maximizers of (4) should be
sparse. The constraint jxj1 ¼ 1 usually leads to sparse
results, while the constraint jxj2 ¼ 1 usually results in
nonsparse results. Second, the strategies for initialization
are different. Both ESS and DS utilize only one initialization,
that is, the center of the simplex � (all vertices have the
same probability), while our method adopts a systematic
way of initializations. Since there are many local maxima, a
systematic way of initializations greatly increases the
chance of obtaining correct local maxima. Third, the
optimization methods are different. From the same initi-
alization, different optimization methods probably evolve
to different local maxima, which are clearly demonstrated
by the performance curves of ESS and DS. Obviously, the
optimization method adopted by the ESS method is
generally inferior to DS. HGM seems to be robust to
outliers; however, it is very sensitive to noise. For IPFP,
different initializations lead to different results. Both IPFP
and SM+IPFP perform well; however, DS+IPFP and
ESS+IPFP perform badly.

In Fig. 4a, we fix the deformation parameter � ¼ 5, keep
the number of inliers and outliers equal, and change the
total number of points in P and Q. The performance is
measured by matching rate, which is the ratio of the
number of obtained correct correspondences to the number
of all correct correspondences. As the figure shows, the
performances of all algorithms improve as the number of
points increases; this is because as the size of the high-order
relation increases, it is more robust to noises and outliers. In
Fig. 4b, we also test the sensitivity of all methods to
parameter �d. In this experiment, both the number of inliers
and that of outliers are 30. Obviously, our method works
remarkably well under different �d, while other methods
are sensitive to �d. We set the number of inliers to 30 and
change the number of outliers in both P and Q from 10 to

LIU ET AL.: FAST DETECTION OF DENSE SUBGRAPHS WITH ITERATIVE SHRINKING AND EXPANSION 2137

Fig. 3. Performance curves of 11 methods, with each method shown in a
distinct color. Top row: The performance curves as the deformation
noises vary; in (a) there are no outliers and in (b) there are 30 outliers.
Bottom row: The performance curves as the number of outliers change;
in (c) there is no deformation noise and in (d) � ¼ 4.

100. The curves of time cost are shown in Fig. 4c. Since our
method runs n times, we also plotted the average time of
our method in the red star curve. Note that the average time
of our method is the time to obtain one local maximizer of
(4). Since SEA always operates on small subgraphs, it is
obviously very efficient. When the number of points in each
point set is 130, our algorithm runs SEA n ¼ 16,900 times;
however, the total time of our algorithm is still much lower
than IPFP. Since the time complexity of our algorithm is
linear in the number of initializations, our algorithm can be
further speeded up by reducing the number of initializa-
tions. ESS and ESS+IPFP are computationally expensive due
to the slow convergence of ESS procedure. SM+IPFP,
DS+IPFP, and IPFP are also slow since IPFP procedure is
not fast. The number of edges whose weights are larger
than 2.25 (the maximal weight is 4.5) is plotted in blue in
Fig. 4d, and the average number of edges per vertex is
plotted in red. Obviously, the number of edges with large
weight is several orders of magnitude larger than the
number of edges within true correspondences, which is
only 30� 29=2 ¼ 435. This means that in such cases, the
strong pairwise relations can be easily produced by noises
and outliers and are thus not reliable. However, the high-
order relation is very reliable since it is the ensemble of all
its internal pairwise relations.

We also do the experiments in complex matching
situations. For IPFP, we only adopt uniform initialization
since it is simple and good enough. In Figs. 5a and 5b, the
point sets P and Q have one-to-two matchings, that is, P
contains a cluster of points and Q contains two similar
copies of this cluster. In Figs. 5c and 5d, the point sets P and
Q have two-to-two matchings, that is, there are four similar
clusters, two in P and two in Q, respectively. Each cluster
has 30 points; thus, there are 60 correct correspondences in
the one-to-two matchings and 120 correct correspondences

in the two-to-two matchings. For the three methods which
incorporate matching constraints in the optimization process,
the adopted matching constraints are reported in Table 1.
Obviously, for the one-to-two experiments, the constraint
should be one-to-many, and for the two-to-two experiments
there should be no constraint. For RRWH, since it inherently
assumes a one-to-one matching constraint, we can only use
one-to-one constraint. Both IPFP and TM can adopt a one-to-
many constraint; however, IPFP does not work if no
constraint is utilized; thus, in the two-to-two experiment,
we also adopt the one-to-many constraint for IPFP. Fig. 5
clearly demonstrates that our method performs well in
complex matching situations. In the one-to-two experiments,
both IPFP and TM perform well since the correct constraint is
utilized; however, they both perform badly in the two-to-two
experiments since the constraint is wrong or no constraint is
utilized. RRWH always performs badly since the wrong
constraint is used. Theoretically, TM without matching
constraints is very similar to SM, and this point is verified
by the fact that TM and SM have similar performance curves
in the two-to-two experiment.

