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Abstract

Generating high-quality stitched images with natural
structures is a challenging task in computer vision. In this
paper, we succeed in preserving both local and global geo-
metric structures for wide parallax images, while reducing
artifacts and distortions. A projective invariant, Character-
istic Number, is used to match co-planar local sub-regions
for input images. The homography between these well-
matched sub-regions produces consistent line and point
pairs, suppressing artifacts in overlapping areas. We ex-
plore and introduce global collinear structures into an ob-
jective function to specify and balance the desired charac-
ters for image warping, which can preserve both local and
global structures while alleviating distortions. We also de-
velop comprehensive measures for stitching quality to quan-
tify the collinearity of points and the discrepancy of matched
line pairs by considering the sensitivity to linear struc-
tures for human vision. Extensive experiments demonstrate
the superior performance of the proposed method over the
state-of-the-art by presenting sharp textures and preserv-
ing prominent natural structures in stitched images. Espe-
cially, our method not only exhibits lower errors but also the
least divergence across all test images. Code is available at
https://github.com/dut-media-lab/Image-
Stitching.

1. Introduction

Image stitching, that combines multiple images into a
larger image with a wider field of view [25], is widely used
in photogrammetry [24], robot navigation [6] and panorama
on smart phones [29]. It is still challenging to produce high
quality stitched images for the state-of-the-art as they suffer
from severely unpleasant effects such as artifacts and dis-
tortions, especially for wide parallax images.

Feature matching is the key to aligning multiple images
for producing artifact-free stitching as the matched features
act as anchors in alignment. The SIFT features [23] are

Figure 1: Comparisons of stitching methods. Evident ar-
tifacts and distortions appear in the results of the existing
methods shown in the zoomed-in rectangles, but ours is free
of these unpleasant effects.

widely used in many traditional methods for feature points
detection and matching [4, 5, 30]. Some recent works also
introduce line features to obtain robust matching in the
cases of large parallax and/or low textures where points
are prone to mismatched [11]. Lin et al. exploit both
point and line features by different weights in an objec-
tive function [16]. Unfortunately, these methods separately
match points and lines, and thus the local surrounding ar-
eas may be inconsistently and non-uniformly stretched or
compressed when mismatches inevitably occur, presenting
artifacts in the stitched images. Liao et al. employ the
RANSAC strategy to refine point and line pairs by using
the homography between images [17]. It is worth noting
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that the homography relationship only holds for points and
lines in the same projective plane [12]. Therefore, those
refinements upon the homongraphy but neglecting the co-
planar constraint fail to give accurate matches. As shown in
the red rectangles of the first three rows in Fig. 1, the mag-
nified overlapping area on the right exhibits artifacts on the
picture frame, clock and computer. It is highly desirable to
explore co-planar areas and refine corresponding matching
pairs of points and lines.

Image stitching has to preserve linear structures while
alleviate distortions since human visual perception is very
sensitive to these structures. The as-projective-as-possible
(APAP) method adopts parametric warps by local con-
straints [30], but suffers from severe shape distortions es-
pecially in non-overlapping areas, as shown in the blue
rectangle of the first row in Fig. 1. Shape-preserving half-
projective (SPHP) [4] and global similarity prior (GSP) [5]
share a similar idea to adapt different warps for different
image areas. Geodesic-preserving[13] and line-structure-
preserving[3] involve collinearity preservation, but their im-
age resizing takes one panoramic image as input, already
including correct global geometric structures as reference.
Recently, Liao et al. propose single-perspective warps
(SPW) [17] to protect linear structures while suppress dis-
tortions. These methods can well preserve local structures
but fail to resolve the conflict when maintaining both local
and global linear structures. Global collinear structures can
be either a long line across the major part of an image, e.g.,
the long line under the two picture frames in Fig. 1, or sev-
eral separate collinear line segments. Current line detec-
tors [26] cannot detect or connect these long lines. Con-
sequently, local shapes may be well preserved by setting
appropriate parameters, but the global linear structure is out
of shape in the second row of Fig. 1. In the third row, pre-
serving linear structure results in severe distortions for local
shapes. It still remains unresolved to preserve both local and
global collinear structures.

