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Abs t rac t .  One of the important problems related to image analysis and 
compression is finding repeated structure. Although the focus of this pa- 
per is developing digital geometric models and methods for finding regular 
structure in digital document images, the applicability of the digital geo- 
metric approach is also demonstrated on images taken under orthographic 
and perspective projection. First, a fast linear-time algorithm is given to 
compute the static threshold that minimizes the non-welt-composedness or 
weak connectivity of the document image. Next, a new digital similarity 
measure is introduced that outperforms the standard similarity measures, 
including the Hansdorff distance, with respect to determining if two dis- 
crete objects in the image are digitizations of the same prototype. This 
measure is then used in a model-based compression algorithm, and a vari- 
ation of the algorithm is developed for finding structure in images taken 
under affine and perspective transformations. 

1 I n t r o d u c t i o n  

In previous work [3] [4] [8], the authors have focused on mathematically modeling 
the digitization process and on developing digitization rules and related algorithms 
that  guarantee that  a digitization is topology preserving. In this paper, we focus 
more on the application side, demonstrating how discrete spatial models and re- 
lated digital similarity measures can be used in model-based compression of digital 
documents. Part  of this paper focuses on the need for correct digital similarity 
measures. In particular, we will focus on the Hausdorff distance and its variations. 
There has been considerable important  research on the ttausdorff distance [5] [10]. 
In this paper, however, we will focus on the relationship between the Hausdorff 
distance and the digitization process. It is shown that  the Hausdorff distance is 
interesting exactly because it is closer to a digital similarity measure than the 
standard measures such as Hamming distance, weighted Hamming distance [1t], 
residual entropy [6], and template distance [7]. 

The paper is structured as follows: First, a fast topology-preserving threshold- 
ing algorithm is presented. Next, we derive a new Hausdorff-based digital simi- 
laxity measure and demonstrate its effectiveness with respect to document image 
compression. This measure is compared to the standard bidirectional Hausdorff 
distance used in document image analysis. Finally, a variation on the algorithm 
for finding repeated image structure is shown to be applicable to images taken 
under orthographic and perspective projection. 

2 C o m p u t i n g  a T o p o l o g y  P r e s e r v i n g  T h r e s h o l d  

In previous work [2], the authors considered under what conditions a digital image 
is topology preserving. It was proven that  for any r p a r a l l e l  r e g u l a r  set, i.e., 
any set that  supports an inner and outer osculating ball of radius r at every 
point on its boundary (see [8]), a digitization resolution of r for the diameter 
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of a grid square always guarantees that  topology is preserved under monotonic 
digitization and that  the resulting discrete set is well-composed, i.e., it has no 
checkerboard patterns. Well-composed sets have many desirable properties that  
make them particularly amenable to image processing algorithms, see [9]. It was 
shown in [2] that  selecting a gray-level threshold that minimized the number of 
checkerboard neighborhoods also seemed to approximately minimize the sum of 
false topological connections and disconnections. This threshold also gave us very 
high recognition rates when applying subsequent OCR (using Omni-Page) to the 
thresholded binary document. 

We now present an efficient algorithm for computing the threshold that  mini- 
mizes the non-well-composedness of a gray-level image: 

Starting at the top of the gray-level image, every 2 x 2 neighborhood is visited. 
For each such neighborhood, we consider the gray-level values for the 2 pairs of 
diagonal points al, a2 and bl, b2. Let amin : min(al, as), amax : max(al,  as), and 
similarly for brain and bma=. Next, we consider the two closed intervals [amin, ama,] 
and [brain, bmax]. If these two intervals intersect, then no threshold will cause this 
local 2 x 2 neighborhood to become non-well-composed and we need not consider 
it further. If, however, the two intervals are disjoint then assume, without loss of 
generality, that  a,~a= < b,~i,. Assume further that  when the threshold is set to 
some value t, 0 < t < 255, that all pixels with gray-level values < t are set to 
0 (black), while all pixels with g~ay.level > t are set to 255 (whi~e). As we tra- 
verse the 2 x 2 neighborhoods of the image, two arrays plus chk~ and minus_chk~ 
are maintained. These, respectively, keep track of the number of checked neigh- 
borhoods that  are added or subtracted at each gray-level value. For each neigh- 
borhood with disjoint intervals, we increment the two arrays: ++plus_chk[a,~a=], 
++minus_chk[bmi,@ After the entire image has been traversed, these two arrays 
are used to compute the values for a' third array chk D. Initially, all the values in 
chk~ are set to zero. Then we compute the values of chk~ iteratively: chk[-1] = 0; 
chk[i]=chk[i-  1]+ptus_chk[i]-minus_chk[i]. 

