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Abstract. We propose a novel technique that significantly improves
the performance of oriented chamfer matching on images with cluttered
background. Different to other matching methods, which only measures
how well a template fits to an edge map, we evaluate the score of the
template in comparison to auxiliary contours, which we call normalizers.
We utilize AdaBoost to learn a Normalized Oriented Chamfer Distance
(NOCD). Our experimental results demonstrate that it boosts the de-
tection rate of the oriented chamfer distance. The simplicity and ease of
training of NOCD on a small number of training samples promise that
it can replace chamfer distance and oriented chamfer distance in any
template matching application.

1 Introduction

Chamfer matching has been widely used for edge based object detection and
recognition in computer vision. However, its performance is seriously limited in
cluttered images. One of the main drawbacks of chamfer matching is the fact
that a given template often fits better to a cluttered background than to the
location of a true target object. Oriented chamfer matching (OCD) [17] adds
orientation information, which significantly improves the performance of cham-
fer matching, but the problem still remains, as illustrated in Fig. 1. The proposed
approach provides a solution to this problem by comparing the matching score
of the template to normalizers, which are curve segments of varying but simple
shape. There are two key properties of the normalizers. (1) If the target template
matches well to a cluttered background, then very likely some of the normalizers
match well too. (2) If the template matches well to a true object location, it is
very unlikely for any normalizer to match well. Consequently, the normalized ori-
ented chamfer distance (NOCD) significantly improves the discriminative power
of OCD. Some examples are shown in Fig. 1.

Since it is hard if not impossible to satisfy (1) and (2) with a finite set of
normalizers for a given set of target templates, we treat normalized chamfer
distances as weak classifiers and employ AdaBoost to learn their weights. The
weights provide a soft way of selecting adequate normalizers for a given tem-
plate. As our experimental results demonstrate, AdaBoost is able to learn the
normalizer weights on a small set of training images, which makes the proposed
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approach suitable for all practical applications currently based on (oriented)
chamfer matching.

Fig. 1. Example detection results on 250 test images from TU Darmstadt Pedestrian
Dataset. The first row shows the detection results of the proposed NOCD, while the
second row shows oriented chamfer matching results. The green rectangle denotes the
ground truth bounding box.

The paper is structured as follows. In Section 3, we review basic definitions
of chamfer distance and oriented chamfer distance. The new concept of distance
normalization is introduced in Section 4. and AdaBoost learning of their weights
is described in Section 5. Section 6 describes a simple framework for object
detection. Finally, Section 7 introduces our set of normalizers. The performance
of our method is evaluated and compared to OCD in Section 8.

2 Related work

There is a large number of applications of chamfer matching in computer vision
and in medical image analysis. Chamfer distance was first introduced by Barrow
et al. [2] in 1977 with a goal of matching two collections of contour fragments.
Until today chamfer matching is widely used in object detection and classifica-
tion task due to its tolerance to misalignment in position, scale and rotation.
Borgefors [16] introduced a modified chamfer matching method called hierar-
chical chamfer matching, which could be regarded as a coarse-to-fine process
by matching edge points using a resolution pyramid of the image. This method
focuses on alleviating the computational load for chamfer matching. Meanwhile,
chamfer matching meets the real-time system requirement due to fast imple-
mentations of distance transforms. Gavrila and Munder [3] performed template
matching based on chamfer distance transform as a core technique to construct
a real-time detection system of pedestrians.

Leibe et al. [4] used chamfer matching to detect pedestrian in crowded scenes,
and combined segmentation as a verification to prevent the false alarms that
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mostly lie in the cluttered background. Stenger et al. [6] introduced a tem-
plate hierarchy which is formed by bottom-up clustering based on the chamfer
distance. In [7], Opelt et al. used chamfer distance to score each boundary frag-
ment for selection of candidate contour fragments. Opelt et al. also compared
each boundary fragment from each category to all existing alphabet entries using
chamfer distance in [8]. Other methods that utilize chamfer distance as shape
similarity metric include [9, 13, 20]. Chamfer distance plays also an important
role in medical image analysis, e.g., [10–12].

