
Dense Subgraph Partition
of Positive Hypergraphs

Hairong Liu, Longin Jan Latecki, Senior Member, IEEE, and Shuicheng Yan, Senior Member, IEEE

Abstract—In this paper, we present a novel partition framework, called dense subgraph partition (DSP), to automatically, precisely and

efficiently decompose a positive hypergraph into dense subgraphs. A positive hypergraph is a graph or hypergraph whose edges,

except self-loops, have positive weights. We first define the concepts of core subgraph, conditional core subgraph, and disjoint partition

of a conditional core subgraph, then define DSP based on them. The result of DSP is an ordered list of dense subgraphs with

decreasing densities, which uncovers all underlying clusters, as well as outliers. A divide-and-conquer algorithm, calledmin-partition

evolution, is proposed to efficiently compute the partition. DSP has many appealing properties. First, it is a nonparametric partition and

it reveals all meaningful clusters in a bottom-up way. Second, it has an exact and efficient solution, calledmin-partition evolution

algorithm. The min-partition evolution algorithm is a divide-and-conquer algorithm, thus time-efficient and memory-friendly, and

suitable for parallel processing. Third, it is a unified partition framework for a broad range of graphs and hypergraphs. We also establish

its relationship with the densest k-subgraph problem (DkS), an NP-hard but fundamental problem in graph theory, and prove that DSP

gives precise solutions to DkS for all k in a graph-dependent set, called critical k-set. To our best knowledge, this is a strong result

which has not been reported before. Moreover, as our experimental results show, for sparse graphs, especially web graphs, the size of

critical k-set is close to the number of vertices in the graph. We test the proposed partition framework on various tasks, and the

experimental results clearly illustrate its advantages.

Index Terms—Graph partition, dense subgraph, densest k-subgraph, mode seeking, image matching

Ç

1 INTRODUCTION

HYPERGRAPH partition (including graph partition) is a
fundamental problem in many important disciplines

[1], and it has numerous applications, such as partitioning
VLSI design circuits [2], task scheduling in multi-proces-
sor systems [3], clustering and detection of communities
in various networks [4], and image segmentation [5], to
name just a few. There are many public softwares, such
as METIS,1 JOSTLE,2 SCOTCH3 and CHACO,4 developed
for such purposes.

Since the optimal partition of a hypergraph heavily
depends on applications, a huge number of partition meth-
ods have been developed to fulfill the needs of various
applications. However, to our best knowledge, there is no
partition method satisfying the following requirement:

(R1) Automatically, precisely and efficiently partition a hyper-
graph into dense subgraphs.

Here automatically means that the number of dense sub-
graphs is a natural output of the partition method, and it

solely depends on the structure of a hypergraph; precisely
indicates that the partition method guarantees to find the
optimal solution of the objective and there is no approxima-
tion; efficiently says that the partition method has low time
and memory complexities, with the ability of partitioning
large hypergraphs.

A partition method satisfying the requirement (R1) is
extremely useful as our experimental results demonstrate.
This is because a dense subgraph represents a potential
cluster, thus, partitioning a hypergraph into dense sub-
graphs means that clusters underlying the hypergraph are
enumerated. In fact, the problem of enumerating dense sub-
graphs has been intensively studied for a few decades [6],
due to its importance.

1.1 Our Contributions

The main contributions of this paper are manyfold. First, we
propose a novel partition framework satisfying the require-
ment (R1), called dense subgraph partition (DSP). Second, we
propose an effective algorithm to compute DSP, called min-
partition evolution. This algorithm works in a divide-and-
conquer way, thus it is very efficient and scales well to large
hypergraphs, such as web graphs. Third, we reveal the rela-
tionship between densest k-subgraph problem (DkS) [7] and
DSP, and prove some important theoretic results. DkS is
known to be a NP-hard problem. However, we found that
for every hypergraph, there are many ks that DSP can give
precise DkSs. Finally, we apply DSP to numerous tasks and
our experiments show that DSP is a powerful tool to extract
meaningful clusters even in the presence of a large number
of outliers.

Fig. 1 illustrates the DSP of a weighted graph G and its
relations to densest subgraph and densest k-subgraphs. First,
G is partitioned into three dense subgraphs, namely,GV1 ,GV2

1. http://glaros.dtc.umn.edu/gkhome/views/metis/index.html
2. http://staffweb.cms.gre.ac.uk/~c.walshaw/jostle/
3. http://www.labri.u-bordeaux.fr/perso/pelegrin/scotch/
4. http://www.sandia.gov/~bahendr/chaco.html

� H. Liu is with the Department of Mechanical Engineering, Purdue Uni-
versity, West Lafayette, IN 47907. E-mail: lhrbss@gmail.com.

� L.J. Latecki is with Department of Computer and Information Sciences,
Temple University, Philadelphia, PA 19122. E-mail: latecki@temple.edu.

� S. Yan is with the Department of Electrical and Computer Engineering,
National University of Singapore, 119077 Singapore.
E-mail: eleyans@nus.edu.sg.

Manuscript received 28 Apr. 2013; revised 30 July 2014; accepted 3 Aug.
2014. Date of publication 6 Aug. 2014; date of current version 13 Feb. 2015.
Recommended for acceptance by H. Ishikawa.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2014.2346173

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 3, MARCH 2015 541

0162-8828� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

andGV3 . Second,GV2 is partitioned into two components,GV4

andGV5 , andGV3 is partitioned into another two components,

GV6 and GV7 . Thus, G is finally partitioned into five ordered

dense subgraphs, namely, GV1 , GV4 , GV5 , GV6 , GV7 . The first

dense subgraph GV1 is the densest subgraph of G. From this

partition, it is easy to get precise DkSs for some ks bymerging
the front part of the ordered subgraphs. For example, we can
merge GV1 and GV4 to form one D7S. Since GV4 and GV5 are

similar, another D7S is themerge ofGV1 andGV5 .

2 RELATED METHODS

Our method is closely related to two categories of methods.
The first category is hypergraph (including graph) partition
methods, especially these methods that can automatically
determine the number of subgraphs. The second category is
dense subgraph detection methods.

Hypergraph partition methods. The majority of hypergraph
partition methods are to divide a hypergraph into a
pre-specified number of parts. These methods generally
optimize a global objective function. For example, Ker-
nighan-Lin algorithm [8] attempts to partition a graph into
two disjoint parts with equal size, such that the cut between
these two parts is minimized; while the k-way Maximum
Sum of Densities method [9] partitions a hypergraph into k
parts, such that the sum of the densities of all k parts is max-
imized. For general graphs, two kinds of methods are popu-
lar, due to their good performance and solid theoretical
foundation. The first kind is spectral partition [4], [5], [10],
and the second kind is netflow based partition [11]. Spectral
partition methods rely on eigendecomposition of a matrix
constructed from hypergraphs, such as Laplacian matrix
[5] and Modularity matrix [4]. Netflow based partition
methods are rooted in the well-known network max-flow
min-cut theorem [12]. For graphs of specific structures,
some methods yielding better partitions have been pro-
posed, such as the multicut for planar graph in [13], which
gives globally optimal partitions.

For hypergraphs, a classic heuristic method is Fiduccia-
Mattheyses algorithm [14], which partitions a hypergraph
into two parts under certain area ratio such that the cut is

minimized. The spectral partition methods are also general-
ized to hypergraphs [15], [16], resulting in various spectral
hypergraph cuts. Using a peeling-off strategy, the k-way
Maximum Sum of Densities method [9] iteratively finds
maximum density subgraphs of hypergraphs, from which a
linear order of vertices is obtained, then dynamic program-
ming is applied on the linear order to split the hypergraph
into k parts. As the size of a hypergraph grows, the compu-
tational cost of partition increases quickly. Multilevel parti-
tion methods [17] have been proposed to achieve a balance
between partition quality and computational burden. These
methods first simplify original graphs, then partition them,
finally refine the partitions to achieve better results. By focu-
ing on separating edges, Bansal et al. proposed the correla-
tion clustering method [18], which automatically partitions
a binary graph into a few parts. Emanuel and Fiat general-
ized it to arbitrary weighted graphs and pointed out its rela-
tion to multicut [19]. Kim et al. further generated this
method to hypergraph and achieved good results for the
task of image segmentation [20]. For image segmentation,
Felzenszwalb and Huttenlocher proposed a classic method
[21], where an image is represented as a graph and then par-
titioned into regions using a predicate.

Dense subgraph detection methods. Due to the importance of
dense subgraphs, there are many dense subgraph detection
methods [6], [22], [23], [24], [25], [26], [27]. In [27], a polyno-
mial-time algorithm for finding the maximum density sub-
graph is introduced. In [26], the concept of clique is
generalized to weighted graphs and an efficient method to
detect dense subgraphs is proposed. This idea has also been
generalized to hypergraphs [28]. Liu et al. generalized [26]
andproposed amethod to efficiently enumerate all dense sub-
graphs [23], [24]. Saha et al. [29] defined a generalization of the
densest subgraph problem by an additional distance restric-
tion to the nodes of the subgraph and showed its application
in gene annotation graphs. Note that these dense subgraph
detectionmethods can be easily generalized to hypergraphs.