Meanwhile, the existing metrics to evaluate the stitch-
ing quality are not comprehensive enough. These metrics
including the distance between matched points [30] and av-
erage geometric error (SSIM) [27] on local patterns of pixel
intensities can only quantify performance on point match-
ing. None of them can reflect the alignment of points on lin-
ear structures or the collinearity of matched line segments.
Quantitatively evaluating the preservation on linear struc-
tures for image stitching is also an open issue.

This paper leverages the line and point consistence to
preserve linear structures that are essential geometries for
image stitching. We divide input images into co-planar re-
gions upon the neighborhoods of lines, and match the re-
gions from different views using a series of geometric in-
variants reflecting the intrinsic nature of lines and points.
Hence, the homography between these co-planar regions

can accurately generate matches of both lines and points.
Subsequently, an line-guided objective function for warping
is designed to preserve both local and global linear struc-
tures and suppress distortions. The fourth row in Fig. 1
demonstrates that our method yields a significant gain in
image quality. Moreover, a quantitative evaluation measure
for lines is proposed to analyze the quality of stitched im-
ages more comprehensively. Our contributions are summa-
rized as follows:

• We design a new matching strategy to obtain consis-
tent point and line pairs by exploring co-planar sub-
regions using projective invariants. This matching fol-
lows the essential co-planar requirement for homogra-
phy so that it can provide accurate pre-alignment while
eliminating artifacts and non-uniform distortions.

• To the best of our knowledge, we are the first to incor-
porate global collinear structures as a constraint that
significantly alleviates unnatural distortions.

• We propose a comprehensive metric to quantify the
preservation of linear structures for image stitching.

We compare the proposed method with the state-of-the-
art on challenging natural image pairs with prominent linear
structures covering variations on camera motions, scenes
and fields of view. Our method can produce visually ap-
pealing stitching and our average RMSE for point matching
is 31% lower than that of SPW [17]. Meanwhile, ours works
the most accurate and stable for preserving the linear struc-
tures in terms of the proposed metric. Sections 3, 4 and 5
elaborate our contributions, respectively.

2. Related Works
This paper brings the line-guided image stitching method

that preserves both local and global structures. Hence, this
section reviews previous works related to warps for less dis-
tortion and warps with line structure constraints.

Traditional stitching methods usually estimate an opti-
mal global transformation for each input image. They can
only work well for ideal near planar scenes, and the result-
ing images often suffer from local artifacts and projective
distortion [2]. Therefore, some methods try to make warps
adaptive to different areas of images. Lin et al. [21] propose
a smoothly varying affine (SVA) transformation for better
local adaptation. Li et al. use Bayesian model to remove
outliers and the thin plate spline for analytical warp [14].
Gao et al. divide image into ground plane and distant
plane, and propose a dual-homography warp (DHW) [8]
to reduce the distortion. Shape-preserving half-projective
(SPHP) warps [4] combine the projection transformation
in the overlapping and non-overlapping area. Adaptive
as-natural-as-possible (AANAP) warps [18] share similar
idea, which transforms the homography transformation in
the overlapping area to the whole image. Herrman et al.



[9] introduce multiple registrations to capture greater ac-
curacy instead of a single registration. Li et al. propose
a quasi-homography (QH) warp [15], which relies on a
global homography while squeezing the non-overlapping
areas. However, they are not flexible enough to decrease
distortion for scenes with large parallax.

In order to get better alignment with less distortion,
APAP [30] fine-tunes the global homography warp to ac-
commodate location dependent alignment. Chen et al. pro-
pose a global similarity prior (GSP) based warps by min-
imizing an energy function consisting of alignment, local
and global similarity terms [5]. Their method aims at solv-
ing the distortion in non-overlapping area, but linear struc-
tures are not well protected. Zhang et al. achieve a bet-
ter performance by setting a series of prior constraints and
manual guidance [32]. Lin et al. take the difference of
pixel intensity into consideration, which works well in low
texture images [20]. Lee et al. partition images into super-
pixels and warp them adaptively using the computed fea-
ture matches according to the warping residuals for parallax
scenes [12].

In addition, there are some seam-based approaches for
less local distortion. A parallax-tolerant warp is proposed
that combines homography and content-preserving-warps
(CPW) [22] to control distortion [31]. However, their
method still leads to shape distortion in large parallax.
Lin et al. iteratively improves the seam-guided local align-
ment by adaptive feature weighting and introduces a novel
term to preserve salient line structures approach [19]. How-
ever, global distortion still exists in non-overlapping areas.

