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Abstract. We describe an efficient approach to construct shape mod-
els composed of contour parts with partially-supervised learning. The
proposed approach can easily transfer parts structure to different object
classes as long as they have similar shape. The spatial layout between
parts is described by a non-parametric density, which is more flexible
and easier to learn than commonly used Gaussian or other parametric
distributions. We express object detection as state estimation inference
executed using a novel Particle Filters (PF) framework with static ob-
servations, which is quite different from previous PF methods. Although
the underlying graph structure of our model is given by a fully connected
graph, the proposed PF algorithm efficiently linearizes it by exploring the
conditional dependencies of the nodes representing contour parts. Ex-
perimental results demonstrate that the proposed approach can not only
yield very good detection results but also accurately locates contours of
target objects in cluttered images.

1 Introduction

Object recognition, detection, and localization in real images is a major prob-
lem in Computer Vision since its beginning. In the last few years, the majority
of existing methods use simple relations of local image patches as basic fea-
tures, e.g., [24, 3]. They can perform very well on high textured objects, but
they are unable to identify parts of deformable objects nor precisely localize
their boundaries in images. The main reason is that the model fails to represent
all available information [25]. However, an improved, richer representation of
deformable objects is only useful when it is accompanied by efficient techniques
for performing inference and learning [26]. Thus, progress in this area requires
to simultaneously develop more powerful representations together with efficient
inference algorithms.

In this paper, we propose a single layer fully connected graph to model shape
of deformable objects. Each node in the graph is a state variable, which consists
of the position and the corresponding part. The relation between nodes is long
range and not limited to direct spatial proximity. Our model can be interpreted
as a generative prior for the configuration of the state variables. Since our graph
is fully connected, we do not need to learn its structure, which simplifies the
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learning significantly. We only need to learn representation of the nodes and
their pairwise relations. Since the number of pairwise relations is large, and
most of them are not used in our inference process, we do not learn the pair-
wise relations explicitly. Instead, we learn a representation that allows us to
dynamically construct the pairwise relations needed in the inference process.

In our model graph, the nodes represent contour parts and their position in
a given shape class. They are learned automatically with partially-supervised
learning. While many state-of-the-art approaches construct part models manu-
ally [18, 27], we limit manual labeling to a single contour. In our approach, only
one silhouette is manually decomposed into visual parts in advance. Then, the
part decomposition is automatically transferred to silhouettes not only in the
same class but also in different classes with similar shape by shape matching.
To deal with non-rigid objects, we use Inner Distance Shape Context (IDSC) in-
troduced in [17]. The constructed part bundles (see §3) with proper position in
the exemplar shapes form the nodes in the model graph. The relations between
the nodes represent the spatial layout between parts. It is described by nonpara-
metric density estimation, which has better discriminative power than methods
based on unimodal distributions modeled as Gaussians, e.g., [5, 23]. To make
the learnt model graph representative, we use the well designed exemplar based
clustering by Affinity Propagation [8] to select a set of candidate silhouettes as
exemplars for our model learning approach.

According to [26], there are no known algorithms for performing inference
for densely connected flat models, e.g., the performance of Belief Propagation
(BP) is known to degrade for representations with many closed loops. To address
this issue, we propose a Markov chain Monte Carlo (MCMC) approach that is
able to efficiently infer the values of the state variables representing nodes of our
fully connected model graph. The proposed MCMC approach is based on Particle
Filter (PF), but it differs fundamentally, since unlike the standard PF framework,
our PF framework can infer an order of random variable (RVs). The inferred
order follows the most informative paths in the graph. Thus, we use PF to
linearize the structure of the graph, which allows us to avoid the problem of loops.
Each particle may explore a different node order in this linearization, which
corresponds to the order of contour parts. This fact is illustrated by two different
detection examples shown in Fig. 1, where the PF order of detected contour parts
is color coded. This property makes our algorithm different from other PF based
method [13, 12]. As can be seen by examining the relative position of consecutive
parts, the proposed inference is not limited to direct spatial proximity of the
parts. This fact sets our approach apart from existing approaches, e.g., [26, 14].