Although sharing some similarities, DSP is quite differ-
ent from these reviewed methods. Compared with other
partition methods, DSP is the first method satisfying
the requirement (R1). Compared with dense subgraph

Fig. 1. Dense subgraph partition of a weighted graphG and its relation to densest k-subgraphs. DSP has two layers of partition. In the first layer,G is
partitioned into three ordered subgraphs, namely, GV1 , GV2 and GV3 , ordered by their densities, from large to small. In the second layer, GV2 is parti-
tioned into two pseudo-disjoint subgraphs, GV4 and GV5 , and GV3 is partitioned into two pseudo-disjoint subgraphs, GV6 and GV7 . Thus, the graph G
has been partition into 5 ordered dense subgraphs by DSP, whereGV4 andGV5 are exchangeable, as well asGV6 andGV7 . From DSP, we can easily
get exact densest k-subgraphs for some ks, such as D4S, D7S, D10S and D11S for this graph.

542 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 3, MARCH 2015

detection methods, DSP efficiently enumerates all dense
subgraphs in a precise and principled way.

3 BASIC DEFINITIONS

Set. A set is a collection of distinct elements. There is no
order between elements in a set. In this paper, we use the
symbol f. . .g to represent a set.

Sequence. A sequence is an ordered list of elements and we
use the symbol h. . .i to represent a sequence.

Permutation. A permutation of a set of elements is an
arrangement of those elements into a particular order.

Sub-Permutation. A sub-permutation of a permutation P is
a contiguous subsequence of P. For a sub-permutation R, its

first and last elements are denoted by RF and RL, respec-
tively. ½a; b�, ða; bÞ, ða; b� and ½a; bÞ all represent sub-permuta-
tions of P, from the element a to the element b, where
square bracket and round bracket indicate the inclusion and

non-inclusion of boundary elements, respectively. �
!

R rep-
resents the set of sub-permutations of R whose first element

is RF ; while �

R represents the set of sub-permutations of R

whose last element is RL. For example, if P ¼ ha; b; c; d; e; fi,
then PF ¼ a, PL ¼ f , ½b; d� ¼ hb; c; di, ½b; dÞ ¼ hb; ci, �

!
½b;d� ¼

fhbi; hb; ci; hb; c; dig, � ðb;e� ¼ fhc; d; ei; hd; ei; heig.
Hypergraph. A hypergraph G is a triple G ¼ ðV;E;wÞ,

where V is a set of vertices, E is a set of hyperedges, and w is
the set of weights of all hyperedges. A hyperedge e 2 E is a
non-empty subset of V , and the size of this subset is called
the degree of e, denoted by dðeÞ. For example, dðeÞ ¼ 2means
that e is a pairwise edge, and dðeÞ ¼ 1 can be interpreted as e
is a self-loop. Each hyperedge e 2 E has a weightwðeÞ.

Positive hypergraph. A positive hypergraph is a hypergraph
whose weights of edges, except for self-loops, are positive. In
other words, only the weights of self-loopsmight be negative.
The positive hypegraph is a very general definition. In fact, it
includes most of commonly used graphs, e.g., pairwise
graphs, hypergraphs and multipartite graphs. In this paper,
we restrict our discussions to positive hypergraphs.

Subgraph. For a subset U � V , the subgraph induced by U
is denoted by GU ¼ ðU;EUÞ, where EU is constituted by all
hyperedges which are subsets of U . That is, EU ¼ fe j e 2
E; e � Ug. For a sub-permutation R, the subgraph induced
by R, denoted by GR, is the subgraph induced by the vertex
set of R.

Total weight of a hypergraph. The total weight of a hyper-
graph G, denoted by wðGÞ, is defined to be the sum of
weights of all hyperedges ofG, that is, wðGÞ ¼P

e2E we.

Density of a hypergraph.5 The density of a hypegraph

G ¼ ðV;EÞ is defined to be rðGÞ ¼ wðGÞ
jV j , where jV j is the car-

dinality of V .
Densest subgraph. The densest subgraph of G is a subgraph

ofGwith maximum density.

4 DEFINITION OF DENSE SUBGRAPH PARTITION

In this section, we will first define a core subgraph and a
conditional core subgraph, then define DSP.

4.1 Core Subgraph and Conditional Core Subgraph

A positive hypergraph G may have multiple densest sub-
graphs. However, only one of them has maximal number of
vertices, as proven later. We define this one to be core sub-
graph, denoted by CSðGÞ.

For two sets U � V and S � V , the conditional total weight
of a subgraph GU conditioned on a subgraph GS is defined
aswðGU jGSÞ ¼ wðGU[SÞ � wðGSÞ. If U \ S ¼ ;, thenwðGU j
GSÞ � wðGUÞ, since wðGU[SÞ � wðGUÞ þ wðGSÞ. For any
U; T; S � V , it is easy to verify the following important
relation:

wðGU jGSÞ þ wðGT jGSÞ � wðGU\T jGSÞ þ wðGU[T jGSÞ:
The conditional density of GU conditioned on GS is

defined to be rðGU jGSÞ ¼ wðGU jGSÞ
jU j . When U \ S ¼ ;, since

wðGU jGSÞ � wðGUÞ, rðGU jGSÞ � rðGUÞ.
Conditioned on a subgraph GS , there might be multiple

subgraphs whose conditional density reach maximum, such
as GV4 and GV5 in Fig. 1 (conditioned on GV1). Among these

subgraphs, only one of them has maximal number of verti-
ces, as proven later. Similar to the definition of core sub-
graph, we define this one to be conditional core subgraph,
denoted by CCSðG jGSÞ. In Fig. 1, the conditional core sub-
graph conditioned on GV1 is GV2 . Note that a core subgraph

is a special CCS, that is, CSðGÞ ¼ CCSðG j ;Þ.
For CCSs, we have the following important theorem.

Theorem 1. Conditioned on a subgraph GS, if the set of sub-
graphs whose conditional densities reach maximum is
P ¼ fGV1 ; . . . ;GVkg and the CCS is GU , then we have: 1Þ
GU 2 P, and 2Þ Vi � U for all i ¼ 1; . . . ; k.

Proof. Please see Supplement Material [which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2014.2346173].

tu
According to Theorem 1, it is clear that both core sub-

graph and CCS are unique.

4.2 Partition of a Conditional Core Subgraph

Theorem 1 also tells us that a CCS may have finer structure.
In this section, we will define a partition to uncover the
structure inside a CCS.

Definition 1. Suppose GU is the CCS conditioned on GS and
rðGU jGSÞ ¼ r	, a disjoint partition of GU divides GU into
maximal number of subgraphs, denoted by DP ðGU jGSÞ ¼
fGU1

; . . . ;GUtg, such that rðGUi
jGSÞ ¼ r	 for all i ¼ 1; . . . ;

t. This also introduces a partition of U , denoted by GðUÞ ¼
fU1; . . . ; Utg.
The disjoint partition partitions U into maximal number

of subsets such that there is no such hyperedge e: e � U [S
and e has non-empty intersections with at least two subsets.
If discarding all vertices not in U , all subgraphs are disjoint,
this is why we say that these subgraphs are pseudo-disjoint.
In Fig. 1, two examples of disjoint partition are
DPðGV2 jGV1Þ ¼ fGV4 ;GV5g and DPðGV3 jGV1[V2Þ ¼ fGV6 ;

GV7g. Note that there is no order between subgraphs in a

disjoint partition, since these subgraphs have the same con-
ditional density.

Theorem 2. The disjoint partitionDP ðGU jGSÞ is unique.
5. This is different from another popular definition of density: ratio

between the sum of weights and the number of possible hyperedges.

LIU ET AL.: DENSE SUBGRAPH PARTITION OF POSITIVE HYPERGRAPHS 543

Proof. Please see Supplement Material, available online. tu

4.3 Dense Subgraph Partition

Definition 2. The dense subgraph partition of a positive hyper-
graphG is defined as follows:

DSP ðGÞ ¼ hDP ðGV1 j ;Þ; . . . ; DP ðGVi jG[i�1
j¼1Vj
Þ;

. . . ; DP ðGVm jG[m�1
j¼1 Vj

Þi;[mi¼1Vi ¼ V;
(1)

with GV1 being the core subgraph of G and GVi (i > 1) being
the CCS conditioned on the subgraphG[i�1

j¼1Vj
.

That is, DSP includes two layers of partitions. First, G is
sequentially partitioned into a sequence of conditional core
subgraphs, hGV1 ; . . . ;GVmi. This introduces a partition of V ,

denoted by CðV Þ ¼ hV1; . . . ; Vmi. Second, each GVi is parti-

tioned into pseudo-disjoint subgraphs by the operation of
disjoint partition.

Due to the uniqueness of CCS and its disjoint partition,
DSP is unique. A notable characteristic of DSP is that there
is no parameter and the number of subgraphs is automati-
cally determined.

Theorem 3. In DSP ðGÞ; rðGVi jG[i�1
j¼1Vj
Þ strictly decreases as i

increases from 1 tom.

Proof. Please see Supplement Material, available online. tu
The conditional densities define an order over subgraphs

GVi , from large to small. Recall that all subgraphs in

DPðGVi jG[i�1
j¼1Vj
Þ have the same conditional densities.

Hence, the result of DSP is a non-increasing order of dense
subgraphs, ordered by their conditional densities.