However, methods that utilize chamfer distance to measure the similarity
between the template and edge maps suffer from mismatching to the cluttered
background. It is generally agreed that main negative effect of using chamfer
distance is the potential risk of increasing false alarms occurring in background
with high level of clutter noise. Thayananthan et al. [14] compared the localiza-
tion performance of chamfer matching and shape context [15], and concluded
that chamfer matching is more robust in clutter than shape context matching
even though most failure cases in chamfer matching are still due to false positive
matches.

Recently, Shotton et al. [17] proposed an oriented chamfer distance (OCD)
that exploits edge orientation information in the form of edge gradients. OCD
linearly combines chamfer distance and orientation difference between template
points and their closest matches, which leads to reduction of mismatching cases
to the noisy background. Trinh and Kimia [25] proposed Contour Chamfer
Matching (CCM) to improve OCD. In this method, based on the observation
that the accidental alignment between a contour and the image edges always
forms a zig-zagging contour, after finding the corresponding points in edge map,
another orientation for edge points is computed based on the new generated
curve, and an additional term which is the difference in tangent direction is
taken into account when computing the Contour Chamfer Distance.

Since proposed method is not designed specifically for oriented chamfer dis-
tance, it could be also used to boost the performance of any distance metric
that aims to capture edge support for a model. In particular, it would be possi-
ble to apply the proposed method to Hausdorff distance and oriented Hausdorff
distance proposed in [26, 27], which is also widely used in computer vision appli-
cations. However, in [17] experimental evidence is provide that OCD has better
performance than Hausdorff distance.

3 Oriented Chamfer Distance (OCD)

In this section we define chamfer distance and oriented chamfer distance (OCD),
which is a simple linear combination between distance and orientation terms.

Chamfer Distance Chamfer distance was first proposed in [2] as an evaluation
of 2D asymmetric distance between two set of edge points. It is tolerant to slight
shape distortion caused by shift in location, scale and rotation. Given a template
T positioned at location x in an image I and a binary edge map E of the image
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I, the basic form of chamfer distance is calculated as

d
(T,E)
cham(x) =

1

|T |
∑
xt∈T

min
xe∈E

||(xt + x)− xe||2 , (1)

where ||.||2 is l2 norm and |T | denotes number of points in template T . Chamfer
distance can be efficiently computed as:

d
(T,E)
cham(x) =

1

|T |
∑
xt∈T

DTE(xt + x) , (2)

where DTE is a distance transform defined for every image point x ∈ I as

DTE(x) = min
xe∈E

||x− xe||2 . (3)

Meanwhile, in practice, distance transform is truncated to a constant τ [17]:

DT τ
E(x) = min(DTE(x), τ) (4)

This reduces the negative effective due to missing edges in E, and allows nor-
malization to a standard range [0, 1]:

d
(T,E)
cham,τ (x) =

1

τ |T |
∑
xt∈T

DT τ
E(xt + x) . (5)

Oriented Chamfer Distance (OCD) Shotton et al. [17] proposed an im-
proved chamfer distance called oriented chamfer distance (OCD), which adds
additional robustness by exploiting edge orientation information. To define it,
we first need a notation of an argument of a distance transform (ADT) that
gives the locations of a closest point.

ADTE(x) = arg min
xe∈E

||x− xe||2. (6)

To evaluate a mismatch in orientation, the difference in tangent directions is
computed

d
(T,E)
orient(x) =

2

π|T |
∑
xt∈T

|ϕ(xt)− ϕ(ADTE(xt + x))| , (7)

where ϕ(x) denotes tangent direction at point x and ranges between zero and π.
|ϕ(x1) − ϕ(x2)| gives the smallest circular difference between ϕ(x1) and ϕ(x2).
Using a simple linear combination between the distance and orientation terms,
oriented chamfer distance is defined as

OCD
(T,E)
λ (x) = (1− λ) · d(T,E)

cham,τ (x) + λ · d(T,E)
orient(x) . (8)

