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Abstract. One of the important problems related to image analysis and
compression is finding repeated structure. Although the focus of this pa-
per is developing digital geometric models and methods for finding regular
structure in digital document images, the applicability of the digital geo-
metric approach is also demonstrated on images taken under orthographic
and perspective projection. First, a fast linear-time algorithm is given to
compute the static threshold that minimizes the non-well-composedness or
weak connectivity of the document image. Next, a new digital similarity
measure is introduced that outperforms the standard similarity measures,
including the Hausdorff distance, with respect to determining if two dis-
crete objects in the image are digitizations of the same prototype. This
measure is then used in a model-based compression algorithm, and a vari-
ation of the algorithm is developed for finding structure in images taken
under affine and perspective transformations.

1 Introduction

In previous work [3] [4] [8], the authors have focused on mathematically modeling
the digitization process and on developing digitization rules and related algorithms
that guarantee that a digitization is topology preserving. In this paper, we focus
more on the application side, demonstrating how discrete spatial models and re-
lated digital similarity measures can be used in model-based compression of digital
documents. Part of this paper focuses on the need for correct digital similarity
measures. In particular, we will focus on the Hausdorff distance and its variations.
There has been considerable important research on the Hausdorff distance [5] [10].
In this paper, however, we will focus on the relationship between the Hausdorff
distance and the digitization process. It is shown that the Hausdorfl distance is
interesting exactly because it is closer to a digital similarity measure than the
standard measures such as Hamming distance, weighted Hamming distance [11],
residual entropy [6], and template distance [7].

The paper is structured as follows: First, a fast topology-preserving threshold-
ing algorithm is presented. Next, we derive a new Hausdorf-based digital simi-
larity measure and demonstrate its effectiveness with respect to document image
compression. This measure is compared to the standard bidirectional Hausdorff
distance used in document image analysis. Finally, a variation on the algorithm
for finding repeated image structure is shown to be applicable to images taken
under orthographic and perspective projection.

2 Computing a Topology Preserving Threshold

In previous work [2], the authors considered under what conditions a digital image
is topology preserving. It was proven that for any r parallel regular set, ie.,
any set that supports an inner and outer osculating ball of radius r at every
point on its boundary (see [8]), a digitization resolution of r for the diameter



185

of a grid square always guarantees that topology is preserved under monotonic
digitization and that the resulting discrete set is well-composed, i.e., it has no
checkerboard patterns. Well-composed sets have many desirable properties that
make them particularly amenable to image processing algorithms, see [9]. It was
shown in [2] that selecting a gray-level threshold that minimized the number of
checkerboard neighborhoods also seemed to approximately minimize the sum of
false topological connections and disconnections. This threshold also gave us very
high recognition rates when applying subsequent OCR (using Omni-Page) to the
thresholded binary document.

We now present an efficient algorithm for computing the threshold that mini-
mizes the non-well-composedness of a gray-level image:

Starting at the top of the gray-level image, every 2 x 2 neighborhood is visited.
For each such neighborhood, we consider the gray-level values for the 2 pairs of
diagonal points a3, a; and by, bs. Let apipn = min(ay, as), amus = max((al, asz), and
similarly for by, and bp,q,. Next, we consider the two closed intervals [amin, ¢mas
and [bmin, bmag|- If these two intervals intersect, then no threshold will cause this
local 2 x 2 neighborhood to become non-well-composed and we need not consider
it further. If, however, the two intervals are disjoint then assume, without loss of
generality, that dmee < bmin. Assume further that when the threshold is set to
some value #, 0 < ¢t < 255, that all pixels with gray-level values < ¢ are set to
0 (black), while all pixels with gray-level > ¢ are set to 255 (white). As we tra-
verse the 2 x 2 neighborhoods of the image, two arrays plus_chk[] and minus_chk][]
are maintained. These, respectively, keep track of the number of checked neigh-
borhoods that are added or subtracted at each gray-level value. For each neigh-
borhood with disjoint intervals, we increment the two arrays: ++plus_chk[a,n4z],
+-+minus_chk[br,:n]. After the entire image has been traversed, these two arrays
are used to compute the values for a third array chk[]. Initially, all the values in
chk[] are set to zero. Then we compute the values of chk[] iteratively: chk[—1] = 0;
chk[¢]=chk[; — 1]+plus_chk[i]-minus_chk[i].