Since subgraphs with large densities are more likely to
represent real clusters, and subgraphs with small densities
are usually formed by outliers, DSP is a powerful tool to dis-
cover meaningful clusters in massive outliers. Intuitively
speaking, it is similar to discover isles in a large ocean.
More importantly, since there is a precise and efficient algo-
rithm, these isles are guaranteed to be discovered, no matter
how huge the ocean is. This is a big advantage over many
previous methods.

According to Definition 2, an intuitive way to compute
DSP is to iteratively compute and partition every CCS.
However, iteratively computing CCSs is computationally
expensive. First, the number of CCSs, m, is usually very
large, especially for large graphs. Second, it is very time-
consuming and memory-expensive to directly compute
each CCS of a large graph. Fortunately, DSP can be com-
puted in a divide-and-conquer way. In the next section, we
will present such an algorithm, calledmin-partition evolution,
which is very efficient. In fact, on a regular PC, it can pre-
cisely partition a positive hypergraph with millions of verti-
ces and hyperedges in a few minutes.

5 MIN-PARTITION EVOLUTION ALGORITHM

In Definition 2, CðV Þ defines a partial order over V , since
there is no order between two vertices in the same subset.
Among all jV j! permutations of V , there is a subset of per-
mutations, denoted by QðGÞ, satisfying all orders in CðV Þ.
That is, for each permutation in QðGÞ, the vertices in V1 are

put front, then the vertices in V2, . . . , finally the vertices in
Vm. Since the vertices in Vi have jVij! permutations,
jQðGÞj ¼ Pm

i¼1jVij!.
Our algorithm is inspired by a simple observation: it is

very easy to compute DSPðGÞ based on a permutation in
QðGÞ. Of course, we do not know such a permutation. An
intuitive idea is to start from an initial permutation, gradually
modify it to approach a permutation in QðGÞ.

The min-partition evolution algorithm, which is summa-
rized in Algorithm 1, is exactly an implementation of this
idea.6 It consists of four major procedures,

Algorithm 1.Min-Partition Evolution

1: Input: G and an initial permutation P.
2: Apply min-partition() on P to getMPðPÞ;
3: Set V ¼ MPðPÞ, ~V ¼ ; and P̂ ¼ P;
4: repeat
5: for each R 2 MPðPÞ do
6: if R =2 ~V then
7: Apply permutation-reorder() on R to get R̂;
8: if R̂ 6¼ R then
9: Replace R by R̂ in P̂;

10: Apply min-partition() on R̂ to getMPðR̂Þ
and replace R byMPðR̂Þ in V;

11: end if
12: end if
13: end for
14: Apply min-merge() on V to getMPðP̂Þ;
15: Set ~V ¼ MPðPÞ, P ¼ P̂ andMPðPÞ ¼ MPðP̂Þ;
16: until P does not change
17: For each R 2 MPðPÞ, apply disjoint-partition() onGR.
18: Output: DSPðGÞ.

1, min-partition(): a procedure to partition a permutation P
into a sequence of sub-permutations. The result is called a
min-partition of P, denoted by MPðPÞ. This also introduces a
partition of G, with every sub-permutation in MPðPÞ induc-
ing a subgraph. Especially, when P belongs toQðGÞ, the out-
put ofmin-partition() isCðV Þ, the first layer partition of DSP.

2, min-merge(): a fast variant of min-partition(). It operates
on a partition of P to quickly get MPðPÞ by merging some
consecutive sub-permutations.

3, permutation-reorder(): the procedure to find a better per-
mutation. The input of permutation-reorder() is a sub-permu-
tation R 2 MPðPÞ and it tries to find a better permutation R̂
to replace R, which also changes P.

4, disjoint-partition(): the procedure of computing the dis-
joint partition of a CCS.

The details of these procedures will be explained later.
In each iteration (step 5 to step 15), this algorithm finds a

better P̂ to replace P. The meaning of a better permutation is
defined in Section 5.3. If there is no better permutation,
P 2 QðGÞ. Only the procedure permutation-reorder() modifies
the order of vertices and a significant characteristic of Algo-
rithm 1 is that it updates P by updating its sub-permutations
independently. Note that if a sub-permutation R 2 MPðPÞ

6. The source code is published in the following website: https://
sites.google.com/site/lhrbss/

544 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 3, MARCH 2015

also belongs to the min-partition of the previous permuta-
tion, it means that there is no better alternative for this sub-
permutation. Thus, we do not apply permutation-reorder() on
R (step 6). Although the number of vertices in Pmay be very
large, the number of vertices in each sub-permutation R is
usually small. Thus, Algorithm 1 is very efficient. Moreover,
it is very suitable for parallel processing.

5.1 min-Partition(): Min-Partition under a
Permutation

In this section, we first define the concept of reward and
mean reward, then define min-partition and present the
algorithmic details of min-partition().

5.1.1 Reward and Mean Reward

Under a permutation P of the vertex set V , the reward of a
vertex v, denoted by rPðvÞ, is defined as follows:

rPðvÞ ¼
X

e2E;v2e;e�½PF ;v�
we: (2)

Here e � R means that e is a subset of the elements in R.
Intuitively speaking, among all elements in a hyperedge
e 2 E, if v is the one whose position in P is backmost, then
the weight of e is added to the reward of v. The rewards of
all vertices in a permutation P form a vector, denoted by rP.

According to the definition of reward, we have:X
v2P

rPðvÞ ¼
X
e2E

we (3a)

X
v2R

rPðvÞ ¼ wðGR jG½PF ;RF ÞÞ: (3b)

The first equation says that the sum of rewards of all ver-
tices is a constant, which is the sum of weights of all hyper-
edges; while the second equation connects rewards to the
conditional total weights.

The mean reward of R is defined to be mðRÞ ¼P
v2R rPðvÞ= jRj. According to (3b), we have mðRÞ ¼

rðGR jG½PF ;RF ÞÞ. Therefore, mean reward corresponds to

conditional density.

5.1.2 Min-Partition

A sub-permutation R is called a min-sub-permutation
(MSP) if for any bi-partition R ¼ hR1;R2i, we have
mðR1Þ � mðR2Þ. That is, if R is a MSP, no matter how you
divide it into two parts, the mean reward of the first part
is always not larger than the mean reward of the second
part. From this definition, we can immediately get the fol-
lowing result.

Proposition 1. Suppose that R1 and R2 are two consecutive
MSPs of P, where R1 is before R2, if mðR1Þ � mðR2Þ, then
hR1;R2i is also a MSP of P.

A MSP of P is called a maximal min-sub-permutation
(MMSP) if it is not a sub-permutation of any other MSPs of
P. That is, a MMSP cannot be further extended.

Proposition 2. Two MMSPs of a permutation cannot overlap.

Based on these two propositions, we can give a defini-
tion of min-partition.

Definition 3. Amin-partition of P, denoted byMPðPÞ, is a par-
tition of P into MMSPs. That is, MP ðPÞ ¼ hPi j i ¼ 1; . . . ; si,
with each Pi being a MMSP of P.

Mathematically, P1 ¼ argmax
R2�
!

P

mðRÞ and Pi ¼
argmax

R2�
!
ðPL

i�1 ;P
L �
mðRÞ for all i ¼ 2; . . . ; s. In both cases, if

there are multiple sub-permutations whose mean rewards

reach maximum, the longest one is the right one.

Proposition 3. For a fixed G and P, min-partition MPðPÞ is
unique.

Proposition 4. If MPðPÞ ¼ hPi j i ¼ 1; . . . ; si and s > 1, then
mðP1Þ > . . . > mðPsÞ.
These two propositions are direct results of theDefinition 3.
The procedure of min-partition() is summarized in Algo-

rithm 2. It starts from the first vertex of P and iteratively
searches for MMSPs. y is the integral histogram [30] of the
reward vector rP. In each iteration, i and b store the first
and last index of current MMSP, respectively, and a stores
the maximal mean reward. It is very efficient, with time
complexity being linear in jPj.

Algorithm 2. min-partition()

1: Input: G and a permutation P ¼ ha1; . . . ; ani.
2: Compute the reward vector rP
3: Construct an integral histogram fyiji ¼ 1; . . . ; ng

with y1 ¼ rPða1Þ and yi ¼ yi�1 þ rPðaiÞ for i ¼
2; . . . ; n;

4: SetMPðPÞ ¼ ; and i ¼ 1;
5: repeat
6: Set a ¼ yi and b ¼ i;
7: for j ¼ iþ 1; . . . ; n do
8: If

yj
j�iþ1 � a, then set a ¼ yj

j�iþ1 and b ¼ j;

9: end for
10: Add hai; . . . ; abi intoMPðPÞ and set i ¼ bþ 1;
11: for j ¼ i; . . . ; n do
12: yj ¼ yj � yb.
13: end for
14: until i > n
15: Output:MPðPÞ.

Fig. 2 illustrates the process of min-partition. First,
according to rP, computing the integral histogram y. In the
first round of iteration, i is fixed to 1 and bmoves backward

to find the position where the mean reward
yj

b�iþ1 is maxi-

mal, which is 4. Thus, ha; c; d; bi is the first MMSP. In the sec-
ond round, i is fixed to 5, b move backward to 11. In the
third round, i ¼ b ¼ 12. Thus, the min-partition partitions P
into three MMSPs.

5.2 min-merge(): Fast Min-Partition

In Algorithm 1, after reordering vertices in each MMSP, we
get a new permutation P̂ and one of its partitions, V.