For clarity, we will omit E and λ below when possible, and use OCD(T, x) =

OCD
(T,E)
λ (x) to represent the oriented chamfer distance of template T at loca-

tion x ∈ I.
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4 Normalization of Oriented Chamfer Distance

Although oriented chamfer matching adds orientation term to avoid mismatch-
ing, cluttered background still may match much better to the template than
the real object contours. The reason is that cluttered background offers a large
variety of edge orientations, consequently, any shape has a large probability of a
good oriented chamfer score. This suggests that we need to compare the score of
the target template with scores of some random shapes. If both have good OCD
score at a given location, then the template match is most likely to be accidental.
Based on this insight, we introduce a normalizer as an auxiliary, random shape
to evaluate how well the template matches to the edge map at a certain loca-
tion. For a target template T , we propose to generate K normalizers, denoted
by N = {ηk| k = 1, . . . ,K}. A procedure to generate normalizes is described
in Section 7. Instead of only calculating OCD(T, x) at each location x, we also
compute OCD(ηk, x), and compare the ratios

Rk(T, x) =
OCD(T, x)

OCD(ηk, x)
. (9)

We call Rk(T, x) a normalized score.
Now we provide some details about the role of normalizers in improving

chamfer score. The analysis is divided into three qualitative cases that illustrate
an intended correct behavior of the normalizers. In practice, not all normalizers
will behave in this way, which is addressed in Section 5.
Case 1: At a correct location containing a target object in a given image,
OCD(T, x) is small and OCD(ηk, x) is large, so that OCD(T, x) < OCD(ηk, x).
Consequently, Rk(T, x) will become comparatively smaller than OCD(T, x),
which better indicates a correct match.
Case 2: In a cluttered area in which the target object is not present, both
OCD(T, x) andOCD(ηk, x) are small, butOCD(T, x) > OCD(ηk, x), soRk(T, x)
will become comparatively larger than OCD(T, x), which better indicates a
wrong match.
Case 3: In an area that is neither cluttered nor contains the target object,
both OCD(T, x) and OCD(ηk, x) are large, but OCD(T, x) > OCD(ηk, x),
so Rk(T, x) will become comparatively larger than OCD(T, x), which better
indicates a wrong match.

Cases 1 to 3 clearly demonstrate that normalizers increase the discriminate
power of OCD. However, they are based on an assumption that we have an ideal
set of normalizers {ηk| k = 1, . . . ,K} behaving as described in cases 1 to 3.
Even though it may not be possible to find normalizers satisfying cases 1 to 3
for a given template T , we propose to utilize machine learning methods to learn
which normalizers yield correct scores Rk(T, x) for a given template T . For a
given set of candidate normalizers, we use AdaBoost in Section 5 to learn the
weights of normalized scores Rk(T, x). Thus, we treat each normalized score as a
weak classifier. The weights provide a soft selection of a set of normalizers with
our intuition being that this selection best approximates the behavior described
in cases 1 to 3.
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5 Learning Normalized OCD with AdaBoost

The standard AdaBoost [18] allows us to select a set of normalizers by assigning
weights to their normalized scores and to combine them as a weighted linear
combination, which yields a more robust matching score. Given is a set of train-
ing images with positive and negative examples, i.e, a set of bounding boxes
containing the target object and a set of bounding boxes without the target
object. AdaBoost automatically learns the weight for each weak learner and
combine them to form a strong learner [21, 22]. We use the ratios Rk(T, x) as
weak learners for k = 1, . . . ,K. To be precise, a weak learner is defined as

hk(T, x) =

{
1 for Rk(T, x) < thk

0 for otherwise.
(10)

In each iteration 1, . . . ,K, we search for a weak learner with the best detection
performance on the training set. During the search, the optimal threshold thk

for each weak learner is chosen to minimize the misclassification error (ME).
At each iteration of AdaBoost, each training example carries a classification
weight. ME is defined as the sum of the classification weights of misclassified
training examples (both positives and negatives). As the output we obtain a
strong learner

H(T, x) =
K∑

k=1

wk · hk(T, x) (11)

In the AdaBoost terminology, the value of the strong learner indicates how likely
a given image location x belongs to the class of template T . The larger the value
the most likely this is the case. We propose to replace the oriented chamfer
distance of T with the value of H(T, x). We define a Normalized Oriented
Chamfer Distance as NOCD(T, x) = H(T, x). While OCD is a distance in
that the smaller is OCD value the better, NOCD is a similarity measure, i.e., the
larger the NOCD value, the most likely the target object is present at location
x.