In order to show the advantages of the proposed approach, we test our method
on three widely used data sets, Weizmann horses [2], the ETHZ [6], and the
cow dataset from the PASCAL Object Recognition Database Collection (TU
Darmstadt Database [16]). Our results measured by bounding box intersection
are comparable to state-of-the-art methods. Also, we perform very well in the
accuracy of boundary localization, which is evaluated by a recently proposed
measure in [7].
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(a) (b)

Fig. 1. Examples of two different inferred orders of detected contour parts. Colors
represent the order, which is 1=red, 2=cyan, 3=blue, 4=green, 5=yellow, and 6=black.

2 Related Work

Ferrari et al. [7] propose to learn the model from real images with weakly su-
pervision. Given the bounding boxes, the model is considered as the common
pattern of objects in the same class. With the same intuition, Lee and Grau-
man [15] also treat the common pattern in a class as the model. However, their
method is totally unsupervised. To utilize the already learnt information, Stark
et al. [23] transfer information of the learnt model to better study the new model
by a probabilistic framework. They have very similar intuition with our method.
However, ours are quite different from theirs. We transfer the structure infor-
mation by pure shape matching without any statistics. Their method is mainly
based on the probabilistic model they construct.

To detect objects in the cluttered image, Ferrari et al. [6] use kAS with Hough
voting to estimate the position of objects. Ommer and Malik [20] propose a novel
Hough voting strategy to overcome the problem of scales. Zhu et al. [27] treat
the detection as a set-to-set matching problem between segments. They simplify
the problem into linear programming to reduce the complexity. Ravishankar et
al. [21] propose a multi-stage method with manually deformed model. Similar to
ours, Trinh and Kimia also learn the model from silhouettes. However, instead of
contours, they use a skeleton based generative shape model. Also, their detection
stage is using dynamic programming, which is quite different from our method.
Besides pure shape based method, Maji and Malik [19] propose a maximum
margin hough voting method with SVM to detect objects. Gu et al. [11] combine
the region and shape together for object detection.

Particle filter (PF) has been used for object detection previously [13, 12].
They mainly utilize PF to reduce the possible assumptions and they have pre-
defined the order for PF. However, our method can determine the order of PF on
the fly, which is theoretically quite different from the traditional PF. Moreover,
we are based on shape features for object detection instead of the binary classifier
they defined. Lu et al. [18] also use PF for shape based object detection. However,
we are totally different from them at the proposal and evaluation steps, which is
essential for PF. Also, the pairwise relation between parts is naturally embedded
into our PF framework, which has not been done in the previous PF methods.
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3 Partially-Supervised Model Learning

Our approach only requires marking object parts on one exemplar. We then
transfer this knowledge to other contours not only in the same shape class but
also to similar shape classes. Thus, our approach is able to construct the part
models for different classes of objects starting with only one exemplar contour.
The constructed model can describe a wide range of objects with different poses.

As we learn the model from exemplars, the first issue is which ones should be
chosen from a given training data set. We use Affinity Propagation to select the
exemplars, which are cluster centers in AP. These cluster centers are representa-
tive, so that they can describe most of the poses of objects. The input pairwise
distance between shapes is obtained by Oriented Chamfer Matching (OCM).

3.1 Part model construction

In this section we describe a way to automatically decompose the exemplars
E = {E1, . . . , ENe} into meaningful parts. We first manually segment one se-
lected silhouette, say E1 into m different meaningful parts S = {s1, . . . , sm}. For
example, for horse, we have six parts: head, two front legs, two back legs, and
the body, shown in different colors in top left of Fig. 2(a). We then use shape
matching with IDSC [17] to transfer the parts to other exemplars E2, . . . , ENe ,
e.g., to the second horse in Fig.2(a). The corresponding points carry over the
part decomposition. To ensure that the part decomposition is transferred cor-
rectly, we require that the number of corresponding points for a given contour
part si is larger than a given threshold, e.g. 80% of the total number of points
in the contour part. If this is not the case, the corresponding part is removed
from the model.

We define part bundle Bi as a set composed of part si on E1 and all cor-
responding parts on E2, . . . , ENe transferred by the IDSC matching for i =
1, . . . , m. Each part bundle Bi has at most Ne contour parts. We obtain a set of
m part bundles B = {B1, B2, ..., Bm} that defines the nodes of our part model
graph.