Although we can directly compute MPðP̂Þ using Algo-
rithm 2; based on V, there is a more efficient algorithm.

Since every sub-permutation in V is a MSP, according to
Proposition 1 and Proposition 2, we can get min-partition

MPðP̂Þ by iteratively merging consecutive MSPs in V. The

LIU ET AL.: DENSE SUBGRAPH PARTITION OF POSITIVE HYPERGRAPHS 545

algorithm, called min-merge algorithm, denoted by MMðVÞ,
is summarized in Algorithm 3.

Algorithm 3. min-merge()

1: Input: A partition V of P whose sub-permutations are
all MSPs.

2: repeat
3: Scan V to find two consecutive sub-permutations,

namely, R1 and R2, where R1 is before R2, such
thatmðR1Þ � mðR2Þ. If such a pair is found,
merge them into one sub-permutation.

4: until V does not change
5: Output: MMðVÞ.
Theorem 4. If V is a partition of P whose sub-permutations are

all MSPs, the min-merge of V is the min-partition of P, that
is,MPðPÞ ¼ MMðVÞ.

Proof. Please see Supplement Material, available online. tu
Since Algorithm 3 operates on a partition V of P and the

number of elements in V is usually much smaller than jPj,
Algorithm 3 is much more efficient than Algorithm 2, espe-
cially on large positive hypergraphs.

5.3 permutation-reorder(): Reorder Vertices within a
Maximal Min-Sub-Permutation

In Algorithm 1, the procedure permutation-reorder() is
responsible for updating P. To gradually approach a permu-
tation in QðGÞ, permutation-reorder() needs to replace R by a

better sub-permutation, R̂. In this section, we will first
define what the word “better” means in our context, then
demonstrate how to find it. Note that reordering R does not
affect the rewards of vertices not in R.

5.3.1 Reordering by Division

Definition 4. For a MMSP R, if there is a new permutation R̂ of

R such that R̂ ¼ hR̂1; R̂2i and mðR̂1Þ > mðR̂2Þ, R is said to
be divisible; otherwise, it is said to be indivisible.

In other words, for a MMSP, if no matter how to reorder
them, it cannot be divided into two parts such that the
mean reward of the first part is larger than the mean reward
of the second part, it is indivisible; otherwise it is divisible.

permutation-reorder() updates a MMSP R in the following
way: check whether R is divisible or not, if R is indivisible,

output R; otherwise, output a new permutation R̂ with

jMPðR̂Þj > 1.
The hyperedges which contribute to the rewards of verti-

ces in R form a set, denoted by ER, that is,

ER ¼ fe j e 2 E; e � ½PF ;RL�; e \ R 6¼ ;g. If R is divisible,

that is, there is a permutation R̂ ¼ hR̂1; R̂2i of R such that

mðR̂1Þ > mðR̂2Þ, we havemðR̂1Þ > mðR̂Þ ¼ mðRÞ.
Suppose R ¼ hr1; . . . ; rmi and x is an m
 1 indicator vec-

tor such that xi ¼ 1; ri 2 R̂1;
0; otherwise:

�
Then mðR̂1Þ can be

expressed as:

mðR̂1Þ ¼
P

e2ER
we

Qm
i¼1 x

dðe;riÞ
iPm

i¼1 xi
; (4)

where dðe; riÞ ¼ 1; ri 2 e;
0; otherwise:

�
Note that here we require

00 ¼ 1.
Suppose mðRÞ ¼ a, R is divisible means that there is a R̂1

satisfying mðR̂1Þ > mðRÞ ¼ a. Thus, we can judge whether
R is divisible or not by solving the following pseudo-bool-
ean optimization problem [31]:

max
x2f0;1gm

fðxÞ �
X
e2ER

we

Ym
i¼1

x
dðe;riÞ
i � a

Xm
i¼1

xi: (5)

Proposition 5. Suppose x	 is the solution of (5), then R is divisi-
ble if and only if fðx	Þ > 0.

5.3.2 Division by QPBO

In general, the pseudo-Boolean optimization problem is NP-
hard [31]; however, in our setting, fðxÞ has a special charac-
teristic: the coefficients of all its terms whose degrees are
larger than 1 are positive. Due to this characteristic, the opti-
mization problem (5) can be efficiently and precisely solved.
This explains why we only allow the weights of self-loops
to be negative in the definition of positive hypergraph.

For a high order term ax1 . . .xd; d > 2, when a > 0, there
is the following important equation[32]:

ax1 � � �xd ¼ maxw2f0;1gaw
Xd
i¼1

xi � ðd� 1Þ
()

: (6)

That is, by introducing another boolean variable w, we can
express it by binary and unary terms.

Fig. 2. The process of min-partition for the graph in Fig. 1 under the per-
mutation P. The inputs are the permutation P and corresponding reward
vector rP, the output is the min-partition MPðPÞ. Only one scan of the
reward vector rP is needed.

546 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 3, MARCH 2015

Using the Equation (6), we can transform the optimiza-
tion problem (5) into a quadratic pseduo-boolean optimiza-
tion problem maxF ðzÞ; zi 2 f0; 1g, where z contains all
variables of x and all introduced auxiliary variables. Since
each high order term in fðxÞ introduces an auxiliary vari-
able, the number of auxiliary variables is equal to the num-
ber of high order terms in fðxÞ. More importantly, the
coefficients of all binary terms in F ðzÞ are positive. Thus,
F ðzÞ is a supermodular function and the optimization prob-
lem maxF ðzÞ; zi 2 f0; 1g can be exactly solved [11]. In our
implementation, we use the QPBO algorithm [33] to solve it.

The whole procedure is summarized in Algorithm 4.
The output of Algorithm 4 is a new permutation R̂ and

its min-partition, MPðR̂Þ. If jMPðR̂Þj > 1, then R is divisi-
ble; otherwise R is indivisible.

Algorithm 4. Divide a MMSP R by QPBO

1: Input: R ¼ hr1; . . . ; rmi andG.
2: Compute ER and construct the function fðxÞ;
3: For all high order terms in fðxÞ, express them by

binary and unary terms, thus obtain a quadratic
function F ðzÞ.

4: Solve the optimization problem maxF ðzÞ; zi 2 f0; 1g
by QPBO, obtain the optimal solution z	, thus also
obtain the optimal solution x	 for the optimization
problem (5).

5: 8i ¼ 1; . . . ;m, if x	i ¼ 1, put ri into R̂1, otherwise, put

ri into R̂2.
6: Obtain a new sub-permutation R̂ ¼ hR̂1; R̂2i and com-

puteMPðR̂Þ.
7: Output: R̂ andMPðR̂Þ

5.3.3 Speedup by Heuristics

When R is large, it is computationally expensive to divide R
by QPBO. In contrast, a heuristic algorithm has a high prob-
ability to divide it, although without guarantee. Thus, we
adopt the following strategy: first try to divide R by a fast
heuristic algorithm; if it cannot divide R, then divide R by
Algorithm 4.

The heuristic algorithm should be both fast and effective.
Note that (5) can be interpreted as selecting a subset of highly
related vertices in R, with only the relations expressed by
hyperedges in ER being considered. If a vertex connects to
more hyperedges in ER, its probability to be selected should
be higher. Using this heuristic, we propose to fast divide R
by Algorithm 5, whose time complexity is linear in jERj.
Algorithm 5. Divide a MMSP R by a simple heuristic

1: Input: R andG.
2: Construct a zero array y ¼ hy1; . . . ; yjRji.
3: for each hyperedge e 2 ER do
4: For each vertex v 2 e, if v 2 R, then set

yi ¼ yi þ we, where i is the position of v in R;
5: end for
6: Sort y in descending order and arrange R

accordingly to form a new sub-permutation R̂;
7: Compute MPðR̂Þ.
8: Output: R̂ andMPðR̂Þ

permutation-reorder() integrates both Algorithm 4 and
Algorithm 5, which is summarized in Algorithm 6. It first
tries to divide R by Algorithm 5 and only when Algrithm 5
cannot divide R, Algorithm 4 is used. When R is large,
Algorithm 5 usually divides it; thus, Algorithm 4 usually
works on small Rs. Note that Algorithm 5 can be replaced
by any other heuristic algorithms, and the correctness of
Algorithm 6 is guaranteed by Algorithm 4.

Algorithm 6. permutation-reorder()

1: Input: R andG.
2: Divide R by Algorithm 5 and getMPðR̂Þ;
3: If jMPðR̂Þj ¼ 1, divide R by Algorithm 4, get a new

R̂ andMPðR̂Þ;
4: If jMPðR̂Þj ¼ 1, set R̂ ¼ R andMPðR̂Þ ¼ R;
5: Output: R̂ andMPðR̂Þ

Fig. 3 illustrates both permutation-reorder() and min-merge
(), two basic procedures in Algorithm 1. In this figure,
MPðPÞ ¼ hP1;P2;P3i. Only P2 is divisible and the permuta-

tion-reorder() procedure updates it to P̂2. The min-partition

of P̂2 isMPðP̂2Þ ¼ hK1;K2i, thus, we get V ¼ hP1;K1;K2;P3i.
In the min-merge() procedure, K2 and P3 are merged to form

a newMMSP R1, thusMPðP̂Þ ¼ MMðVÞ ¼ hP1;K1;R1i.

