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Abstract. Skeleton can be viewed as a compact shape representation in that the 
shape can be completely reconstructed form the skeleton. We present a novel 
method for skeleton pruning that is based on this fundamental skeleton 
property. We iteratively remove skeleton end braches with smallest relevance 
for shape reconstruction. The relevance of branches is measured as their 
contribution to shape reconstruction. The proposed pruning method allows us to 
overcome the instability of skeleton representation: a small boundary 
deformation leads to large changes in skeleton topology. Consequently, we are 
able to obtain very stable skeleton representation of planar shapes. 
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1   Introduction 

Skeleton, or Medial Axis, has been widely used for shape analysis and object 
recognition, such as image retrieval and computer graphics, character recognition, 
image processing, and analysis of biomedical images [1]. Although a lot of efforts were 
made to analysis the shape based on the skeletal trees/graphs [16][17][23][24][25][28], 
these approaches have only demonstrated applicability to objects with simple and 
distinctive shapes, and therefore, cannot be applied to more complex shapes like shapes 
in the MPEG-7 data set [20]. There are two main factors that constraint the performance 
of skeleton-based shape matching: 1) skeleton’s sensitivity to object’s boundary 
deformation: little noise or variation of boundary often generates redundant skeleton 
branches that may disturb the topology of skeleton’s graph seriously; 2) the time cost for 
extraction of skeleton and matching skeleton trees/graphs cannot satisfy the requirement 
of fast shape retrieval. The performance of skeleton matching depends directly on the 
property of shape representation. Therefore, to prune the grassy skeletons into the visual 
skeletons is usually inevitable [11]. The goal of this paper is to introduce a novel 
method for skeleton pruning, called Discrete Skeleton Evolution (DSE). The motivation 
of DSE is that removing the end braches of skeletons iteratively will not change the 
topology of the original shape, which benefits from the recent work of Bai et al. [19]. 
We obtained in a natural way a hierarchical structure of simplified skeletons as 
illustrated in Fig. 1. 
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         (a)                                                  (b)                                                   (c) 

 
        (d)                                              (e)                                                   (f) 

Fig. 1. The skeleton evolution process results in iterative pruning of the skeleton of a bird, (a) is 
the original skeleton and (b)~(f) are the pruned skeletons with the different thresholds 

1.1   Related Work 

Skeletonization approaches can be broadly classified into four types: thinning 
algorithms [5][6], discrete domain algorithms based on the Voronoi diagram 
[2][8][15], algorithms based on distance transform [3][4][7][9], and algorithms based 
on mathematical morphology [12][13][18].  

All the obtained skeletons are subjected to the skeleton’s sensitivity and many of 
them also include pruning methods along with the skeletonization. As an essential 
part of skeletonization algorithms, skeleton pruning algorithms usually appear in a 
variety of application-dependent formulations [11]. There are mainly two ways of 
pruning methods: (1) based on significance measures assigned to skeleton points [2] 
[3], [11], [27], and (2) based on boundary smoothing before extracting the skeletons 
[11], [21]. In particular, curvature flow smoothing still have some significant 
problems that make the position of skeletons shift and have difficulty in 
distinguishing noise from low frequency shape information on the boundary [11]. A 
different kind of smoothing is proposed in [10]. A great progress have been made in 
the type (1) of pruning approaches that define a significance measure for skeleton 
points and remove points whose significance is low. Shaked and Bruckstein [11] give 
a complete analysis and compare such pruning methods. To the common significance 
measures of skeleton points belong to propagation velocity, maximal thickness, radius  
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function, axis arc length, the length of the boundary unfolded. Ogniewicz et al. [2] 
present a few significance measures for pruning hairy Voronoi skeletons without 
disconnecting the skeletons. Siddiqi et al. combine a flux measurement with the 
thinning process to extract a robust and accurate connected skeleton [22]. However, 
the error in calculating the flux is both limited by the pixel resolution and also 
proportional to the curvature of the boundary evolution front. This makes the exact 
location of endpoints difficult. Torsello et al. [18] overcome this problem by taking 
into account variations of density due to boundary curvature and eliminating the 
curvature contribution to the error. Recently, Bai et al. present a novel skeleton 
pruning method by dividing the contour into separate segments with the vertices from 
DCE (Discrete Curve Evolution) [19]. Since DCE does not change the topology, the 
pruned skeleton has the topology of the input skeleton.    

2   Discrete Skeleton Evolution  

Before we introduce the proposed approach, we give some definitions. According to 
Blum’s definition of the medial axis [1], the skeleton S of a set D is the locus of the 
centers of maximal disks. A maximal disk of D is a closed disk contained in D that 
is interiorly tangent to the boundary ∂D and that is not contained in any other disk 
in D. Each maximal disc must be tangent to the boundary in at least two different 
points. With every skeleton point s∈S we also store the radius r(s) of its maximal 
disk. 