We use a simple strategy to select training examples for AdaBoost. Given is a
set of training images with ground truth bounding boxes enclosing target objects.
For each training image we select only 5 positive and 5 negative examples. As 5
positive examples we randomly select 5 locations in a small neighborhood around
the ground truth locations. We select as negative examples 5 locations x with
locally smallest oriented chamfer distance OCD(T, x) such that the area of the
intersection of the bounding box centered at x with any ground truth bounding
box is less than 50%.

6 Object Detection with NOCD

In order to be able to evaluate the performance of NOCD, we describe a very
simple approach for object detection in this section. We keep it simple to allow
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for clear comparison to OCD. However, we use a flexible shape model in our
approach in order to be able to evaluate the performance of the proposed NOCD
on state-of-the-art test datasets.

Our flexible object model is denoted as M = {Bi| i = 1, . . . , N}, where Bi

is a part bundle composed of contour parts describing the same location on the
contour of a given shape class, e.g., human head or arm, and N is the number
of bundles in model M. Contour parts from bundle Bi are represented by cij ,
and hence Bi = {cij |j = 1, . . . ,Mi}. Since every part bundle Bi describes a
specific part of an object, we assume that Bi

∩
Bj = ∅ if i ̸= j. Fig. 2 shows an

example of human model, here N = 4 and Mi = 5 for i = 1, 2, 3, 4. Our model
was manually constructed. Thus, our model contains the total of 20 contour
parts cij . Each part cij is treated as template T , and NOCD(cij , x) is learned
as describe in Section 5.

Fig. 2. Human model M composed of 4 part bundles B1, B2, B3, B4 representing head,
front, back, and leg parts, respectively. Each bundle has 5 contour parts.

For an input image I, we first use Canny edge detector to compute the
edge map E. For each location x in I, we use NOCD(cij , x) to represent the
normalized oriented chamfer distance of model contour part cij placed at point
x. With a simple but efficient sum-max framework, the model fit at point x ∈ I
is defined as:

SI(M, x) =

N∑
i=1

max
cij∈Bi

NOCD(cij , x) . (12)

Thus, we select from each bundle Bi the part with the largest NOCD score and
sum the maximal scores over the bundles in the shape model M. Using sliding
window we calculate SI(M, x) at each point x ∈ I. We define the model fit score
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as

SI(M) = max
x∈I

SI(M, x) (13)

and the detection center point as point x∗ ∈ I as

x∗ = argmax
x∈I

SI(M, x) (14)

The detection results for OCD follow the same framework, but with max re-
placed with min in the above formulas.

7 Normalizers

It remains to describe how we select a set of normalizers {ηk| k = 1, . . . ,K}. We
first observe that a good normalizer should be more likely to match to noise than
a given contour part. This implies that a normalizer should have a significantly
simpler shape than the contour parts of a target shape model. We also want that
a normalizer should be less likely to match to a true object edges in an image
than a given contour part. Consequently, normalizers should not be similar to
any contour parts in our shape models.

Fig. 3. Basic normalizers. Our set of basic normalizers contains 11 simple shapes.