5.4 disjoint-partition(): Disjoint Partition of a
Conditional Core Subgraph

The algorithm to compute disjoint partition is straightfor-
ward, and it is given in Algoorithm 7. For a CCS GR condi-
tioned onGS, it first computes the set ER, which contains all
hyperedges contributing to the reward of the vertices in R,

Fig. 3. Illustration of an iteration of Alg. 1 (step 5 to step 15). First, apply

permutation-reorder() on P2 to find a better one, P̂2, and apply min-parti-

tion() on P̂2 to get MPðP̂2Þ. Replacing P2 byMPðP̂2Þ, we get a partition of

P, V ¼ hP1;K1;K2;P3i. Second, applymin-merge() on V to getMPðP̂Þ.

LIU ET AL.: DENSE SUBGRAPH PARTITION OF POSITIVE HYPERGRAPHS 547

then iterates according to the following principle: the verti-
ces of R in the same hyperedge in ER belong to the same
subgraph. This procedure is very efficient, with time com-
plexity being linear in jERj.

Algorithm 7. disjoint-partition()

1: Input: GR andGS .
2: Construct the edge set ER;
3: Set DPðGR jGSÞ ¼ û ¼ ;. Consider each vertex in R

as a set and add it into û.
4: for each e 2 ER do
5: Merge all sets in ûwhich contain vertices in e into

one set;
6: end for
7: For each vertex set U 2 û, add the subgraphGU into

DPðGR jGSÞ.
8: Output: DPðGR jGSÞ.

5.5 Convergence Analysis

In this section, we prove that Algorithm 1 converges after
finite iterations and the output is DSPðGÞ.

First, we prove the relation between min-partition and
DSP.

Theorem 5. For every P 2 QðGÞ, if MPðPÞ ¼ hP1; . . . ;Pmi,
then we have:

DSPðGÞ ¼ hDPðGPi jG½PF ;PF
i
ÞÞji ¼ 1; . . . ;mi: (7)

Proof. Please see Supplement Material, available online. tu
Theorem 5 tells us that if a permutation P 2 QðGÞ is

known, we can efficiently obtain DSPðGÞ by min-partition.
Note that only one permutation inQðGÞ is needed, although
QðGÞ contains a huge number of permutations.

Second, we define an order over min-partitions and
prove that the min-partitions of all permutations in QðGÞ
have maximum order.

From two permutations of V , P and R, we have two min-
partitions, MPðPÞ ¼ hP1; . . . ;Pm1

i and MPðRÞ ¼ hR1; . . . ;

Rm2
i. We define an order between them, with MPðPÞ >:

MPðRÞ, MPðPÞ ¼: MPðRÞ and MPðPÞ <: MPðRÞ represent
the order of MPðPÞ is larger than, equal to, and smaller than
the order ofMPðRÞ, respectively.

Let m ¼ minfm1;m2g. We compare Pi and Ri with i
increasing from 1 to m to find the smallest i such that either
1Þ mðPiÞ 6¼ mðRiÞ or 2Þ jPij 6¼ jRij. If such i exists, then we
define

MPðPÞ >: MPðRÞ; mðPiÞ > mðRiÞ;
MPðPÞ <: MPðRÞ; mðPiÞ < mðRiÞ;
MPðPÞ >: MPðRÞ; mðPiÞ ¼ mðRiÞ; jPij > jRij;
MPðPÞ <: MPðRÞ; mðPiÞ ¼ mðRiÞ; jPij < jRij:

8>><
>>:

If such i does not exist, then we defineMPPðGÞ ¼: MPRðGÞ.
It is easy to verify that when P 2 QðGÞ and R 2 QðGÞ,

MPðPÞ ¼: MPðRÞ. Moreover, we have the following impor-
tant Theorem.

Theorem 6. For two permutations, P and R, if P 2 QðGÞ and
R =2 QðGÞ, thenMPðPÞ >: MPðRÞ.

Proof. Please see Supplement Material, available online. tu
Theorem 6 tells us that if and only if P 2 QðGÞ, the order

of MPðPÞ reaches maximum. Thus, a practical strategy to
approach a permutation in QðGÞ is to iteratively modify the

current permutation P to a new permutation P̂ such that

MPðP̂Þ >: MPðPÞ, and this is exactly what Algorithm 1 does.
Third, we prove that each iteration (except the last itera-

tion) of Algorithm 1 (from step 5 to step 15) increases the
order of P.

According to Algorithm 6, only when R is divisible, we

replace R by R̂ in step 10; thus, in Algorithm 1, P and P̂ are
different if and only if some MMSPs in MMðPÞ are divisible.
When R is divisible and we replace it by R̂, we have the fol-
lowing important result.

Theorem 7. Suppose R is a MMSP of P and we replace R by R̂

(thus change P to P̂ accordingly), if jMPðR̂Þj > 1, then

MPðP̂Þ >: MPðPÞ.
Proof. Please see Supplement Material, available online. tu

Changing multiple MMSPs in P simultaneously is equiv-
alent to changing them one by one. Thus, if some MMSPs of
P are divisible, the iteration in Algorithm 1 increases the
order of P.

Fourth, we show that all permutations in QðGÞ are indi-
visible; while all permutations not in QðGÞ are divisible.
Theorem 8. For a permutation P, P 2 QðGÞ if and only if all

MMSPs inMPðPÞ are indivisible.
Proof. Please see Supplement Material, available online. tu

Theorem 8 tells us that if P =2 QðGÞ, then in the min-parti-
tion MPðPÞ, at least one MMSP is divisible. Thus, by apply-
ing permutation-reorder() on all MMSPs of P, we know
whether P 2 QðGÞ or not.

Finally, we prove that Algorithm 1 converges in finite
iterations and the output is DSPðGÞ.

According to Theorem 8, only when a permutation
P 2 QðGÞ is found, Algorithm 1 terminates. Since each itera-
tion of Algorithm 1 increases the order of P and the total
number of permutations is finite (jV j!), Algorithm 1 is
guaranteed to terminate after finite iterations and to reach a
P 2 QðGÞ. According to Theorem 5, the output is DSPðGÞ.

5.6 Complexity Analysis

In each iteration of Algorithm 1, there are two basic opera-
tions, permutation-reorder() and min-merge(). The time com-
plexity of min-merge(), that is, Algorithm 3, is at most
OðjVjÞ. In Algorithm 6, Algorithm 5 is first called, whose
time complexity is OðdjERj þ jRjlogðjRjÞÞ, where d is the
average degree of the hyperedges in ER. If Algorithm 5
does not divide R, then Algorithm 4 is called. In Algorithm
4, the main computational burden is to solve the optimiza-
tion problem maxF ðzÞ using the QPBO algorithm. Since the
number of variables in z is approximately jRj þ jERj and the
number of quadratic terms in F ðzÞ is approximately djERj,
the time complexity of Algorithm 4 is OðdjERjðjRjþ jERjÞ2ÞÞ.
In both Algorithm 5 and Algorithm 4, Algorithm 2 is called,
whose time complexity is OðjPjÞ. The time complexity
of Algorithm 7 is OðjERjÞ, that is, linear in the number of

548 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 3, MARCH 2015

hyperedges in ER. Note that Algorithm 5 can divide R most
of the time, especially when R is large. Thus, the overall
time complexity of Algorithm 1 is approximately

Oðtdneðnv þ neÞ2Þ, where t is the number of iterations in
Algorithm 1, and nv and ne are number of vertices and
hyperedges, respectively, of the dense subgraph with larg-
est size.

6 RELATION TO DENSEST k-SUBGRAPH

For a graph G, the densest k-subgraph problem (DkS) is to
find a subgraph with k vertices, whose total weight of edges
is maximum among all subgraphs of G with k vertices. This
is a fundamental but notoriously hard problem in graph
theory, generally known as NP-hard [7]. However, we will
show that for a large number of ks, DkS can be solved pre-
cisely and efficiently.

Based on DSPðGÞ, we can define an integer set, called
critical k-set.

Definition 5. When CðV Þ ¼ hV1; . . . ; Vmi, the critical k-set is
defined to be kðGÞ ¼ fkj9i 2 f1; . . . ;mg; 9U � 2GðViÞ; U 6¼ ;;
k ¼Pi�1

j¼1 jVjj þ
P

e2U jejg. Here 2S represents the power set

of S, C is the first layer partition of V in DSP and GðViÞ is the
disjoint partition of Vi.

Since all components in GðViÞ are exchangeable, for any

U � 2GðViÞ, we can rearrange GðViÞ to put all components in
U at the front, then k is the number of vertices in
fV1; . . . ; Vi�1; Ug and kðGÞ contains all such possible k.

For example, for the graph in Fig. 1, we have GðV1Þ ¼ V1,

GðV2Þ ¼ fV4; V5g and GðV3Þ ¼ fV6; V7g. Thus, 2GðV1Þ ¼ f;; V1g,
2GðV2Þ ¼ f;; V4; V5; fV4; V5gg and 2GðV3Þ ¼ f;; V6; V7; fV6; V7gg.
The critical k-set of G is kðGÞ ¼ f4; 7; 10; 11; 12g. 7 2 kðGÞ
because when i ¼ 2 and U ¼ V4 or V5, jV1j þ jV4j ¼ 7 or
jV1j þ jV5j ¼ 7.