We can also employ shape matching to transfer the part structure to different
but similar object classes. As illustrated in Fig. 2(a), our part decomposition of
the horse contour transfers easily to contours of giraffes. As long as the objects
in different classes have similar structure, the proposed approach can transfer
the structure knowledge from the known class to the other classes and obtain the
part bundle models. There are three advantages of the proposed approach: 1) It
requires very little manual labeling. 2) The constructed model composed of part
bundles can handle the intra-class variations as long as the training silhouettes
can represent the possible poses of objects. 3) The structural knowledge can be
easily transferred to different classes.

3.2 Relation between model parts

After learning the model from silhouettes, in order to make the model more
flexible, we permit the rotation for each part and also some shift. However, with
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Fig. 2. (a) Six manually labeled parts on the horse in top left are marked with different
colors. The point correspondence obtained by shape matching allows us to transfer the
part structure to a different horse and to a giraffe. (b)The horse head and horse body
shown on the left hand side are very different from our perception of a horse. Our
measure of this fact is illustrated in the rest of this figure.

the increasing flexibility, the obtained model can be very different from shapes in
a given object class. To reduce the negative effect of flexible models, we propose a
soft way to constrain the flexibility. We allow the flexibility in a range determined
by shape similarity to example shapes in a given object class. Here the shape
similarity is described by spatial layout of model parts, i.e., a new rotated spatial
layout of parts is allowed if it is similar to a layout previously seen for this class.
An example is shown in Fig. 2(b). The horse head and horse body shown on the
left hand side are very different from our perception of a horse. The head and
body are too far away from each other and their arrangement due to rotation is
really strange. With the method described below, we can offer a soft constraint
on possible spatial layout of parts.

The key idea is to construct a distribution describing the spatial layout be-
tween different parts. In particular, given a part bundle Bi, the spatial relation
between it and another part bundle Bj forms a distribution. This kind of dis-
tribution has been used in object detection to help describe the model [23, 5],
but the distribution is assumed to be Gaussian, whose parameters can be eas-
ily learned from training samples. However, obviously, the distribution of part
relation is very complex and expressing it as Gaussian or any other parametric
distribution does not seem to be a good approximation. Instead, we propose to
learn the underlying distribution in a non-parametric setting.

We employ kernel density estimation, which is one of the most popular non-
parametric methods. Given are two rotated parts p′i and p′j that come from
different part bundles Bi and Bj respectively. Our goal is to find how is p′j
located with respect to p′i. For example, we want to find out how well the green
body is positioned with respect to the black horse head in Fig. 2(b). For part p′i,
we use OCMp′

i
to find the top k most similar exemplar parts (pi(1), . . . , pi(k))

in part bundle Bi (the bundle of p′i). For these original parts in Bi, we know
the exemplar contours they came from. From these contours, we extract parts
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(pj(1), . . . , pj(k)) that belong to the same bundle as p′j, i.e., to part bundle Bj . In
Fig. 2(b), OCM retrieves the 3 red horse heads (pi(1), pi(2), pi(3)) as most similar
to the black head, which in turn carry over from their original contours 3 blue
horse bodies (pj(1), pj(2), pj(3)). Finally, we measure the spatial layout between
parts p′i and p′j by estimating the fitness of p′j to the distribution described by
(pj(1), . . . , pj(k)):

f(p′j |p′i) =
1
Cc

k∑
t=1

1
h

K(
OCMp′

j
(pj(t))

h
) (1)

where K is a kernel function with bandwidth h, which is Gaussian in the paper
and Cc is a constant value. The computation of f(p′j|p′i) in our example is il-
lustrated in the right column of Fig. 2(b). It is a function of the OCM distance
between the green horse body and the 3 blue horse bodies.

4 Framework for Object Detection

Our goal is to infer the maximum of a posterior distribution p(B1, . . . , Bm | Z),
where (B1, . . . , Bm) is a vector of random variables (RVs) representing part
bundles, which are nodes of our shape model graph (§3). In our application
Z = (I, C) is a set of observations, where I is a RV ranging over binary edge
images and C ranges over classes of target objects including background. Thus,
Z is static, since the target edge image and the class of object are fixed for a
given detection process. The possible values of each RV Bi are vectors of two
elements, one is the location xi in the image and the second is the part si chosen
from the part bundle Bi in the model. In the case of a correct detection, we
expect part si to be located at xi in the image. We stress that even though each
part bundle has many parts, only one of them is chosen for a given location in the
image. To simplify the notation, we use b to represent the pair of values (x, s) for
each random variable, i.e., bl = (xl, sl). Consequently, our goal is to find value
assignments to RVs Bt = bt for t = 1, . . . , m that maximize the posterior