Finally, we conduct an experiment on multiscale point
set matching, which is demonstrated in Fig. 6. The first row
shows P and Q. P contains three parts, after adding noise
(� ¼ 5), one copy of the red part is directly added into Q

(red dot) and another copy of the red part is scaled by 0.5,
then added into Q (red plus). The green part has been
added with noises, scaled by 2, and then added into Q

(green star). Both P and Q are then mixed with some

2138 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 9, SEPTEMBER 2013

Fig. 4. (a) The performance curves as the number of inliers and outliers
change. (b) The sensitivity to the parameter �d. (c) The time complexity.
(d) The average and total number of edges with large weights in the
correspondence graph G.

Fig. 5. Performance curves of our proposed method on one-to-two
matchings and two-to-two matchings. First row: One-to-two matchings.
Second row: Two-to-two matchings.

TABLE 1
Matching Constraints Adopted by Different Methods

in the Experiment of Fig. 5

outliers. We detect the correspondences at different scale
factors, ranging from 0.3 to 3 (in step of 0.1). Fig. 6c shows that
our method can correctly detect the three correspondence
configurations. We also plot the maximal density as a
function of the scale factor, which is shown in Fig. 6d. As
expected, it correctly indicates at which scale factor there exist
correct correspondence configurations. More specifically, at
the scale 0.5, 1, and 2, this curve reaches large local maxima.

In all the above experiments, we set K1 to the number of
inliers; K2 ¼ 200, that is, we only examine the 200 largest
KKT points; K3 ¼ 1,000, that is, for each KKT point, we
check the 1,000 vertices most related to it to find compatible
correspondences (if the number of all vertices is less than
1,000, then all vertices are checked). Note that the
performance is not sensitive to these parameters except
when they are set to too small values.

5.1.2 Near Duplicate Image Retrieval

In this section, we show an application of our method on
near-duplicate image retrieval, which plays an important
role in many real-world multimedia applications. The
experiment is conducted on the Columbia database,
which contains 150 near-duplicate pairs and 300 non-
duplicate images (600 images in total). For fair compar-
ison, we first rank all images using global features, as
done in [29], then rerank the images in the top 50 based
on the number of correspondences.

We use the SIFT features [30] and utilize the algorithm
suggested by Lowe [30] to construct the candidate
correspondence set M, that is, a point Pi in the first image
is matched to a point Qi0 in the second image only if their
distance multiplied by a threshold is not greater than the
distance of Pi to other points in the second image. In our
experiments, this threshold is set to 1.4. The compatibility
function is the same as in (14).

For near-duplicate images, there should be dense
correspondences in them. Thus, for simplicity we only
count the correspondences in the support of the largest
dense subgraph, that is, K2 ¼ 1 and K3 is equal to the size

of the support. We set K1 ¼ 30, and for each pair of images,
we search 11 scales. Fig. 7 demonstrates the correspon-
dences detected on three near-duplicate images. Such dense
correspondences usually indicate similar objects or scenes.
In Fig. 8, the retrieval performance is plotted and compared
with the NIM method [29], OOS-PCA-SIFT method [31],
and visual keywords method [32]. Obviously, our method
outperforms all other methods and gets the best cumulative
accuracies (ratio between correctly retrieved images in the
top retrieved images and total number of query images),
which verifies that our method can correctly detect
correspondences in real images.

5.1.3 Maximum Common Subgraph

In this section, we evaluate our method on the maximum
common subgraph problem, a well-known NP-hard yet
very important problem [33]. Our aim is to find the
maximum common subgraph in two labeled graphs, E
and F , and this common subgraph must be a connected
graph. For a node in E, it can correspond to any node in F
with the same label. For a correspondence ðEi; Fi0 Þ, the
correspondence ðEj; Fj0 Þ which is consistent with it must
satisfy either of the following two criteria: 1) Ei is adjacent
to Ej and Fi0 is adjacent to Fj0 , or 2) Ei is not adjacent to Ej

and Fi0 is not adjacent to Fj0 . Since the common subgraph
must be a connected graph, in the expansion phase we just
need to consider the neighbors satisfying the first criterion,
which will not affect the final result, but can greatly speed
up our algorithm since it largely reduces the number of
neighbors to be considered.