In order to achieve better stitching quality with less dis-
tortion and preserving linear structures, Li et al. intro-
duce line features into image stitching, which improves
content-preserving-warps by introducing linear alignment
terms [16]. Xiang et al. propose a line-guided local
warping with global similarity constraint [28]. Liao et
al. simultaneously emphasizes different characteristics of
the single-perspective warp, including alignment, distortion
and saliency [17]. However, global collinear structure has
seldom been addressed, and the conflict between local and
global structure preserving still exists in these approaches.

3. Pre-alignment Based on Consistent Line-
Point Constraints

In this section, a dual-feature (lines and points) based
pre-alignment algorithm is designed, which is demonstrated
in Fig. 2. First, image is divided into coplanar sub-regions
based on line detection, and one of them is illustrated in
green rectangle of Fig. 2. Then, sub-regions are matched
by the similarity calculated from a series of projective in-
variants. The third, matched point pairs are increased and
refined, and lines are matched by the homography between
matched regions. Finally, a global pre-alignment is con-

structed based on dual features.

3.1. Sub-region Division Based on Line Detection

Local homography between coplanar regions is more ac-
curate than global one. As many lines are formed by the
intersection of planes, we make a rough assumption that
the neighborhood determined by the length of the line can
be regarded as a local coplanar sub-region of the image.
LSD [26] is used to obtain the original line segments, then
the neighborhood of lines is split into the left one and the
right one according to the gradient direction, as points lo-
cated on different sides of a line may not be coplanar. The
gradient of a line is defined as the average gradient of all
points on it. As shown in Fig. 3, in the neighborhood of
a line, the distance from any pixel to the line is less than
α · len(l) and less than β · len(l) to the perpendicular bisec-
tor line. In our experiments, α and β are set as 2.0 and 0.5,
respectively [10].

3.2. Sub-regions Matching by Line-point Invariant

In order to match coplanar sub-regions and finally more
line and point pairs, a projective invariant Characteristic
Number (CN ) is introduced to construct a line-point invari-
ant, and the similarity between sub-regions is defined based
on it. The CN is defined as follows:

Let K be a field and Pm(K) be m-dimension projec-
tive space over K, and {Pi}i=1,2,...,R be distinct points in
Pm(K) that construct a close loop (PR+1 = P1). There
are distinct points {Q(j)

i }j=1,2,...,S on the line segment
{PiPi+1}i=1,2,...,R such that each pointQ(j)

i can be linearly
represented by Pi and Pi+1 as Q(j)

i = a
(j)
i Pi + b

(j)
i Pi+1.

Let P = {Pi}i=1,2,...,R andQ = {Q(j)
i }

j=1,2,...,S
i=1,2,...,R, then the

Figure 2: Overview of pre-alignment. In the left box with
dotted lines, line-point invariant is illustrated by the red
matching points and lines in two different views, labeled
as lj and l′j . New added point pairs are corresponded by
black double-headed arrows, and original point pairs are la-
beled in red double-headed arrows on the right dotted box.
Output matched line pairs are labeled by different colors on
right.



Figure 3: Coplanar sub-regions division and matching.
quantity

CN(P,Q) =
R∏
i=1

(

S∏
j=1

a
(j)
i

b
(j)
i

) (1)

is called the Characteristic Number of P and Q [10].
As the construction of CN requires a close loop and

equal number of points on each edge, we use five points
to construct a triangle and equal intersections on each
edge [10]. As shown in the upper left image of Fig. 2, K1

l

and K2
l are two endpoints on the red line l. P1, P2 and P3

are three non-collinear feature points on the same side of
the line that are marked as red dots. Any three of the points
(K1

l ,K
2
l , P1, P2, P3) are not collinear.

We denote the line through two points, Pi and Pj , as
PiPj and the intersection of two lines, PiPj , and PkPm,
as <PiPj , PkPm>. We can obtain several intersection
points (blue points), including U1 =< K1

l P1,K2
l P3 >,

U2 =<K1
l P1, P2P3>, U3 =<P1P2,K2

l P3>, U4 =<

K1
l P3, P1K2

l >, U5 =< K1
l K

2
l , U1P2 > and U6 =<

K1
l K

2
l , U1U4>.