The threshold value selected using this algorithm is appealing for several rea-
sons. One important reason is that the algorithm minimizing the weak connectivity
of the document consistently yields a value very close to the threshold value that
minimizes the number of models required to match the connected components us-
ing the Hausdorff distance metric or a variation introduced in the next section.

3 Digitization Invariant Similarity Measures

In symbolic compression and model-based image coding [1] [11], there is a need
for both fast and accurate techniques for comparing the similarity of two discrete
planar shapes. A review of several of the similarity measures frequently used is
given in [1] and includes the Hamming distance, the weighted Hamming distance,
sum of weighted AND-NOTs, residual entropy, and degradation probability. These
measures do not model the digitization process and are not invariant with respect
to digitization. As a result, the problem of finding the correct number of models
or prototypes is often considered a clustering problem, and it is accepted that a
certain degree of mislabeling will occur. This mislabeling of connected components
necessitates a correction phase, which takes the form of a residual map. This
residual map ensures that the compression is lossless but is very expensive. As
sensors improve, it is very desirable to put this model matching process into a more
rigorous mathematical framework and discard the need for a corrective residual
map. This is also desirable from the perspective of constructing an image compiler
that converts a digital document back into MS Word or IATEX format since a
residual map is really not applicable in this context.

First, we define the Hausdorff distance and its relationship to monotonic topology-
preserving digitization. The Hausdorff distance between two sets A and B is defined
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as

H(A, B) = max(h(A, B), h(B, A)), where
h(4, B) = sup Jnf [lb—all,

and |} - |] is some norm.
In [8], we proved the following theorem:

Theorem 1 Let A be a par(r)-regular set. Then A and Dig(A,r) are homotopy
equivalent for every digitization Dig(A,r), and H(A, Dig(A,r)) < r, where H is
the Hausdorff distance.

Using Theorem 1, we have H(A, Dig(A,r)) < 1, where the diameter of a grid
square is presumed equal to 1. Moreover, since H is a distance metric satisfying the
transitivity property, then for any two digitizations Dig' (A, r) and Dig?(A,r) we
have the constraint H{Dig'(A,r), Dig?(A,r)) < 2. We have used this constraint
effectively to find supersets of a given connected component (i.e., digital instance of
a model), where the superset consists of all the connected components on the doc-
ument that could conceivably be digitizations of the same underlying prototype.
An example of this is shown in Fig 1.c, where all the letter “b”s are detected using
Hausdorff distance 2, in addition to some extranecus letters. The “b”s that are
undetected are either connected to adjacent letters or are substantially corrupted
by noise. In all the examples that we considered, this constraint was always suc-
cessful at finding a superset that included all unperturbed homeomorphie digital
instances of the underlying model ccrresponding to a given connected component.
Thus, the Hausdorff distance is useful as a necessary condition for two instances
to belong to the same prototype.

On the other hand, using the Hausdorff distance as a sufficient condition for
class membership does not work effectively nor does it correctly model the digiti-
zation process. As an example, consider the digital document shown in Fig 1.d. In
this case, a Hausdorff distance of 1 was used as a criterion for grouping connected
components together, where the miodel selected was an instance of the letter “b”.
As can be seen, this criterion is neither necessary nor sufficient. Some of the “b”
instances are missing while other extraneous components have been included. In-
stead, we introduce a new variation of the Hausdorff distance that corresponds
more closely to the digitization process and, in the many documents we consid-
ered, admitted no false positive matches. As a result, there may be some degree
of model fragmentation but there is no need for maintaining a residual map.

Define Qr, @1, @111, Q1v to be the closed first, second, third and forth quad-
rants of R?. For example,

Q[:{(x,y)eRgleUandyZO}‘

Then we can define the first quadrant directional Hausdorff distance between two
sets in R? as follows:

hi(A, B) = max min ||b— a| (1)
b—aEQI

and similarly for other quadrants.