The following theorem connects DkS and DSPðGÞ.
Theorem 9. For each k 2 kðGÞ, DSPðGÞ gives precise solution to

DkS. More specifically, if U � 2GðViÞ; U 6¼ ; and k ¼Pi�1
j¼1 jVjj þ

P
e2U jej, then GfV1;...;Vi�1;Ug is a densest k-sub-

graph ofG.

Proof. Please see Supplement Material, available online. tu
This is a strong theoretic result on DkS. It tells us that the

precise solutions of DkS for k 2 kðGÞ can be obtained effi-
ciently. Note that kðGÞ is only a subset of f1; . . . ; jV jg, thus,
for k not in kðGÞ, the exact DkS cannot be obtained by our
algorithm. Also there is not a universal k for all hypergraphs
such that their DkSs can be found. For the graph in Fig. 1,
since kðGÞ ¼ f4; 7; 10; 11; 12g, we can get: the densest four-
subgraph of G is GV1 , the densest seven-subgraph of G are

GV1[V4 and GV1[V5 , the densest 10-subgraph of G is

GV1[V4[V5 , and the densest 11-subgraph of G are

GV1[V4[V5[V6 andGV1[V4[V5[V7 . k ¼ 5 does not belong to kðGÞ;
however, we may obtain a good approximation of the dens-
est five-subgraph of G based on the densest four-subgraph
and the densest seven-subgraph ofG.

Although DSP decomposes G into many subgraphs, its
relation with DkS shows that these subgraphs can be pieced
up to form large globally optimal clusters.

7 OBJECTIVE, STRENGTHS AND LIMITATIONS

Unlike many other partition methods, DSP lacks a global
objective function, which leads to some difficulties in under-
standing its overall picture.

According to Theorem 9, the objective of DSP can be
described as follows: partition G into ordered subgraphs
hGV1 ; . . . ;GVmi such that GV1 is the densest jV1j-subgraph,
GV1[V2 is the densest jV1 [V2j-subgraph, and so on. Of

course, we cannot formulate DSP by this objective, since the
values of jV1j; . . . ; jVmj are not known before partition. How-
ever, this description gives us some insights into DSP. As
mentioned before, the sequence hV1; . . . ; Vmi defines a par-
tial order over V , then we can also describe the objective
inaccurately as follows: find a permutation of all vertices
such that the connections among the front part of the per-
mutation are as strong as possible. Different to cut-based
partition methods, the connections between different sub-
graphs in DSP are not necessarily weak, since multiple sub-
graphs may belong to the same cluster and uncover the
internal structure inside this cluster. Of course, there are
some important relations. For example, the average connec-
tion within V1 [V2 and the average connection between V2

and V1, are weaker than the average connection within V1.
A subgraph with strong connections among its vertices

usually forms a meaningful cluster, thus, DSP can be con-
sidered as a process of detecting one meaningful cluster
at multiple scales: first GV1 , then GV1[V2 ; . . . ; finally the
whole graph G. This is closely related to the one-class
problem [34]. Here the obtained meaningful cluster may
in fact contain multiple real clusters. Since vertices not in
the obtained meaningful cluster are considered to be out-
liers, DSP can also be regarded as a process of identifying
outliers at multiple scales.

A significant strength of DSP is to detect clusters and
identify outliers simultaneously, and at multiple scales.
This is in sharp contrast to existing approaches, where
clustering and outlier detection are usually separated.
The strength of DSP makes it a powerful tool to detect
meaningful clusters in a dataset with massive outliers.
Besides, DSP is precise, thus has guaranteed performance,
and it is also efficient, with the ability to partition very
large hypergraphs.

The main limitation of DSP comes from its definition of
density, which is the ratio between total weight and the
number of vertices. However, the total weight depends
on the number of hyperedges, which grows much faster
than the number of vertices on dense hypergraphs. Thus,
on dense hypergraphs, dense subgraphs tend to be very
large and therefore cannot reveal the underlying cluster
structure. Besides, DSP cannot partition a hypergraph
into a specified number of subgraphs and this is not
desirable in some applications.

8 EXPERIMENTS

All the experiments are done on a regular PC with Intel
Core 2 Quad CPU and 4GB memory. Since our implementa-
tion is single-threaded, only one CPU is used at a time. For
the initial permutation P, we compute it by applying Algo-
rithm 5 on the whole graph (without executing Step 7),
which is usually better than random permutations.

LIU ET AL.: DENSE SUBGRAPH PARTITION OF POSITIVE HYPERGRAPHS 549

8.1 Partition of Networks

In this section, we do experiments on ten networks from
Stanford Large Network Dataset Collection,7 listed in
Table 1 together with their statistics.

In the top two rows of Fig. 4, the mean rewards as func-
tions of the index of subgraphs are illustrated. Clearly, the
mean reward is non-increasing. In the bottom two rows,
x-axis is the size of subgraphs, and y-axis is the number of
subgraphs whose sizes are in a range centered at corre-
sponding x.8 This figure reveals some interesting phenome-
non. First, the figures of similar networks are similar. For
example, two Internet peer-to-peer networks (p2p-Gnu-
tella30 and p2p-Gnutella31), two communication networks
(email-Enron and email-EnAll) and two Web graphs (web-
BerkStan and web-Stanford), have very similar curves.
Second, five graphs, namely, email-Enron, email-EnAll, p2p-
Gnutella30, p2p-Gnutella31 and soc-Epinions1, are composed
by a few large dense subgraphs, together with many scat-
tered nodes; the other five graphs are composed by dense
subgraphs of various sizes.

As discussed in Section 6, DSP yields precise solution
to DkS for all k 2 kðGÞ. Four statistics of DSP results on
these ten networks are listed in Table 2, namely, the num-
ber of components jDSPðGÞj, the size of critical k-set

jkðGÞj, the ratio jkðGÞjjV j and the time used for partition. Note

that in the process of computing kðGÞ, for each GðViÞ, we
need to enumerate all possible sizes of the subsets of

2GðViÞ. When jGðViÞj is large, this is very time consuming.
Therefore, when jGðViÞj is large, we only sample a few

subsets of 2GðViÞ to compute a subset of ks, thus the
obtained kðGÞ is only a subset of real kðGÞ. This is why in

the two columns corresponding to jkðGÞj and jkðGÞj
jV j , we

add � to all values.
From both Tables 1 and 2, we have the following

observations. First, DSP is very efficient. For all graphs
whose number of edges is below one million, the comput-
ing time is less than 10 seconds; for graphs with millions
of edges, the time is only a few minutes. Second, DSP
decomposes graphs into many small components. How-
ever, based on these small components, we can piece up
large dense clusters, such as precise densest k-subgraph
for large ks in the critical k-set. Third, the size of critical
k-set is very large, compared with the number of vertices.
In fact, critical k-set is a dense sampling of the set
f1; . . . ; jV jg. On some graphs, such as email-EuAll and soc-

Epinions1, the ratio jkðGÞj
jV j is even larger than 90 percent.

The large value of jkðGÞjjV j means that our result in Section 6

is really useful in practical applications: for a specified k,
it has a large probability to belong to kðGÞ.

We compare DSP with two other efficient methods,
namely, Feige’s method [7] and truncated power method
(TP) [35]. The source codes of these two methods were
obtained from web.9 Both of them are heuristic-based meth-
ods, Feige’s method relies on the degrees of vertices and
truncated power method utilizes the power iteration. The
truncated power method is the state-of-the-art method to
solve DkS.

For each graph, we select ten ks in its kðGÞ, and then
compute DkSs by all three methods. The “goodness” of a
subgraph is measured by its total weight, which is defined
as the sum of the weights of all edges in this subgraph.
Fig. 5 shows the total weight of detected dense subgraphs
versus the cardinality k. Our approach consistently

Fig. 4. Illustrations of the statistics of subgraphs obtained by DSP.

7. http://snap.stanford.edu/data/
8. y-axis is in log space, and to show the value 1 whose logarithm is

0, after logarithm, we add 1 to all y-values. 9. https://sites.google.com/site/xtyuan1980

550 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 3, MARCH 2015

outperforms other two methods on all graphs, since our
method gives precise DkS. Truncated power method per-
forms better than Feige’s method on most of graphs,
except for web-BerkStan.

8.2 Cluster Enumeration on Affinity Graphs

In this section, we conduct experiment on the UCI Hand-
written Digits Data Set. In this dataset, there are 5; 620
instances of 10 digits. Every instance is encoded in a
64-dimensional vector, with each dimension being the num-
ber of “on” pixels in a 4
 4 patch. That is, the value of each
dimension being an integer value in f0; . . . ; 16g. We ran-
domly generate 4;380 outliers, each dimension of which fol-
lows the same distribution as digits. Thus, we get a dataset
with 10;000 instances in total.

From this dataset, we construct an affinity graphG as fol-
lows: each instance forms a vertex, and the weight of the
edge between the instance si and sj is defined to be

wðsi; sjÞ ¼ expð� d2ðsi;sjÞ
202
Þ, where dðsi; sjÞ is the Euclidean dis-

tance between si and sj. Our goal is to automatically dis-
cover all significant dense subgraphs in G, that is, all
significant modes of this dataset [23], [24].