The threshold value selected using this algorithm is appealing for several rea- 
sons. One important reason is that  the algorithm minimizing the weak connectivity 
of the document consistently yields a value very close to the threshold value that  
minimizes the number of models required to match the connected components us- 
ing the Hausdorff distance metric or a variation introduced in the next section. 

3 Digitization Invariant Similarity Measures 

In symbolic compression and model-based image coding [1] [11], there is a need 
for both fast and accurate techniques for comparing the similarity of two discrete 
planar shapes. A review of several of the similarity measures frequently used is 
given in [1] and includes the Hamming distance, the weighted Hamming distance, 
sum of weighted AND-NOTs, residual entropy, and degradation probability. These 
measures do not model the digitization process and are not invariant with respect 
to digitization. As a result, the problem of finding the correct number of models 
or prototypes is often considered a clustering problem, and it is accepted that  a 
certain degree of mislabeling will occur. This mislabeling of connected components 
necessitates a correction phase, which takes the form of a residual map. This 
residual, map ensures that the compression is lossless but is very expensive. As 
sensors improve, it is very desirable to put this model matching process into a more 
rigorous mathematical framework and discard the need for a corrective residual 
map. This is also desirable from the perspective of constructing an image compiler 
that  converts a digital document back into MS Word or IgTEX format since a 
residual map is really not applicable in this context. 

First, we define the Hausdorff distance and its relationship to monotonic topology- 
preserving digitization. The Hausdorff distance between two sets A and B is defined 
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a s  

H(A, B) = max(h(A, B), h(B, A)), where 

h(A, B) = sup inf lib - all , 
aEA bEB 

and I1" It is some norm. 

In [8], we proved the following theorem: 

T h e o r e m  1 Let A be a par(r)-regular set. Then A and Dig(A,r) are homotopy 
equivalent fox every digitization Dig(A, r), and H(A, Dig(A, r)) ~ r, where H is 
the Hausdorff distance. 

Using Theorem 1, we have H(A, Dig(A, r)) ~ 1, where the diameter of a grid 
square is presumed equal to 1. Moreover, since H is a distance metric satisfying the 
transitivity property, then for any two digitizations Dig 1 (A, r) and Dig 2 (A, r) we 
have the constraint H(Digl(A, r), Dig2(A, r)) < 2. We have used this constraint 
effectively to find supersets of a given connected component (i.e., digital instance of 
a model), where the superset consists of all the connected components on the doc- 
ument that  could conceivably be digitizations of the same underlying prototype. 
An example of this is shown in Fig 1.c, where all the letter "b ' s  are detected using 
tlausdorff distance 2, in addition to some extraneous letters. The "b"s that  are 
undetected are either connected to adjacent letters or are substantially corrupted 
by noise. In all the examples that  we considered, this constraint was always suc- 
cessful at finding a superset that  included all unperturbed homeomorphic digital 
instances of the underlying model ccrresponding to a given connected component. 
Thus, the Hausdorff distance is useful as a necessary condition for two instances 
to belong to the same prototype. 

On the other hand, using the Hausdorff distance as a sufficient condition for 
class membership does not work effectively nor does it correctly model the digiti- 
zation process. As an example, consider the digital document shown in Fig 1.d. In 
this case, a ttausdorff distance of 1 was used as a criterion for grouping connected 
components together, where the model selected was an instance of the letter %'. 
As can be seen, this criterion is neither necessary nor sufficient. Some of the "b" 
instances are missing while other extraneous components have been included. In- 
stead, we introduce a new variation of the Hausdorff distance that corresponds 
more closely to the digitization process and, in the many documents we consid- 
ered, admit ted no false positive matches. As a result, there may be some degree 
of model fragmentation but  there is no need for maintaining a residual map. 

Define Qx, QH,  QIII, QIV to be the closed first, second, third and forth quad- 
rants of R 2. For example, 

Qr = {(x, y) n 2 Ix ___ 0 and y > 0}. 

Then we can define the first quadrant directional Hausdorff di;~tance between two 
sets in R ~ as follows: 

hi(A, B) = max min l ib -  all, (1) 
aEA beB 

b-aEQr 

and similarly for other quadrants. 