We compare our method with the Durand-Pasari
algorithm [34], which is based on the well-known reduction

LIU ET AL.: FAST DETECTION OF DENSE SUBGRAPHS WITH ITERATIVE SHRINKING AND EXPANSION 2139

Fig. 6. Correspondence configurations on multiscales. First row: P and
Q. Second row: Number of correct matches for three correspondence
configurations (left) and the maximal density as scale factor varies.

Fig. 7. Correspondences between near duplicate images.

Fig. 8. Comparison of cumulative accuracy of near duplicate image
retrieval on the Columbia database.

of the search of the maximum common subgraph to the
problem of finding a maximal clique in the correspondence
graph. The same as with our method, the Durand-Pasari
algorithm also seeks to obtain the dense subgraphs of the
correspondence graph. However, the Durand-Pasari algo-
rithm is an enumeration method, which guarantees to find
the maximum common subgraph, but with inherently very
high time complexity.

We conduct the experiments on randomly connected
graphs. Suppose the number of nodes in both graphs is n1

and the number of nodes in the maximum common
subgraph is n2. The number of edges is controlled by a
density parameter �, that is, the number of edges is about
�n1ðn1 � 1Þ. We also assign a label to each node of the
graph, with the number of labels being controlled by a
parameter 	, that is, the number of labels is 	n1. Since
candidate correspondences are established between nodes
with the same labels, obviously the larger 	 is, the easier the
problem is.

We conduct three experiments, the results of which are
shown in the first, second, and third columns of Fig. 9,
respectively. The top row shows the precision, which is the
ratio between the number of correctly detected correspon-
dences and the number of nodes in the maximum common
subgraph, and the bottom row shows the time complexity.
In the first experiment, we increase the number of nodes of
both graphs E and F from 20 to 55, with the number of
nodes in the maximum common subgraph being about half
of the number of nodes in the graph. In the second and third
experiments, we fix n1 ¼ 40 and n2 ¼ 20, and change � and
	, respectively. Each experiment is repeated 10 times on
randomly generated graphs to obtain the average results.
As the experimental results demonstrate, on small graphs
the Durand-Pasari algorithm is more efficient; this is
because the search space is small and our method must
run from many initializations. However, as the number of
nodes increases, the time complexity of the Durand-Pasari
algorithm increases exponentially and quickly becomes
time prohibitive. In contrast, our method increases slowly,
which is very efficient for large graphs. As for the precision,
the Durand-Pasari algorithm always finds the maximum
common subgraphs, while our method cannot. However, as
the results indicate, our method in fact has very high
probability (nearly equal to 1) of finding the maximum

common subgraph; even when the common subgraph is not
found, the obtained solution usually has a large common
part with the maximum common subgraph. As the number
of nodes in the maximum common subgraph increases, the
mode it corresponds to becomes more and more significant,
and then we have a much higher chance of detecting it.

We also test our proposed method on large graphs. In the
left of Fig. 10, we fix the size of the maximum common
subgraph to 50, and increase the size of both E and F from
100 to 2000. In the right figure, we fix the size of both E and
F to 1000, and increase the size of maximum common
subgraph from 50 to 300. The red solid curves show the
precision and the blue dotted lines demonstrate the time
complexity. Obviously, our method has very high prob-
ability of obtaining the correct results; at the same time, it
can deal with large graphs very efficiently.

5.2 Cluster Analysis

Just as is mean shift clustering, SEA is a natural clustering
tool, and all the vertices evolving toward the same KKT
points should belong to the same cluster.

We first consider the problem of extracting dense
clusters from cluttered background. Because many points
should not belong to any clusters, assigning each point into
a cluster usually leads to bad results. Our method, on the
contrary, appears to be particularly suited for such
applications since it allows one to extract as many clusters
as desired, while leaving the remaining points (namely, the
clutter) ungrouped. At the same time, it can automatically
reveal the number of coherent groups.

First, we conduct an experiment on the toy dataset
shown in Fig. 11a, which contains two dense clusters of
Gaussian random points surrounded by uniformly distrib-
uted clutter points. We compare our method with k-means
[35] and spectral clustering (SC) [36], two representative
clustering methods, based on vectorial representation and
affinity data, respectively. For k-means and SC, we specify
that the number of clusters is 3, while for our method, we
choose the largest two clusters and regard other small
clusters as background. The clustering results of k-means,
SC, and our method are illustrated in Figs. 11b, 11c, and
11d, respectively. Since k-means tends to partition the data
into spherical clusters, it works poorly in such a situation.
Both SC and our method can separate the two dense
clusters from the background; however, our method can
automatically reveal that there exist two clusters.