b̂1:m = argmax
b1:m

p(b1:m | Z), (2)

where b1:m is a shorthand notation for (b1, . . . , bm). We will achieve our goal
by approximating the posterior distribution with a finite number of particles in
the framework of Particle Filter (PF). Besides, only a small subset of the search
space is considered in the framework, which reduces the complexity significantly
compared to exhaustive search with sliding windows, e.g., [22].

Unlike the standard PF framework, the observations Z in our approach do
not arrive sequentially, but are available at once, i.e., Z is static. Therefore, the
observations have no natural order. Consequently, the states b1:m also do not
have any natural order, i.e., the order of indices 1, . . . , m does not have any
particular meaning. Therefore, we need to extend the PF framework to infer an
order of RVs, which may be different for each particle. Intuitively, we want to
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determine such an order of RVs so that the corresponding order of observations
is most informative, which makes the particle reaches optimal solution faster
and more accurate. This makes the proposed PF fundamentally different from
classical PF. To represent the order of RVs we need a symbol of a bijection
(onto and one-to-one function) < · >(i): {1, . . . , m} → {1, . . . , m}. Although we
may have a different bijection for each particle (i), we will drop the index (i)
from < 1 : t >(i), since the state variables already carry the particle index. For
example, we denote (b(i)

4 , b
(i)
5 , b

(i)
2 ) as b

(i)
<1:3>, where < 1 : 3 >= (4, 5, 2).

We first present the proposed PF algorithm followed by a discussion of its ma-
jor differences to standard PF approaches. As it is often the case in PF applica-
tions, we assume the proposal distribution to be q(b|b(i)

<1:t−1>, Z) = p(b|b(i)
<1:t−1>).

For each particle (i), where i = 1, . . . , N , the proposed PF algorithm in each it-
eration t = 2, . . . , m performs the following three steps:
1) Importance sampling / proposal: Sample followers of particle (i) for
l ∈ {1, . . . , m}\ < 1 : t − 1 >

b
(i)
l ∼ p(bl|b(i)

<1:t−1>) (3)

and set b
(i)
<1:t−1>,l = (b(i)

<1:t−1>, b
(i)
l ). In particular, in the first iteration (t = 1)

we generate samples from each dimension of the state space, i.e., we sample for
l ∈ {1, . . . , m}

b
(i)
<1> = b

(i)
l ∼ p(bl) (4)

2) Importance weighting/evaluation: An individual importance weight is
assigned to each follower of each particle by

w(b(i)
<1:t−1>,l) = p(Z|b(i)

<1:t−1>,l). (5)

3) Resampling: At the sampling step we have generated more samples than
the number of particles. Thus we have a larger set of particles b

(i)
<1:t−1>,l for

i = 1, . . . , N and l ∈ {1, . . . , m}\ < 1 : t − 1 > from which we sub-sample N
particles and assign equal weights to all of them as in the standard Sampling
Importance Resampling (SIR) approach. We obtain a set of new particles b

(i)
<1:t>

for i = 1, . . . , N . The resampling is not performed in the last step, i.e., when
t = m.

Algorithm discussion:
1) This step provides our main extension of the classical PF framework. In
the classical PF framework, followers of each particle are selected from only
one conditional distribution, i.e., from the conditional distribution of RV at
dimension t given by p(bt|b(i)

1:t−1), since the dimension index t represents a real
order of RVs 1 : t = 1, . . . , t. In contrast we sample the followers from each
dimension l ∈ {1, . . . , m} that is not already included in < 1 : t − 1 >.