First, we consider all ten clusters as a large cluster,
the “digit” cluster, and illustrate the performance of our
method in separating inliers and outliers. Based on a

permutation P 2 QðGÞ, we plot a Precision-Recall curve,
which is demonstrated in Fig. 6a, and also illustrate the label
distribution along this permutation, which is demonstrated
in Fig. 6b. From Fig. 6a, we found that DSP preforms excel-
lently in separating inliers and outliers; while from Fig. 6b,
we found that DSP clearly reveals all 10 meaningful clus-
ters. Here we emphasize that these two tasks are done
simultaneously.

Second, we compare with four methods, spectral cluster-
ing (SC) [36], power iteration clustering (PIC)[37], dominant
set (DS) [26] and graph shift (GS) [23], [24]. SC and PIC are
partition methods; while DS and GS are methods to detect
clique-like clusters. Both SC and PIC require the number of
clusters as input, and we use three values, 11, 20 and 40. For
DS, as suggested in [26], we iteratively detect dense clusters.
To measure the performance of a method, we utilized two
novel measures, �r-Precision and �r-Recall, which are
defined as follows: for each class, in the detected clusters,
find the compositive cluster with highest F-measure and
consisting of no more than r original clusters; the average
precision and recall of such compositive clusters for all clas-
ses is the �r-Precision and �r-Recall, respectively. Clearly,
�1-Precision and �1-Recall means that for each class, we only
select one detected cluster. In the ideal case, this cluster
should be identical to that class. However, some classes
may have internal structure and thus been divided into

Fig. 5. The results of DkS on 10 webgraphs. Feige’s method is shown in green dotted curve, the truncated power method is shown in blue dashdot
curve, and our method is shown in red solid curve. This figure is best viewed in color.

TABLE 2
Statistics of DSP on 10 Networks

Graph jDSPðGÞj jkðGÞj jkðGÞj
jV j Time(s)

ca-HepTh 4;671 �6;475 �65:6% 0:2267
email-Enron 24;366 �28;566 �77:9% 2:0768
email-EuAll 237;337 �239;642 �90:4% 4:0250
p2p-Gnutella30 25;320 �26;489 �72:2% 0:5408
p2p-Gnutella31 43;889 �45;940 �73:4% 1:6561
roadNet-PA 219;264 �279;685 �25:7% 48:6139
soc-Epinions1 63;021 �69;662 �91:8% 5:4625
web-BerkStan 241;972 �306;580 �44:7% 153:6173
web-Stanford 85;040 �108;710 �38:6% 52:1276
amazon0505 99;810 �122;226 �29:8% 73:4478

TABLE 1
The Statistics of 10 Networks Used in Our Experiments

Graph Type Vertices(jV j) Arcs(jEj)
ca-HepTh Undirected 9,877 51,971
email-Enron Undirected 36,692 367,662
email-EuAll Directed 265,214 420,045
p2p-Gnutella30 Directed 36,682 88,328
p2p-Gnutella31 Directed 62,586 147,892
roadNet-PA Undirected 1,088,092 3,083,796
soc-Epinions1 Directed 75,879 508,837
web-BerkStan Directed 685,230 7,600,595
web-Stanford Directed 281,903 2,312,497
amazon0505 Directed 410,236 3,356,824

LIU ET AL.: DENSE SUBGRAPH PARTITION OF POSITIVE HYPERGRAPHS 551

multiple clusters, and these clusters can be easily merged
into a large cluster by post-processing. In such case, the
�r-Precision and �r-Recall with r > 1 may better measure
the performances. Of course, r should not be too large since
this adds difficulties in merging small clusters into large
clusters. The results of all four methods are shown in
Table 3, where the measures under r ¼ 1 and r ¼ 10 are
reported. Our method successfully discovers all ten clusters,
which can be seen from its high �1-Precision and good
�1-Recall. Since both DS and GS detect clique-like clusters,
they only extract a very small subset of each real cluster,
thus have high �1-Precisions but low �1-Recalls. Their
�10-Precisions are still high and their �10-Recalls are much
better. This is a real cluster has been divided into several
sub-clusters. Both SC and PIC divide the whole graph into
the specified number of subgraphs. As expected, their
�1-Precisions improve as the number of classes increases,
since more classes can be used to accommodate the outliers,
but their �1-Recalls go down. Note that their �1-Precisions
are very low when k ¼ 11, which is the actual number of
classes (ten true clusters plus outlier cluster). Strictly speak-

ing, only our method has the ability to correctly detect all
ten clusters. The other methods either divide a real cluster
into too many sub-clusters (DS, GS) or inherently do not
identify outliers (SC, PIC). As for the time complexity, PIC
is the fastest, then our method, both of them are mush faster
than the other three methods.

8.3 Image Matching via Hypergraphs

In recent years, hypergraph based matching methods
become popular, due to their flexility and good performance
[23], [28], [38], [39], [40]. However, constructing hypergraph
is a severe computational burden, since the number of hyper-
edges is usually huge. In an image, an object only occupies a
local region, thus, we can construct the hypergraph locally to
greatly reduce the number of hyperedges.

In the first column of Fig. 7, there are two images with
logos of multiple credit cards. Our task is to discover all pos-
sible matchings between them. By finding similar SIFT inter-
est points in two images [41], 3;532 correspondences are
detected, among them only 193 correspondences are correct.
In this experiment, we only consider similarity transforma-
tions. Thus, the order of a hyperedge is 3, and the total num-

ber of hyperedges is then 3532
3

� �
, a huge number. To reduce

the number of hyperedges, we construct the hypergraph in
the following way: for three correspondences ðp1; q1Þ, ðp2; q2Þ
and ðp3; q3Þ, where pi is a point in the first image and qi is its
corresponding point in the second image, only when
dðpi; pjÞ < 40 for all i; j 2 f1; 2; 3g, we add a hyperedge
formed by these three correspondences, where dðpi; pjÞ is the
Euclidean distance in pixels between the point pi and pj, and
the weight of this hyperedge is computed using the method
in [39]. The obtained hypergraph has only 17;544 hyper-

edges, which is very small compared to 3532
3

� �
. Obviously, a

TABLE 3
Result of Cluster Detection on Handwritten Dataset

Method SC PIC DS GS DSP

11 20 40 11 20 40

�1-Precision (%) 52:89 75:18 90:15 74:56 83:37 82:06 100 100 94:38
�1-Recall (%) 95:83 83:73 79:14 84:32 75:59 78:68 6:17 8:23 78:26
�10-Precision (%) 52:88 72:82 88:30 71:75 81:10 81:15 99:9 99:91 92:77
�10-Recall (%) 97:68 91:73 91:36 89:94 88:44 91:12 40:26 24:17 89:13
Time (s) 1500:9 1504:4 1495 0:8857 3:0570 1:4311 358:6 263:2 20:76

Fig. 6. (a) The Precision-Recall curve from a P 2 QðGÞ, (b) the label dis-
tribution along P, where the label 11 representing outliers.

Fig. 7. The experimental results of image matching. The first column shows two images to be matched, there is a one-to-one matching (American
Express), a one-to-two matching (MasterCard) and a two-to-one matching (Visa). The second, third, fourth, fifth and sixth column show the matching
results of DSP, CG, TM, HGM and RRWHM, respectively. Green dots are interest points, lines represent correspondences. CG and our method can
distinguish different matchings, therefore their correspondences in different matchings are shown in different colors; TM, HGM and RRWHM only
detect correct correspondences, thus there correspondences are only shown in blue color.

552 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 3, MARCH 2015

correct matching should form a dense subgraph, and we can
find all matchings by enumerating all dense subgraphs.

We compare our method with five other methods,
namely, hMETIS [42], clustering game (CG) [28], tensor
matching (TM) [39], hypergraph matching (HGM) [38] and
re-weighted random walk hypergraph matching (RRWHM)
[40]. hMETIS divides a hypergraph into a specified number
of parts. CG is a generalization of the dominant set method to
hypergraphs and it can only detect clique-like clusters. TM,
HGM and RRWHM are matching methods, with the assum-
pution that each point in the first image has only one corre-
spondence in the second image. The results are shown in
Fig. 7 and Table 4. Note that the shape of each real cluster is
complex, since the hypergraph has been constructed locally.
From Fig. 7, we find that our method correctly detect all
matchings; while CG method detects many small clique-like
clusters. TM performs well, however, its matchings of Visa
andMasterCard only consists of a part of correct correspond-
ences. Both HGM and RRWHM perform badly, especially
RRWHM, which only finds one matching. For hMETIS,
according to Table 4, when k ¼ 6, the performance is very
bad. This is because its goal is to minimize the cuts, which is
dramatically affected by outliers. Only when k is very large,
such as 1;000, some clusters indicate real matchings, at the
cost of a real matching is divided intomultiple clusters.

9 CONCLUSION

In this paper, DSP is proposed, along with an efficient algo-
rithm to compute it. DSP partitions a positive hypergraph
into many dense subgraphs, thus reveals the cluster struc-
ture underlying the hypergraph in a bottom-up way, and at
the same time, correctly identifies outliers. DSP is very use-
ful, both in theory and in practical applications. Due to pro-
posed efficient divide-and-conquer algorithm, DSP scales
very well so that large hypergraphs can be precisely and
quickly partitioned.

ACKNOWLEDGMENTS

This work was in part supported by National Science Foun-
dation (NSF) under Grants OIA-1027897 and IIS-1302164,
and also partially supported by Singapore Ministry of Edu-
cation under research Grant MOE2010-T2-1-087.