We satisfy both constrains by first generating a small set of simple geometric
curves that are treated as a basic structuring elements to generate a set of nor-
malizers. A set of 11 basic shapes that we have selected is shown in Fig. 3. They
form the first 11 elements of our set of normalizers N = {ηk| k = 1, . . . ,K}.
We obtain further normalizers by pairwise combining the 11 structuring ele-
ments, where the combination is simply a union of their aligned images. Since
the normalizer combination is symmetric and we only combine different struc-
turing elements, we obtain 55 = (11×10)/2 additional normalizers. Fig. 4 shows
a complete set of K = 66 normalizers obtained this way. They are ordered
according to their weights obtained by the sum of AdaBoost weights of their
corresponding weak classifiers by training the AdaBoost strong classifiers on
the TU Darmstadt pedestrian dataset [1] (see Section 8 for more details). A
larger weight indicate that a given normalizer makes more contribution in help-
ing NOCD distinguish true positive from clutter background. The weight order
of the normalizers confirms the simplicity principle that guided our design of
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normalizers in that simpler normalizers are usually more significant. However,
the weights of the normalizers are also influence by their ability to match well
to noise, which may be image class specific. For example, straight lines in hor-
izontal and vertical direction belong to a common background clutter in inner
city images as the images of the TU Darmstadt pedestrian dataset.

Fig. 4. Our 66 normalizers displayed in order of their weights.

For each contour part of a target model cij , we resize the normalizers to let
them have the same bounding box as the contour part cij . Consequently, the
resized normalizers cover the same area. Fig. 5 shows the resized normalizers
generated for each bundle of the human model.

8 Experimental Evaluation of Detection Rate

In this section we compare object detection performance of the proposed normal-
ized oriented chamfer distance (NOCD) to the oriented chamfer distance (OCD)
and to chamfer distance on standard test datasets. The detection method is
described in Section 6. We use exactly the same flexible models and the same
experimental settings for both methods. In particular, for each image, the edge
map was computed by the canny edge detector with the same threshold. The
chamfer distance was computed exactly as defined in formula (5). The same con-
stants τ and λ were used to truncate the distance transform and linearly combine
the distance and orientation terms when calculating the oriented chamfer dis-
tance. Results are quantified in terms of detection rate. We use the standard
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Fig. 5. Human model normalizers. The resized normalizers for four part bundles
are shown in blue. The red curves are the original model parts for each bundle.

PASCAL criterion to identify correct detections. A detection is regarded as cor-
rect if the area of the intersection of the bounding box containing the detected
object with the ground truth bounding box is at least 50% of the area of their
union.

TU Darmstadt Pedestrian Dataset Human detection is very challenging for
shape-based matching methods, because in many poses the shape of human
contours is relatively simple. In surveillance images, there is often a complex
background, while humans are relatively small, which also increases the chance
for an accidental matching.

TU Darmstadt pedestrian dataset [1] consists of several series of video images
containing side-view humans. It provides two training datasets, one has 210
images and another has 400 images. In our experiment, we use training 400
dataset for the training of NOCD. After that, we test both NOCD and OCD
on the test dataset with 250 images. The 250 test images are significantly more
challenging than the 400 training images. To handle the variance of the human
shape caused by people walking in opposite directions, we flip our model with
respect to vertical axis, and take the best score of the original and flipped models.
Consistent with the results of the λ learning procedure reported in Shotton [17],
we also observed that detection accuracy of oriented chamfer distance increases
when λ becomes larger. In all human detection experiments, we used λ = 0.8 for
both OCD and NOCD, which was the best performing. As it is often the case
in AdaBoost applications, we discarded weak classifiers with very small weights.
After training phase, we retained only 37 normalizers with largest weights to
form the strong leaner for each model contour part. This allows us to reduce the
object detection cost complexity.

The detection rate is shown in Table 1. We observe that the proposed NOCD
nearly doubled the detection rate of OCD on the 250 test images. The improve-
ment is very significant given the fact that the detection rate of OCD is very
low: 35.2%.