We also conduct an experiment on the affinity data from
shape matching. The database is the MPEG-7 shape database

2140 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 9, SEPTEMBER 2013

Fig. 9. Performance curves of our method versus the Durand-Pasari
algorithm. The performance of our method is shown in red solid curves,
while the performance of the Durand-Pasari algorithm is shown in blue
dotted curves.

Fig. 10. Performance curves of our method on large graphs. The red
solid lines show the precision, while the blue dotted lines show the
time cost.

[37]. There are 70 categories and each category contains
20 shapes. For each pair of shapes, we calculate their
matching score (affinity value) using the IDSC method [37],
and obtain a 1,400� 1,400 affinity matrix. Such affinity data
has no corresponding vectorial representation; at the same
time, it usually contains large noises since for different pairs
of shapes, their matching scores are computed indepen-
dently, and the matching method may produce incorrect
results on some pairs of shapes. We compare our method to
six methods, namely, SC, affinity propagation (AP) [38],
power iteration clustering (PIC) [39], 1-spectral clustering
(1-SC) [40], game theoretic clustering (GC) [41], and ensemble
clustering (EC) [42]. The result is shown in Table 2. For EC,
there is a parameter " which controls the least number of
elements in each detected cluster. We illustrate the results of
EC when " ¼ 1

10 and " ¼ 1
20 , that is, the least size of cluster is 10

and 20, respectively. The performance of clustering is
measured by both purity and normalized mutual informa-
tion. For SC, PIC, and 1-SC, the number of clusters can be
directly specified. For our method, when adding all vertices
evolving to the same KKT point into a cluster, we iteratively
merge the two closest clusters until the number of clusters
reaches 70. For both GC and EC, we iterate the process of
detecting a cluster, then delete the vertices belonging to this
cluster and detect clusters on the remaining graph, following
[41]. To obtain the final clusters, we also iteratively merge two
closet clusters until the number of clusters reaches 70. GC can
be simply considered as EC with the least size of cluster being
1. AP can only approximate the real number of clusters.
Obviously, our method outperforms all other methods, and a
possible explanation is that the affinity matrix contains noises
and SEA is inherently noise-resistent. At the same time, our
method spends much less time. Note that AP needs to search
an appropriate preference value; thus it runs the clustering
algorithm many times and takes a very long time. For EC, by
adjusting the parameter ", the result is improved. The
precision increases from 66.43 to 70.79 percent when " ¼ 1

10 ,
then up to 72.71 percent when " ¼ 1

20 . Generally speaking,
these two methods perform poorly on this dataset, probably
due to the “detect-and-delete” strategy from [41], which
allows errors to accumulate and hence does not work well
when the number of clusters is large.

6 CONCLUSIONS

We proposed the SEA to detect dense subgraphs. Based on
SEA, we derived a general algorithm for the correspon-
dence problem, and demonstrated its excellent performance
on point set matching, near duplicate image retrieval, and
the maximum common subgraph problem. The SEA can
also automatically delineate the cluster structure under-
lying the data, and we showed its application on two
clustering tasks. Clearly, our method can be applied to
many other tasks that can be formulated as seeking dense
subgraphs, such as object detection, graph matching, and
community detection in social networks. We are currently
working toward a more efficient way of initialization,
which can reduce the number of initializations but still
retain a high probability of obtaining all significant dense
subgraphs.

REFERENCES

[1] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 888-905, Aug. 2000.

[2] M. Girvan and M. Newman, “Community Structure in Social
and Biological Networks,” Proc. Nat’l Academy of Sciences,
vol. 99, no. 12, pp. 7821-7826, 2002.

[3] J. Chen and Y. Saad, “Dense Subgraph Extraction with Applica-
tion to Community Detection,” IEEE Trans. Knowledge and Data
Eng., vol. 24, no. 7, pp. 1216-1230, July 2012.

[4] Q. Ouyang, P. Kaplan, S. Liu, and A. Libchaber, “DNA
Solution of the Maximal Clique Problem,” Science, vol. 80,
pp. 446-448, 1997.

[5] K. Crammer, P. Talukdar, and F. Pereira, “A Rate-Distortion One-
Class Model and Its Applications to Clustering,” Proc. Int’l Conf.
Machine Learning, pp. 184-191, 2008.