The fact that one can consider more than one follower of each particle and
reduce the number of followers by resampling is known in the PF literature and
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is referred to as prior boosting [10]. It is used to capture multi-modal likelihood
regions. However, all followers are selected from the conditional distribution of
the same RV (the same dimension t) in the classical PF framework.
2) We take the weight formula from [18], where it has been derived for PF with
static observations.
3) We stress that the resampling plays in our framework an additional and a very
crucial role. It selects the the most informative random variables (i.e., state space
dimensions) as followers of particles. Since the weight of b

(i)
<1:t−1>,l is determined

by the observations Z, and the resampling uses the weights to selects a follower
b<t> = bl from not yet considered dimensions l ∈ {1, . . . , m}\ < 1 : t − 1 >, the
resampling determines the order of RVs, i.e., the bijection < t > for t = 1, . . .m.
Consequently, the order of RVs is heavily determined by Z, and this order may
be different for each particle (i). This is in strong contrast to the classical PF,
where observations Z have no influence on the order of RVs, which is fixed.

In order to execute the derived PF algorithm, we need to define the proposal
distribution p(bl|b(i)

<1:t−1>), and the evaluation pdf p(Z|b(i)
<1:t−1>,l). As stated in

Eq. 4, the initial proposal distribution is defined by p(bl), where l is an index of
a RV representing a part bundle and bl = (sl, xl). In our implementation, p(bl)
is simply the probability of finding model part sl at location xl, and it measures
how well model part sl fits the edges in the image. We compute it as a Gaussian
of the oriented chamfer distance. Similarly, p(bl|b(i)

<1:t−1>) is the probability of
finding model part sl at the location xl, but now the location is constrained,
since parts s<1:t−1> have already been placed in the image. Thus, this conditional
probability is picked around the expected location xl determined by the locations
x<1:t−1> of the previously added parts. While the initial proposal distribution
is computed at every image location, the conditional proposal distribution is
only computed at regions of interest determined by the previously placed model
parts.

As Z = (I, C), and I and C can be viewed as independent conditioned on
b
(i)
<1:t−1>,l, we obtain:

p(Z|b(i)
<1:t−1>,l) = p(I|b(i)

<1:t−1>,l)p(C|b(i)
<1:t−1>,l) (6)

We recall that in our detection framework, both I and C are instantiated, since
they are given prior to the detection, i.e., I = im, where im is a given binary
edge image and C = 1, which represents the class of the target object. The first
factor p(I = im|b(i)

<1:t−1>,l) in Eq. 6 describes the goodness of fit to the edge

image im of the partial shape model determined by b
(i)
<1:t−1>,l, i.e., how likely

the edges in im come from a picture of a shape like the shape of b
(i)
<1:t−1>,l. The

second factor p(C = 1|b(i)
<1:t−1>,l) represents the probability of the target class

given the model b
(i)
<1:t−1>,l. Hence it can be viewed as shape class constraints on

the model. The conditional pdfs describing both factors are defined in § 5.
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5 Evaluation based on shape similarity

As b
(i)
<1:t−1>,l consists of the parts s

(i)
<1:t−1>,l and their locations x

(i)
<1:t−1>,l,

we construct a partial shape model μ by putting parts s
(i)
<1:t−1>,l at locations

x
(i)
<1:t−1>,l on the edge map im. The probability that the edge map im is an

image of a real object looking like our partial model μ is given by

p(I = im|b(i)
<1:t−1>,l) = exp(−β · OCMim(μ)), (7)

where OCMim(μ) returns the Oriented Chamfer distance between im and μ
and β is set to 10. Consequently, OCMim(μ) measures how well the constructed
partial model matches to the edge map.

p(C = 1|b(i)
<1:t−1>,l) expresses the probability of the target shape class given

partial shape model μ = b
(i)
<1:t−1>,l. We obtain by Bayes rule

p(C = 1|μ) =
p(μ|C = 1)p(C = 1)∑

c=1,0 p(μ|C = c)p(C = c)
. (8)

p(μ|C = 1) measures the similarity between the constructed model and the tar-
get class. Similarly, p(μ|C = 0) measures the similarity between the constructed
model and the background. Eq. 8 helps to prevent accidental match to the back-
ground, since it eliminates shape models with both high similarity to a given
object class and to the background, and favors models with high similarity to a
given object class and low similarity to the background. We utilize a recursive
computation in our PF framework to obtain

p(μ|C = c) = p(b(i)
<1:t−1>,l|C = c)

= p(b(i)
l |b(i)

<1:t−1>, C = c) p(b(i)
<1:t−1>|C = c)

= p(b(i)
l |b(i)

<t−1>, C = c) p(b(i)
<1:t−1>|C = c)

= f(b(i)
l |b(i)