Several detection results are displayed in Fig. 1. As they illustrate OCD fails
when the human contours are broken and distorted while at the same time the
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Chamfer distance 4.4% HOG [23] 72%

OCD 35.2% 4D-ISM [24] 81%

proposed NOCD 70% Andriluka et al. [1] 92%

Table 1. Detection rate on Test 250 of the TU Darmstadt Pedestrian Dataset. The
proposed NOCD doubled the OCD detection rate with exactly the same contour model.

background is cluttered. This is exactly when the proposed NOCD performs ex-
tremely well. We also report the performance of pure chamfer distance in Table 1.
in order to show that OCD performs significantly better than chamfer distance
on this dataset. Further, we include the detection rates of state-of-the-art ap-
proaches estimated form graphs reported in [1]. We observe that our detection
rate is compatible to a popular appearance based detector, HOG [23]. We stress
that our approach is still a matching approach. Andriluka et al. [1] obtained the
currently best performance on this dataset. It is obtained by an approach specif-
ically designed for pedestrian detection that utilizes a sophisticated statistical
inference framework and learning to handle articulations; both not present in
our approach. Similarly, the approach in [24] is designed to handle articulations
for pedestrian detection.

Cow dataset This dataset [5] is from the PASCAL Object Recognition Database
Collection. There are 111 images in which cows appear at various positions. Since
no training part is provided, we divided the dataset into two parts. We used first
55 images to train our detector, and tested it on the remaining 56 images. Then
we trained on the second part, and tested on the first 55 images. This way we
are able to report our performance on the whole dataset. The detection rates
are shown in Table 2. Again we report a substantial increase in the detection
rate by over 17% of NOCD in comparison to OCD. Interestingly, OCD is not
able to improve the performance of pure chamfer distance. For this dataset, we
used λ = 0.2, which indicates that the orientation information is not particularly
useful. This is most likely due to a particular kind of background clutter present
in this dataset as can be seen in the example result images in Fig. 6. The areas
with dense vertical lines in the edge maps confused oriented chamfer matching.
Oriented chamfer matching could not tell the ground truth location from such
noise, since most of the false alarms appear in that area. The proposed NOCD
was able to learn the difference between such noise and the true targets. For
images with little clutter in the background, both OCD and NOCD performed
equally well.

The performance of NOCD on this dataset also compares favorably to a
very sophisticated learning and inference approach published very recently by
Zhu et al. [19]. This comparison may not be quite fair, since this approach
uses one-example learning, while our flexible cow model is constructed from 5
cow contours. However, on the other hand our detection algorithm is a simple
max-sum. Thus, we do not employ any sophisticated inference in the detection
process.
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Chamfer distance 73.9% proposed NOCD 91.0%

OCD 73.9% Zhu et al. [19] 88.2%

Table 2. Detection rate on Cow Dataset.

Fig. 6. Example detection results on the cow dataset. Left column NOCD. Right col-
umn OCD. Green rectangle denotes the ground truth object location.

Infrared images Without extra training, we use the same human model and the
same normalizers as for TU Darmstadt Pedestrian dataset to carry out several
tests on infrared images. In these images, humans are small, about 60×40 pixels,
which increase the possibility of misalignment to background. Some detection
results are shown in Fig. 7.

9 Conclusions

By adding the term of orientation in the evaluation of the score, oriented cham-
fer distance is more robust to accidental alignment to the background noise than
chamfer distance. However, as our experimental results clearly demonstrate this
still does not solve the problem of matching to cluttered background, which
often leads to a better score than the score at true object location. The pro-
posed NOCD provides a solution to this problem by utilizing AdaBoost to learn
normalization of OCD. The key idea is to compare the chamfer matching score
of a given template to scores of a set of normalizers. The obtained ratios are
interpreted as weak learners, and the strong learner obtained by AdaBoost is
interpreted as a normalized OCD. Based on specific application, the proposed
method could be modified by replacing oriented chamfer distance with oriented
Hausdorff distance, or using sparse logistic regression instead of Adaboost in
training phase.



Boosting Chamfer Matching by Learning Chamfer Distance Normalization 13

Fig. 7. Detection result for infrared images. The original images are in the first column.
The second column shows result of NOCD while the third column shows the results
of OCD. Blue and red dots represent the corresponding parts of the model. Green
rectangle denotes the ground truth bounding box. The edge map is overlaid in white
on the original images.
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