[6] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the
Overlapping Community Structure of Complex Networks in
Nature and Society,” Nature, vol. 435, no. 7043, pp. 814-818, 2005.

[7] A. Clauset, M. Newman, and C. Moore, “Finding Community
Structure in Very Large Networks,” Physical Rev. E, vol. 70, no. 6,
pp. 66-71, 2004.

[8] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New
Algorithms for Fast Discovery of Association Rules,” Proc. Int’l
Conf. Knowledge Discovery and Data Mining, vol. 20, pp. 283-
286, 1997.

[9] T. Motzkin and E. Straus, “Maxima for Graphs and a New Proof of
a Theorem of Turán,” Canadian J. Math., vol. 17, no. 4, pp. 533-540,
1965.

[10] M. Pavan and M. Pelillo, “Dominant Sets and Pairwise Cluster-
ing,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29,
no. 1, pp. 167-172, Jan. 2007.

[11] D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach
toward Feature Space Analysis,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 603-619, May 2002.

[12] I. Bomze, “Branch-and-Bound Approaches to Standard Quadratic
Optimization Problems,” J. Global Optimization, vol. 22, no. 1,
pp. 17-37, 2002.

[13] H. Kuhn and A. Tucker, “Nonlinear Programming,” Proc. Berkeley
Symp. Math. Statistics and Probability, pp. 481-492, 1951.

[14] J. Weibull, Evolutionary Game Theory. The MIT Press, 1997.
[15] J. Maciel and J. Costeira, “A Global Solution to Sparse Correspon-

dence Problems,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 25, no. 2, pp. 187-199, Feb. 2003.

LIU ET AL.: FAST DETECTION OF DENSE SUBGRAPHS WITH ITERATIVE SHRINKING AND EXPANSION 2141

TABLE 2
Clustering Results on Shape Matching Affinity Data

The time is measured in seconds.

Fig. 11. Clustering on data with uniform distributed background points:
(a) the dataset, (b) clustering result of k-means, (c) clustering result of
SC, and (d) clustering result of our method.

[16] T. Caetano, T. Caelli, D. Schuurmans, and D. Barone, “Graphical
Models and Point Pattern Matching,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 28, no. 10, pp. 1646-1663, Oct. 2006.

[17] H. Jiang, M. Drew, and Z. Li, “Matching by Linear Programming
and Successive Convexification,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 29, no. 6, pp. 959-975, June 2007.

[18] B. Georgescu and P. Meer, “Point Matching under Large Image
Deformations and Illumination Changes,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 26, no. 6, pp. 674-688, June
2004.

[19] A. Cross and E. Hancock, “Graph Matching with a Dual-Step EM
Algorithm,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 20, no. 11, pp. 1236-1253, Nov. 1998.

[20] M. Zaslavskiy, F. Bach, and J. Vert, “A Path Following Algorithm
for the Graph Matching Problem,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 31, no. 12, pp. 2227-2242, Dec. 2009.

[21] R. Horaud and T. Skordas, “Stereo Correspondence through
Feature Grouping and Maximal Cliques,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 11, no. 11, pp. 1168-1180,
Nov. 1989.

[22] M. Pelillo, “Matching Free Trees with Replicator Equations,” Proc.
Advances in Neural Information Processing Systems Conf., pp. 865-
872, 2002.

[23] A. Albarelli, S. Bulo, and M. Pelillo, “Matching as a Non-
Cooperative Game,” Proc. IEEE Int’l Conf. Computer Vision, 2009.

[24] M. Leordeanu and M. Hebert, “A Spectral Technique for
Correspondence Problems Using Pairwise Constraints,” Proc.
IEEE Int’l Conf. Computer Vision, pp. 1482-1489, 2005.

[25] M. Leordeanu, M. Hebert, and R. Sukthankar, “An Integer
Projected Fixed Point Method for Graph Matching and Map
Inference,” Proc. Advances in Neural Information Processing Systems
Conf., vol. 1, no. 3, p. 4, 2009.

[26] O. Duchenne, F. Bach, I. Kweon, and J. Ponce, “A Tensor-Based
Algorithm for High-Order Graph Matching,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pp. 1980-1987, 2009.

[27] M. Cho, J. Lee, and K. Lee, “Reweighted Random Walks for Graph
Matching,” Proc. European Conf. Computer Vision, pp. 492-505, 2010.

[28] R. Zass and A. Shashua, “Probabilistic Graph and Hypergraph
Matching,” Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion, pp. 1-8, 2008.