By Theorem 8.2 in [26], the skeleton S is a geometric graph, which means that S 
can be decomposed into a finite number of connected arcs, called skeleton branches, 
composed of points of degree two, and the branches meet at skeleton joints (or 
bifurcation points) that are points of degree three or higher.  

 
Definition 1. The skeleton point having only one adjacent point is an endpoint (the 
skeleton endpoint); the skeleton point having more than two adjacent points is a 
junction point. If a skeleton point is not an endpoint or a junction point, it is called a 
connection point. (Here we assume the curves of the skeleton is one-pixel wide) 

 
Definition 2. A skeleton end branch is part of the skeleton between a skeleton 
endpoint and the closest junction point. Let li (i = 1, 2, …, N) be the endpoints of a 
skeleton S. For each endpoint li, f(li) denotes the nearest junction point. Formally, an 
end branch P(li,  f(li)) is the shortest skeleton path between li and f(li). 

 
For example, in Fig. 2, arc from 1 to a is a skeleton end branch: P(1, f(1)) = P(1,a). 
The arc from a to b is not an end branch; it is a skeleton (inner) branch. Observe that 
point a is the nearest junction point of two endpoints (1 and 7). 

Based on Blum’s definition of a skeleton, a skeleton point s must be the center of a 
maximal disk/ball contained in the shape D.  
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Fig. 2. The endpoints (red) and junction points (green) on the skeleton in Fig. 1(e) 

Definition 3. Let r(s) denotes the radius of the maximal disk B(s, r(s)) centered at a 
skeleton point s. The reconstruction of a skeleton S is denoted R(S) and given by 

U
Ss

srsBSR
∈

= ))(,()(  (1) 

  
                   (a)                                              (b)                                               (c)    

Fig. 3. The reconstruction (b) of the original skeleton (a) is very close to the original shape  
in (c)  

As illustrated in Fig.3, we can reconstruct the original shape from its skeleton. 
Skeleton pruning can be seen as a simplification for skeleton, meanwhile, we hope the 
pruned skeleton can contain enough information of the shape. 

In this paper, we introduce an iterative algorithm to prune the skeleton. In every 
step, we remove one end branch with the lowest weight. There are two motivations: 
1) removing an end branch will not change the skeleton’s topology; 2) the end branch 
with low contribution to the reconstruction is removed first. 

We define the weight wi for each end branch P(li,  f(li)) as: 
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where function A( ) is the area function. The intuition for skeleton pruning is that an 
end branch with a small weight wi has a negligible influence on the reconstruction, 
since the area of the reconstruction without this branch is nearly the same as the area 
of the reconstruction with it. Therefore, it can be removed. The proposed skeleton 
pruning is based on iterative removal of end branches with the smallest weights until 
the desirable threshold is met. 
 

The skeleton pruning algorithm is as follows: 

1. We initialize the weights of all end branches )0(
iw  (i = 1,2, …, )0(N ) based on 

the original skeleton )0(S : 
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2. In the kth iteration step,  for  i = 1,2,…, )(kN compute the weight for each end 

branch in the skeleton )(kS : 
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3. Select the minimal weight )(
min
kw . If )(

min
kw  is smaller than threshold t, go to 4; else, 

stop the evolution and output the )(kS  as the final result. 

4. Remove end branch )(
min

kP  with the lowest weight )(
min
kw and obtain the new 

skeleton: 

)(
min

)()1( kkk PSS −=+  (5) 

5. Set k=k+1 and go to 2. 
 
It is easy to see that this algorithm preserves the skeleton topology, since only end 

braches are removed. This fact is proven in Theorem 1, which states that S(k+1) is 
topologically equivalent to the original skeleton S. 

 

Theorem 1. For every k, )(
min

)()1( kkk PSS −=+  is a strong deformation retract of S.  
 

Proof: We will show that S(k+1), is a strong deformation retract of S(k). Since 
composition of strong deformation retractions is a strong deformation retraction, it 
follows that S(k+1), is a strong deformation retract of S. 

We obtain S(k+1) by removing end branch P(lmin,  f(lmin)) from S(k). Therefore, 
mapping π: S(k) → S(k+1) defined as identity on S(k+1) and π(P(lmin,  f(lmin)))= f(lmin) is a 
strong deformation retraction. This proves the theorem.  
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The robustness to noise and other boundary deformations of the proposed method 
follows form the fact that we compare the area. As it is well known, even significant 
contour noise has very small effect on the object area. We will demonstrate this fact 
in Section 3.1. Moreover, the area of articulated parts remains nearly constant, which 
makes the proposed skeleton pruning robust for articulated objects. For example, the 
obtained skeletons of the classes of Glas and Elephant in Fig.5 are with clear 
structures and insensitive to the boundary protrusions. Observe also that our approach 
does not shorten the remaining skeleton branches, since we only completely remove 
end branches. This is a desirable feature for object recognition, which we illustrate in 
Section 3.2. 