<t−1>) p(b(i)
<1:t−1>|C = c), (9)

where f is defined in Eq. 1, and a given shape class C = c is modeled as a set
of exemplars E = {E1, . . . , ENe}, which are selected from training examples by
affinity propagation.f describes the pairwise relation between nodes in the graph,
which is naturally utilized in our PF framework. When C = 0, we randomly select
some background edge configurations as training examples. In the transition from
2nd to 3rd row in Eq. 9, we make a Markov assumption that the new model part
b
(i)
l only depends on the previously added part b

(i)
<t−1> conditioned that we know

the shape class C = c. This simplifies the computation and makes the shape
model more flexible in that the pose of the new model part is only evaluated
with respect to the pose of previously added part. Finally, p(b(i)

<1:t−1>|C = c) is
remembered from the previous iteration of particle (i).
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6 Experimental Results

We have tested our algorithm on three widely used data sets: the extended
Weizmann Horses [2, 22], the ETHZ shapes [7] and the TU Darmstadt Database
[16]. During the testing for Weizmann Horses, only 12 automatically selected
horse silhouettes with one hand decomposed horse are used to learn the shape
model. All the other images are used for testing. The edge maps for this dataset
are obtained by Canny edge detector. We also test our method on the class of
giraffe in ETHZ shape dataset [7]. The reason why we only select the category
giraffes from ETHZ is that our model learning method can only transfer between
objects with similar structure and giraffe is the only object in ETHZ having
similar structure to horse. Only one hand decomposed horse and 6 automatically
selected giraffe silhouettes are used to learn the giraffe model. Further, we work
on the cow dataset the TU Darmstadt Database [16], since cows have similar
structure with the above two classes. It contains 111 images. Only one hand
decomposed horse and 6 automatically selected cow silhouettes are used to learn
the cow model. The edge maps for this dataset are obtained by Canny edge
detector.

To adapt to large scale variance, we generate multiple models by resizing the
original ones to 5 to 8 scales, and choose as the final result from the best score
in all the scales. We not only report our results on the commonly used bounding
box intersection, but also the accuracy of our boundary localization.

6.1 Detection according to bounding boxes

We first evaluate the ability of the proposed approach to localize objects in clut-
tered images using bounding-box intersection, which is widely used in traditional
object detection task. We adopt the strict standards of PASCAL Challenge cri-
terion: a detection is counted as correct only if the intersection-over-union ratio
with the ground-truth bounding-box is greater than 50%.

Fig. 3 reports precision-recall (P/R) curve and detection rate vs false positive
per image (DR/FPPI) curve for the class Giraffes in ETHZ dataset. In P/R, we
compare to Lu et al. [18], Zhu et al. [27], Ommer and Malik [20] and Ferrari et
al. [7], whose results are quoted from [18]. In DR/FPPI, as Ferrari et al. [7, 6],
Ommer and Malik [20] and Lu et al. [18] provide their results, we compare to
them. As Ravishankar et al. [21] do not give their curves, we do not compare
to them in Fig. 3. According to the curves, we are better than Lu et al. [18],
Ommer and Malik [20], Ferrari et al. [7, 6] and perform equally well as Zhu et
al. [27]. The performance of the proposed method illustrates its ability to cope
with substantial nonrigid deformations, which are present in the class Giraffes.
This is demonstrated by our example results in Fig. 4(a).

Table 1 compares our detection rate to [26, 22] on Weizman Hores and TU
Darmstadt Cows. The detection rate on horses is estimated from the DR/FPPI
curve in [22]. The DR/FPPI curve for cows is not available in [22]. The method
in [26] is also matching based, while [22] is a classification method. Some exam-
ples of our horse and cow detection results are shown in Fig. 4(b). The detection
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Fig. 3. Precision-recall curve and detection rate (DR) vs false positive per image
(FPPI) curve for the class Giraffes in ETHZ dataset.

(a) (b)

Fig. 4. Examples of detection results for Giraffes, horses and cows.

precision/recall area under curve (AUC) is a standard performance measure on
the Weizmann Horses dataset. The AUC for our approach is 79.84%, which is
comparable to the result 80.32% in Xiang et al. [1]. We compare to them as
they also use the explicit shape model and matching based method for object
detection. The AUC of classification based methods [22, 9] is 84.98% and 96%,
respectively. We observe that classification based methods are bounding box
classifiers and utilize significantly more information than matching based meth-
ods as ours. This explains why our detection rate and AUC is lower than [22,
9].