[29] J. Zhu, S. Hoi, M. Lyu, and S. Yan, “Near-Duplicate Keyframe
Retrieval by Nonrigid Image Matching,” Proc. ACM Int’l Conf.
Multimedia, pp. 41-50, 2008.

[30] D. Lowe, “Distinctive Image Features from Scale-Invariant Key-
points,” Int’l J. Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

[31] X. Wu, W. Zhao, and C. Ngo, “Near-Duplicate Keyframe Retrieval
with Visual Keywords and Semantic Context,” Proc. ACM Int’l
Conf. Image and Video Retrieval, pp. 169-176, 2007.

[32] W. Zhao, C. Ngo, H. Tan, and X. Wu, “Near-Duplicate Keyframe
Identification with Interest Point Matching and Pattern Learning,”
IEEE Trans. Multimedia, vol. 9, no. 5, pp. 1037-1048, Aug. 2007.

[33] D. Conte, C. Guidobaldi, and C. Sansone, “A Comparison of Three
Maximum Common Subgraph Algorithms on a Large Database of
Labeled Graphs,” Proc. Fourth IAPR Int’l Conf. Graph Based
Representations in Pattern Recognition, vol. 2726, pp. 130-141, 2003.

[34] P. Durand, R. Pasari, J. Baker, and C. Tsai, “An Efficient
Algorithm for Similarity Analysis of Molecules,” Int’l J. Chemistry,
vol. 2, no. 17, pp. 1-16, 1999.

[35] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman,
and A. Wu, “An Efficient K-Means Clustering Algorithm:
Analysis and Implementation,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 24, no. 7, pp. 881-892, July 2002.

[36] A. Ng, M. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis
and an Algorithm,” Proc. Advances in Neural Information Processing
Systems Conf., vol. 2, pp. 849-856, 2002.

[37] H. Ling and D. Jacobs, “Shape Classification Using the Inner-
Distance,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 29, no. 2, pp. 286-299, Feb. 2007.

[38] B. Frey and D. Dueck, “Clustering by Passing Messages between
Data Points,” Science, vol. 315, no. 5814, pp. 972-976, 2007.

[39] F. Lin and W. Cohen, “Power Iteration Clustering,” Proc. Int’l
Conf. Machine Learning, 2010.

[40] M. Hein and T. Bühler, “An Inverse Power Method for Nonlinear
Eigenproblems with Applications in 1-Spectral Clustering and
Sparse PCA,” Proc. Advances in Neural Information Processing
Systems Conf., 2010.

[41] S. Bulò and M. Pelillo, “A Game-Theoretic Approach to
Hypergraph Clustering,” Proc. Advances in Neural Information
Processing Systems Conf., vol. 22, pp. 1571-1579, 2009.

[42] H. Liu, L. Latecki, and S. Yan, “Robust Clustering as Ensembles of
Affinity Relations,” Proc. Advances in Neural Information Processing
Systems, 2010.

Hairong Liu is currently a research fellow in the
Department of Electrical and Computer Engi-
neering at the National University of Singapore.
His research interests include computer vision
and machine learning, with a focus on matching
and graph analysis. He received the Best Paper
Award from ICME ’10, and he is a reviewer for
CVPR, ICCV, TIP, TCSVT, and TPAMI.

Longin Jan Latecki is a professor of computer
science at Temple University, Philadelphia. His
main research interests include shape represen-
tation and similarity, object detection and recog-
nition in images, robot perception, machine
learning, and digital geometry. He has published
200 research papers and books. He is an editorial
board member of Pattern Recognition and the
International Journal of Mathematical Imaging.
He received the annual Pattern Recognition

Society Award together with Azriel Rosenfeld for the best article
published in the journal Pattern Recognition in 1998. He is the recipient
of the 2000 Olympus Prize, the main annual award from the German
Society for Pattern Recognition. He is a senior member of the IEEE.

Shuicheng Yan is currently an assistant pro-
fessor in the Department of Electrical and
Computer Engineering at the National University
of Singapore. His research interests include
computer vision, multimedia, and machine learn-
ing, and he has authored or coauthored more
than 200 technical papers. He is an associate
editor of IEEE TCSVT. He received the Best
Paper Awards from ACM MM ’10, ICME ’10, and
ICIMCS ’09, the winner of the prize for the

classification task in PASCAL VOC ’10, the honorable mention prize for
the detection task in PASCAL VOC ’10, and a 2010 TCSVT Best
Associate Editor Award. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2142 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 9, SEPTEMBER 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