3   Experiments and Discussions 

In this section, we evaluate the performance of the proposed method in three parts. In 
Section 3.1, we demonstrate the stability to shape deformations and contour noise; In 
Section 3.2, we provide a comparison to other methods. In Section 3.3, we show that 
the proposed method is independent from the topology of the skeleton. This is in 
accord with Theorem 1, which guarantees topology preservation even in the presence 
of multiple loops. 

3.1   Test on Kimia’s Dataset 

In this Section, we want to demonstrate the robustness to shape deformations and 
noise. We apply the proposed method to a well-known dataset for shape analysis  
 

 

 

 

Fig. 4. Sample shapes in Kimia’s dataset with original skeletons 
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(Kimia’s 216 shapes), which consists of 18 classes with 12 shapes in each class [16]. 
The shapes in the same class are similar but slightly different, and the original 
skeletons are very grassy due to the many small noises or changes on their boundary 
as shown in Fig.4. We use the same threshold t for the shapes in the same class, and 
the values of t for all the classes are listed in Table.1. We put all the results in Fig.5. 
The obtained pruned skeletons in Fig.5 seem to be in accord with human perception 
and stable to the threshold t, which can be used for skeleton-based shape analysis 
efficiently. 

 

    

     

 

 

 

Fig. 5. The pruned skeletons of Kimia’s dataset 
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Fig. 5. (continued) 
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Fig. 5. (continued) 

Table 1. The values of t used in our experiments on Kimia’s 18 classes 

Class Bone Glas Heart Misk Bird Brick 
Threshold 0.0015 0.005 0.005 0.005 0.005 0.010 

Class Camel Car Children Classic Elephant Face 
Threshold 0.005 0.004 0.010 0.004 0.004 0.008 

Class Fork Fountain Hammer Key Ray Turtle 
Threshold 0.005 0.006 0.005 0.005 0.005 0.007 

3.2   Comparison with Other Methods 

We compare our result with two recent publications: 1) Torsello’s modified Hamil-
ton Jacob Skeleton [18]; 2) Bai’s pruned skeleton by contour partitioning with  
DCE [19]. 

 

Fig. 6. Comparison with Torsello’s results in [18]: column (a) are the example original shapes, 
column (b) are Tosello’s results, and column (c) are our results by DSE   
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                                   (a)                                (b)                             (c) 

Fig. 6. (continued) 

We test our algorithm on several representative shapes in Torsello’s paper [18]. In 
Fig.6, it’s easy to observe that our results are comparable to Torsello’s results, and all 
the results are computed with the same t (t = 0.005). In addition, our method never 
shortens the skeleton branches. For example, in Torsello’s results, some skeleton 
branches of women’s head are much shorter than our result.   

  
(a) (b) 

Fig. 7. Comparison with Bai’s result in [19] 
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We also compare our result with pruning result by DCE in [19]. As shown in  
Fig. 7, we can observe that the results of two methods are very close with clear 
structure, but our result (when t = 0.005) in Fig. 7(b) is more stable to the small 
protrusions, such as the short branches ended at the legs of the camel in Fig. 7(a). 
The reason for solving this problem is that our method is based on skeletons 
directly.    

3.3   Test on Skeletons with Loops  

In this section, we show the performance of the proposed method on the images 
with holes. Fig. 8 gives the skeletons of a Chinese character. Our pruned skeleton in 
Fig. 8 (b) is better than the thinning result (c) obtained with a morphological 
thinning.  An example in [19] is also performed by the proposed algorithm in Fig. 9, 
and the pruned results in Fig. 9(b) and Fig. 9(c) demonstrate that our method is 
topology preserved.     

 
(a)                                      (b)                                          (c) 

Fig. 8. The Skeletons of a Chinese character. (a) and (b) is the original skeleton and the pruned 
skeleton separately, and (c) is the result of morphological thinning.   

 
                            (a)                                    (b)                                      (c) 

Fig. 9. The skeletons of a face in [19]. (a) is the original skeleton, (b) and (c) are the pruned 
results with different thresholds. 
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3.4   Some Experimental Details 

All the original skeletons in this paper were generated based on the distance transform 
by the algorithm in [4]. Our pruning algorithm is with high time cost due to the 
reconstruction in every iterative step, and the average time for pruning a noisy 
skeleton is about 4 minutes on the PC with 1.5 GHZ CPU and 512M RAM. 
Therefore, for increasing speed, another way is encouraged: First, prune the skeletons 
with the pruning algorithm in [19] in the coarse level; then, prune the pruned 
skeletons from algorithm [19] with the proposed algorithm. In this way, the average 
time cost for one pruning has been reduced to about 15 seconds. 

4   Conclusions and Future Work  

We present an iterative algorithm for pruning skeleton that is based on removing the 
end branch with the lowest weight for reconstruction in each step. The experiments 
prove that DSE is an efficient tool for skeleton-based representation and recognition. 
Even for different shapes of the same class in Kimia’s dataset, we can use the same 
threshold, which is very important for automatic recognition with skeletons. 
Moreover, we have proved that DSE is topology preserved both in theorem and 
experiment. In the future, our work will focus on pruning 3D curve skeletons in 
analogous way. 
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