Next we define
Hi,j(A, B) = max(hi(A, B), hj (B, A)),

where i, j are quadrant numbers and |i — 7] = 2.
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Finally, the quadrant bidirectional Hausdorff is defined as

Hq(A,B) = min{ HI,IH(A,B),HIH,I(A>B);
Hrav(A, B), Hrv (A, B) }. @)

This measure is a distance similarity measure that models the fact that, at the
very least, a model and its digitization can vary by a quadrant Hausdorff distance
equal to 1. To see this, consider the fact that even if a connected component A was
arbitrarily close to the original model, another digitization of this “model” could
have its centroid vary by a translation of up to 1 grid square diameter. Thus,
any digitization resolution where Hg(A = Dig(Mi,r), B = Dig(M,,r)) < 1, for
distinct models M; and M, cannot%e model preserving. Assuming we originally
had a model-preserving digitization, Hg(A, B) < 1 can be used effectively as a
sufficient condition for two instances A and B to belong to the same model class.

An example is shown in Fig 2.a, where the initial “model” was an instance of
the letter “b”. Grouping based on this sufficient condition, no mismatches occur al-
though some instances are missed. This matching algorithm can be improved upon
by iterating the matching algorithm on the recomputed model. As shown in the ex-
ample, initially a single instance of the letter ”b” was taken to be the model. After
the first iteration, additional “b” connected components were matched, as shown
in Fig 2.a. Once these instances of the model are found, the model is recomputed
using the dilated binary connected components as masks onto the corresponding
gray-level components. This process is repeated until convergence of the model. In
the example shown, the final set of matched “b” connected components is shown
in Fig 2.b, and the final reconstructed gray-level model is shown in Fig 2.c. The
thresholded version of the reconstructed image, as shown in Fig 2.4, is closer to
a monotonic digitization than the thresholded original image shown in Fig 1.b, as
evidenced by the fact that linear segments remain digitally linear {see [4]). The
converged set of gray-level models is shown in Fig 2.e.

4 Discrete Sets of Discrete Spatial Objects

Consider once again the document image shown in Fig 1.a. In the algorithm given
in the previous section, the model evolved by starting with a single connected
component. Every other connected component that matched this initial model with
quadrant Hausdorff < 1 was added to the list. After all the connected components
that could be matched were added to the list, the model was recomputed by
averaging all the matched connected components and rethresholding. This process
was iterated until no new matches were found. Using the quadrant Hausdorff
as a sufficient condition for two instances to belong to the same object class,
we can alternatively keep the evolving model as the set of instances that have
been matched so far. Instead of “learning” more about the model by averaging
the instances together, we take their union as the representation of the current
underlying model that is evolving. Every new instance of the model that is added
to the set must eventually be expanded so that every connected component that
it matches in a quadrant Hausdorff sense is also added to the set. This process
continues until convergence. For the document shown in Fig 1.a, this algorithm
generated the reconstructed document image shown in Fig 3.a.

This method of representing the model as a discrete set of discrete spatial
objects is also very useful in finding patterns in images and can be used as part
of an image search engine to classify images based on symmetric structure. Con-
sider the window tiles shown in Fig 3.b. These tiles are not all scaled versions of
each other since the image was taken under perspective projection. Rather than
solve for the transformation parameters, the algorithm simply uses a version of
the rank quadrant Hausdorff distance to compare connected components to each
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other. When the algorithm finally converges, nearly all of the window instances are
recognized. For the flag image shown in Fig 3.c, the tesselating elements we want
to match (i.e.;'the stars) are mapped onto a non-planar surface under perspective
projection. The algorithm described recognized almost all the stars, as shown in
Fig 3.c. For the tire tread, the tread elements are mapped to an approximately
cylindrical surface and have considerable variation. Nevertheless, the tread ele-
ments are matched quite well, as can be seen in Fig 3.d. This method allows us
to find shapes that deform smoothly over time. Consequently, it can serve as a
useful tool in finding regular structure in images without regard to the underlying
surface or the projective transformation.

5 Conclusion

In this paper, a fast linear-time algorithm was presented to compute the static
threshold that minimizes the non-well-composedness or weak connectivity of the
document image. Next, a new digital similarity measure was introduced that out-
performs the standard similarity measures, including the Hausdorff distance, with
respect to determining if two discrete objects in the image are digitizations of the
same prototype. This similarity measure was then used as the basis for a model-
based compression algorithm. Finally, we demonstrated that a variation on the
method can be-extended to finding structure in images taken under affine and
perspective transformations.