Table 1. Detection rate.

Our method Zhu et al. [26] Shotton et al. [22]

Horses 93.97% 86.0% 95.20%

Cows 90.38% 88.6% N/A
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The proposed approach can not only succeed in extensive cluttered images,
but also handles the problem of large range of scales and intra-class variability.
This is demonstrated by several examples in Fig. 4. The images in the bottom
right of Fig. 4(a) with red rectangles are the ones we fail to detect. The images of
horses in Fig. 4(b) with red rectangles are false positives in the negative images
provided by Shotton et. al. [22] to complement the Weizmann horse dataset.
They show that the false positives in the negative set are caused by really very
cluttered edges or by the structure of edges happening to match to the model
very well. Interestingly, the rightmost false positive of horses is due to a camel,
whose shape is very similar to that of a horse.

6.2 Localizing object boundaries

The method presented in this paper offers one important advantage compared
to texture based and classification methods like [3, 9, 4]. It can localize object
boundaries, rather than just bounding-boxes.

In order to quantify how accurately the output shapes match to true bound-
aries, we use the coverage and precision measures defined in [7]. Coverage is
the percentage of points from ground-truth boundaries closer than a threshold
t to the output shapes of the proposed approach. Reversely, precision is the
percentage of points from output shapes closer than t to any point of ground-
truth boundaries. As in [7] t is set to 4% of the diagonal of the ground-truth
bounding box. The measures are complementary. Coverage captures how much
of the object boundary has been recovered by the algorithm, whereas preci-
sion reports how much of the algorithm’s output lies on the object boundaries.
These measurements are really useful and suitable for evaluating shape based
approaches. In comparison, bounding-box evaluation cannot represent how ac-
curate the detected shapes match the ground-truth boundary. It is possible to
have bounding-box intersection larger than 0.5 without having correctly identi-
fied the ground-truth object boundaries. Two examples of horse detection are
shown in Fig. 4(b) with green rectangles.

The first two columns of Table 2 show coverage and precision averaged over
all images of the class giraffes in ETHZ dataset in comparison to the results in [7].
We measure the coverage and precision for the correct detections at 0.4 FPPI,
following [7]. The coverage of the proposed approach is over 11% better than
[7], which shows that our approach can efficiently recover the true boundary of
objects. The precision is a little lower than [7]. More importantly, the detection
rate at our 0.4 FPPI is 86.75%. However, even for 20% bounding box intersection,
the detection rate at 0.4 FPPI in [7] is only around 60% , which is much less than
us. It demonstrates that our approach can correctly localize object’s boundary
on more images.

For horses and cows, the coverage and precision are obtained over all correct
detections. The third column of Table. 2 shows the coverage and precision of the
proposed method on the Weizmann Horse dataset. As the edges are significantly
worse than the ones provided for the giraffes, both measures are worse than
the results on giraffes. The coverage and precision results for cow are shown in
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the fourth column of Table. 2. Due to less intra-shape variance, the precision is
92.02%, which is much higher than giraffes and horses. However, the coverage is
only 73.86%. The main reason for the difference between these two values is that
our model has a gap, since we removed the contour part representing the horse
tail from the horse contour used for part decomposition. Thus, even if the model
and object match perfectly, the coverage score cannot be perfect (see examples
in Fig. 4).

Table 2. Accuracy of the boundary localization.

Ours Results in [7] Ours Ours
on giraffes on giraffes on horses on cows

Coverage 79.4% 68.5% 77.5% 73.86%

Precision 74.6% 77.3% 61.7% 92.02%

7 Conclusion and Discussion

This paper mainly contains two contributions: shape model learning through
shape matching and a novel framework for shape based object detection. The
proposed model learning method can not only learn the model for non-rigid
or articulated objects with partially-supervised learning, but also transfer the
structure information to different kinds of objects. More importantly, the spatial
layout between parts is also modeled.

We extend the classical particle filter framework in order to be able to infer an
optimal label assignment to RVs whose dependencies are described by a complete
graph. The values of RVs represent contour parts of our shape model and their
locations. In our framework each particle explores a different order of detected
contour parts, and the most informative order is selected by particle resampling.
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