Next we define 

Hij(A, B) = max(hi(A, B), hj(B, A)), 

where i, j are quadrant numbers and li - Jl = 2. 
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Finally, the quadrant bidirectional ttausdorff is defined as 

HQ(A, B) = rain{ HLxH(A, B), HH~j(A, B), 
HxI,Iv(A, B), HIv, H(A, B) }. (2) 

This measure is a distance similarity measure that  models the fact that,  at the 
very least, a model and its digitization can vary by a quadrant ttausdorff distance 
equal to 1. To see this, consider the fact that even i ra  connected component A was 
arbitrarily close to the original model, another digitization of this "model" could 
have its centroid vary by a translation of up to 1 grid square diameter. Thus, 
any digitization resolution where HQ(A = Dig(M1, r), B = Dig(M2, r)) < t, for 
distinct models M1 and/142, cannotbe  model preserving. Assuming we orq-ginally 
had a model-preserving digitization, HQ(A, B) _< 1 can be used effectively as a 
sufficient condition for two instances A and B to belong to the same model class. 

An example is shown in Fig 2.a, where the initial "model" was an instance of 
the letter "b". Grouping based on this sufficient condition, no mismatches occur al- 
though some instances are missed. This matching algorithm can be improved upon 
by iterating the matching algorithm on the recomputed model. As shown in the ex- 
ample, initially a single instance of the letter "b" was taken to be the model. After 
the first iteration, additional "b" connected components were matched, as shown 
in Fig 2.a. Once these instances of the model are found, the model is recomputed 
using the dilated binary connected components as masks onto the corresponding 
gray-level components. This process is repeated until convergence of the model. In 
the example shown, the final set of matched "b" connected components is shown 
in Fig 2.b, and the final reconstructed gray-level model is shown in Fig 2.c. The 
threshotded version of the reconstructed image, as shown in Fig 2.d, is closer to 
a monotonic digitization than the thresholded original image shown in Fig 1.b, as 
evidenced by the fact that linear segments remain digitally linear (see [4]). The 
converged set of gray-level models is shown in Fig 2.e. 

4 Discrete Sets of Discrete Spatial Objects 

Consider once again the document image shown in Fig 1.a. In the algorithm given 
in the previous section, the model evolved by starting with a single connected 
component. Every other connected component that  matched this initial model with 
quadrant ttausdorff < 1 was added to the list. After all the connected components 
that  could be matched were added to the list, the model was recomputed by 
averaging all the matched connected components and rethresholding. This process 
was iterated until no new matches were found. Using the quadrant Hausdorff 
as a sufficient condition for two instances to belong to the same object class, 
we can alternatively keep the evolving model as the set of instances that  have 
been matched so far. Instead of "learning" more about the model by averaging 
the instances together, we take their union as the representation of the current 
underlying model that is evolving. Every new instance of the model that is added 
to the set must eventually be expanded so that  every connected component that  
it matches in a quadrant Hausdorff sense is also added to the set. This process 
continues until convergence. For the document shown in Fig 1.a, this algorithm 
generated the reconstructed document image shown in Fig 3.a. 

This method of representing the model as a discrete set of discrete spatial 
objects is also very useful in finding patterns in images and can be used as part 
of an ~ image search engine to classify images based on symmetric structure. Con- 
sider the window tiles shown in Fig 3.b. These tiles are not all scaled versions of 
each other since the image was taken under perspective projection. Rather than 
solve for the transformation parameters, the algorithm simply uses a version of 
the rank quadrant ttausdorff distance to compare connected components to each 
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other. When the algorithm finally converges, nearly all of the window instances are 
recognized. For the  flag image shown in Fig 3.% the tesselating elements we want 
to match (i.e. i ~the stars) are mapped onto a non-planar surface under perspective 
projection. The algorithm described recognized almost all the stars, as shown in 
Fig 3.c. For the tire tread, the tread elements are mapped to an approximately 
cylindrical surface and have considerable variation. Nevertheless, the tread ele- 
ments are matched quite well, as can be seen in Fig 3.d. This method allows us 
to find shapes that  deform smoothly over time. Consequently, it can serve as a 
useful tool in'finding regular structure in images without regard to the underlying 
surface or the projective transformation. 

5 C o n c l u s i o n  

In this paper ,  a fast linear-time algorithm was presented to compute the static 
threshold that  minimizes the non-well-composedness or weak connectivity of the 
document image. Next, a new digital similarity measure was introduced that out- 
performs the  standard similarity measures, including the tiausdorff distance, with 
respect to determining if two discrete objects in the image are digitizations of the 
same prototype. This similarity measure was then used as the basis for a model- 
based compression algorithm. Finally, we demonstrated that a variation on the 
method can be extended to finding structure in images taken under affine and 
perspective transformations. 
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