Acknowledgements: The authors would like to acknowledge support for this research
under NSF grant IRI-9707090 and the QC/CUNY Presidential Research Award. They
would also like to acknowledge the very constructive support and assistance of Ruben
Lusinyants, llya Dondoshansky, Elena Oranskaya, and Navdeep Tinna in this work.

References

1. D. Doermann, Document Image Understanding: Integrating Recovery and Interpreia-
tion, PhD thesis, Univ of MD, College Park, 1993.

2. A. Gross and L. Latecki. Homeomorphic Digitization, Correction, and Compression
of Digital Documents. JEEE Workshop on Document Image Analysis, Puerto Rico,
June 1997.

3. A. Gross and L. Latecki. Digitizations Preserving Topological and Differential Geo-
metric Properties. Computer Vision and Image Understanding, 62:370-381, Nov. 1995.

4. A. Gross and L. Latecki. A Realistic Digitization Model of Straight Lines. Computer
Vision and Image Understanding, Vol. 67, No. 2, pp. 131-142, 1997.

5. D.P. Huttenlocher and W.J. Rucklidge, A multi-resolution technique for comparing
images using the HHausdorfl distance, In Proceedings Computer Vision and Pattern
Recognition, pp. 705-706, NYC, NY, 1993.

6. S. Inglis and 1. Witten. Compression-based template matching. In Proceedings of the
IEEFE Data Compression Conference, 1994.

7. T. Kanungo, R.M. Haralick, and I.T. Phillips. Global and local document degradation
models. In Proceedings of the International Conference on Document Analysis and
Recognition, pp. 730-734, 1993.

8. L. Latecki, C. Conrad, and A. Gross, Preserving Topology by a Digitization Process,
to appear in Journal of Mathematical Imaging and Vision, 1997.

9. L. Latecki, U. Eckhardt, and A. Rosenfeld, Well-Composed Sets. Computer Vision
and Image Understanding, 61:70-83, 1995.

10. W. Rucklidge. Efficient Visual Recognition Using the Hausdorff Distance. Number
1173 in Lecture Notes in computer Science. Springer-Verlag, 1996.

11. I. Witten, A. Moffat, and T. Bell. Managing Gigabytes: Compressing and Indezing
Documents and Images. Van Nostrand Reinhold, 1994.



;!L(: pabas is hat Lcmma mkuhams e ssmphf ud, 38
will Become appal
Giaussian digiribi
wientis u is 3¢ i

the m{wiauou of ine pw&ﬁuluv aFecieetion, Thc o
dxtm 4 o ls i Ly is ueﬁcswry “hecause .03

walh pr\,b.lbxiuy closé . one m Jeast iwp (xf the 3 mntm

la

“The Gaastan

e i were, Iy
the p«:b;ab iy that i:«x-s grrsi i isrs-s&; is gor-
rorey, but g e tame Gee very sz’x&é

g!_ ws'% \!mrn bavadarie
¥ suggost ms{ r.hw

.

cz&n,mms we s

189

The Gaussian distributions in (i) model the distribu-
tion of feature poiats within & ote-dimensional image
of width O(L). In practice, images have sharp bound-

ics, and the probability of locating 2 point outside 20
image is zero. In the case of & Gaussian distibution
the probability that a random point is far away is non-
2er0, but at the same time very small. The Gaussian

distribution is thus a ble model for the distribu-
tion of points within an image with sharp boundaries.
Experiments reported in section 8.1 suggest that the
probability of  Idlse alarm is similar for the Gaussian
and for the uniform distributions. The advantage of
using & Gaussian to mode! the distribution of the im-
age points is that certain calculations arc simpfified, as
will become appareat in section 2.2. The mean of the
Gaussian distributions in (i) is arbitrary. For conve-
nience it is set equal to zero,

The assumption (ii) is required in qrder to simplify
the calculation of the probability of rejection. The con-
dition & = O(1) in (i1} is necessary, because if ¢ is
farge, for example 0 = €7, where € = r/}, then
with probability closc to ooe at feast two of the image
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Under these assumptions the trade off betweza the
probability R of rejection and the probability F of 3
false alrm is determined.
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