REFERENCES

[1] P. Fj€allstr€om, “Algorithms for graph partitioning: A survey,” Com-
put. Inf. Sci., vol. 3, no. 10, pp. 143–179, 1998.

[2] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: Application in vlsi domain,” in Proc.
34th Annu. Des. Autom. Conf., 1997, pp. 526–529.

[3] K. Andreev and H. Racke, “Balanced graph partitioning,” Theory
Comput. Syst., vol. 39, no. 6, pp. 929–939, Aug. 2006.

[4] M. Newman, “Modularity and community structure in
networks,” Proc. Nat. Acad. Sci., vol. 103, no. 23, pp. 8577–8582,
2006.

[5] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905,
Aug. 2000.

[6] S. Khuller and B. Saha, “On finding dense subgraphs,” in Proc.
Automata Languages Program., 2009, pp. 597–608.

[7] U. Feige, G. Kortsarz, and D. Peleg, “The dense k-subgraph prob-
lem,” Algorithmica, vol. 29, pp. 410–421, 2001.

[8] B. Kernighan and S. Lin, “An efficient heuristic procedure for par-
titioning graphs,” Bell Syst. Tech. J., vol. 49, pp. 291–307, 1970.

[9] D.-H. Huang and A. B. Kahng, “When clusters meet partitions:
New density-based methods for circuit decomposition,” in Proc.
Eur. Conf. Des. Test, 1995, pp. 60–64.

[10] I. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means: spectral clus-
tering and normalized cuts,” in Proc. ACM Int. Conf. Knowl. Discov.
Data Min., 2004, pp. 551–556.

[11] V. Kolmogorov and R. Zabin, “What energy functions can be min-
imized via graph cuts?” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 26, no. 2, pp. 147–159, Jun. 2004.

[12] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Mineola, NY, USA: Dover, 1998.

[13] J. H. Kappes, M. Speth, B. Andres, G. Reinelt, and C. Schn,
“Globally optimal image partitioning by multicuts,” in Proc.
Energy Minim. Methods Comput. Vis. Pattern Recognit., 2011, pp. 31–
44.

[14] C. Fiduccia and R. Mattheyses, “A linear-time heuristic for
improving network partitions,” in Proc. 19th Conf. Des. Autom.,
1982, pp. 175–181.

[15] D. Zhou, J. Huang, and B. Sch€olkopf, “Learning with hyper-
graphs: Clustering, classification, and embedding,” in Proc. Adv.
Neural Inf. Process. Syst., 2006, pp. 1601–1608.

[16] J. Rodr�ıguez, “Laplacian eigenvalues and partition problems in
hypergraphs,” Appl. Math. Letters, vol. 22, no. 6, pp. 916–921, 2009.

[17] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM J. Sci. Comput.,
vol. 20, no. 1, pp. 359–392, 1998.

[18] N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,”
Mach. Learn., no. 1-3, vol. 56, pp. 89–113, 2004.

[19] D. Emanuel and A. Fiat, “Correlation clustering–minimizing dis-
agreements on arbitrary weighted graphs,” in Proc. 11th Annu.
Eur. Symp. Algorithms, 2003, pp. 208–220.

[20] S. Kim, S. Nowozin, P. Kohli, and C. D. Yoo, “Higher-order corre-
lation clustering for image segmentation,” in Proc. Adv. Neural Inf.
Process. Syst., 2011, pp. 1530–1538.

[21] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based
image segmentation,” Int. J. Comput. Vis., vol. 59, no. 2, pp. 167–
181, 2004.

[22] D. Gibson, R. Kumar, and A. Tomkins, “Discovering large dense
subgraphs in massive graphs,” in Proc. Int. Conf. Very Large Data
Bases, 2005, pp. 721–732.

[23] H. Liu and S. Yan, “Robust graph mode seeking by graph shift,”
in Proc. Int. Conf. Mach. Learn., 2010, pp. 671–678.

[24] H. Liu, L. Latecki, and S. Yan, “Fast detection of dense subgraph
with iterative shrinking and expansion,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, no. 9, pp. 2131–2142, 2013.

[25] J. Chen and Y. Saad, “Dense subgraph extraction with application
to community detection,” IEEE Trans. Knowl. Data Eng., vol. 24,
no. 7, pp. 1216–1230, Jul. 2012.

[26] M. Pavan and M. Pelillo, “Dominant sets and pairwise
clustering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1,
pp. 167–172, Jan. 2007.

[27] A. Goldberg, Finding a Maximum Density Subgraph, University of
California Berkeley, CA, 1984.

[28] S. R. Bul€o and M. Pelillo, “A game-theoretic approach to hyper-
graph clustering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35,
no. 6, pp. 1312–1327, Apr. 2013.

[29] B. Saha, A. Hoch, S. Khuller, L. Raschid, and X.-N. Zhang, “Dense
subgraphs with restrictions and applications to gene annotation
graphs,” in Proc. Res. Comput. Mol. Biol., 2010, pp. 456–472.

[30] F. Porikli, “Integral histogram: A fast way to extract histograms in
cartesian spaces,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2005, vol. 1, pp. 829–836.

TABLE 4
Performances in the Image Matching Experiments

Method hMETIS CG DSP

6 20 100 1000

�1-Precision(%) 6:81 22:93 51:54 95:56 100 100
�1-Recall(%) 100 99:78 83:16 29:47 33:09 68:27

�10-Precision(%) 6:81 22:93 48:72 93:84 100 100
�10-Recall(%) 100 99:78 90:12 97:49 95:44 96:17

Time(s) 2:836 5:527 8:373 11:582 419:06 0:3367

LIU ET AL.: DENSE SUBGRAPH PARTITION OF POSITIVE HYPERGRAPHS 553

[31] P. Hammer, P. Hansen, and B. Simeone, “Roof duality, comple-
mentation and persistency in quadratic 0–1 optimization,” Math.
Program., vol. 28, no. 2, pp. 121–155, 1984.

[32] H. Ishikawa, “Transformation of general binary mrf minimization
to the first-order case,” IEEE Trans. Pattern Anal. Mach. Intel., vol.
33, no. 6, pp. 1234–1249, Apr. 2011.

[33] E. Boros, P. Hammer, and X. Sun, “Network flows and
minimization of quadratic pseudo-boolean functions,” Tech.
Rep. RRR 17-1991, 1991.

[34] L. M. Manevitz and M. Yousef, “One-class svms for document
classification,” J. Mach. Learn. Res., vol. 2, pp. 139–154, 2002.

[35] X. Yuan and T. Zhang, “Truncated power method for sparse
eigenvalue problems,” J. Mach. Learn. Res., vol. 14, pp. 899–925,
2013.

[36] A. Y. Ng, M. I. Jordan, Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” Adv. Neural Inf. Process. Syst., vol. 2, pp. 849–
856, 2002.

[37] F. Lin and W. W. Cohen, “Power iteration clustering,” in Proc. Int.
Conf. Mach. Learn., vol. 10, 2010, pp. 655–662.

[38] R. Zass and A. Shashua, “Probabilistic graph and hypergraph
matching,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2008,
pp. 1–8.

[39] O. Duchenne, F. Bach, I.-S. Kweon, and J. Ponce, “A tensor-based
algorithm for high-order graph matching,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 33, no. 12, pp. 2383–2395, Dec. 2011.

[40] J. Lee, M. Cho, and K. M. Lee, “Hypergraph matching via
reweighted random walks,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recogn., 2011, pp. 1633–1640.

[41] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[42] G. Karypis and V. Kumar, “hmetis: A hypergraph partitioning
package, version 1.5. 3,” 1998.

Hairong Liu is currently a postdoctoral research
associate in Purdue University. His current
research interests include computer vision and
machine learning, focusing on matching and
graph analysis. He received the Best Paper
Award from The International Conference on
Multimedia and Expo in 2010, and he is the
reviewer of the Computer Vision and Pattern
Recognition, International Conference on Com-
puter Vision, IEEE Transactions on Neural
Networks and Learning Systems, IEEE Transac-

tions on Image Processing, IEEE Transactions on Circuits and Systems
for Video Technology and IEEE Transactions on Pattern Analysis and
Machine Intelligence journals.

Longin Jan Latecki is currently a professor at
Temple University. His current research interests
include computer vision and pattern recognition.
He has published 200 research papers and
books. He is an editorial board member of Pattern
Recognition and International Journal of Mathe-
matical Imaging. He received the annual Pattern
Recognition Society Award together with Azriel
Rosenfeld for the best article published in the
journal Pattern Recognition in 1998.

Shuicheng Yan is currently an associate profes-
sor at National University of Singapore. His cur-
rent research areas include computer vision,
multimedia and machine learning, and he has
authored or co-authored over 200 technical
papers. He is an associate editor of the IEEE
Transactions on Circuits and Systems for Video
Technology. He received the Best Paper Awards
from ACM Multimedia Conference in 2010 and
the The International Congress on Mathematical
Education in 2010, the prize winner of the classifi-

cation task in the The PASCAL Visual Object Classes Conference (PAS-
CAL VOC) in 2010, the honorable mention award of the detection task in
PASCAL VOC’10, and the 2010 IEEE Transactions on Circuits and Sys-
tems for Video Technology Best Associate Editor Award.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

554 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 3, MARCH 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