Thus, we have 4K1
l U1K

2
l , and we are able to

calculate CN with P = {K1
l , U1,K

2
l } and Q =

{P1, U2, U3, P3, U5, U6}. We denote the CN value con-
structed in this way as CN(l, P1, P2,P3). Thereafter, in
the other view shown in the down left figure of Fig. 2,
we can construct 4K1

l
′U ′1K

2
l
′ in the same way, and

CN(l, P1, P2,P3) is equal to CN(l′, P ′1, P
′
2,P ′3) with cor-

responding matched line and point pairs. A series of CN
values can be obtained by different feature points.

Let I and I
′

denote the target and reference images, re-
spectively. We use SURF [1] to detect and match features,
and use LSD [26] to detect lines. Then, we can calculate
the similarity between candidate sub-regions based on a se-
ries of CN values within the corresponding regions [10].
For the matching sub-regions Reg ∈ I and Reg′ ∈ I ′

with the highest similarity, the existing matching point pairs
within the matching region are used to construct CN as
demonstrated in the left image of Fig. 2. The intersection
points U1, U2, U3, U4, U5, U6 on 4K1

l U1K
2
l , and the cor-

responding points U ′1, U
′
2, U

′
3, U

′
4, U

′
5, U

′
6 on 4K1

l
′U ′1K

2
l
′

are added into the matching points set to increase the an-

chor points for warping. Finally, we use RANSAC [7] to
refine matching points and estimate its local homography
H , which is used to obtain more matching lines in sub-
regions [10].

3.3. Pre-alignment Based on Dual Features

Let pi = (xi, yi, 1) and p
′

i = (x
′

i, y
′

i, 1) be matched
point pairs {(pi, p

′

i)}i=1,2,...,N in homogeneous coordi-
nates, where N is the number of matched point pairs, for
the set of matching line pairs {(lj , l

′

j)}j=1,2,...,L, lj ∈ I

and l
′

j ∈ I
′
, where L is the number of matching line pairs.

Line lj is represented as (lsj , l
e
j ), where lsj and lej are two

end points. In order to achieve a better registration, the
Euclidean distance between matched points and lines after
warps should be minimized. We denote H as the initial
homography, H∗ is the vector expression of H , and Ĥ∗ is
the desired homography. Therefore, a global homography
based on dual features can be expressed as

Ĥ∗ =argmin
H

(

N∑
i=1

||p
′

i ×Hpi||2 +
L∑
j=1

||dis(l
′

j , Hl
s,e
j )||2)

= argmin
H

(

N∑
i=1

||UiH∗||2 +
L∑
j=1

||VjH∗||2),

(2)
where dis(l

′

j , Hl
s,e
j ) denotes the distance between the end-

points Hls,ej and line l
′

j , H∗ ∈ R9. Ui ∈ R2×9 and Vj ∈
R2×9. We can easily minimize the function [UiVj ]TH∗ = 0
via SVD. Further, we use normalization and coordinate
axis rotation to improve the stability and accuracy of the
model [4] and [17].

4. Global Line-guided Mesh Deformation
The global homography estimated by pre-alignment only

provides an approximate transformation, but there are still
distortions and bent lines. The longer the salient lines, the
greater the straight line bending. In order to address this is-
sue, we explore global collinear structures for line preserv-
ing constraints and combine it with point-line alignment,
and distortion terms in an energy function.

4.1. Energy Function Definition
First, we construct rectangular meshes for each im-

age pair. Let I and I
′

denote the target and refer-
ence images, respectively. Suppose the index for the
mesh grid vertices is from 1 to n. Vector V =
[x1 y1 x2 y2 · · · xn yn]

T (V ∈ R2n) is used
to describe the coordinates of original vertex, and vector
V̂ = [x̂1 ŷ1 x̂2 ŷ2 · · · x̂n ŷn]

T (V̂ ∈ R2n) rep-
resents the coordinates of warped vertex. For any sample
point p ∈ I , we represent it as τ(p) by a bilinear interpo-
lation of its four enclosing grid vertices. Then, the corre-
sponding warped point p̂ is represented as τ(p̂). The total



Algorithm 1 Extraction of local and global lines.
Input: original set of lines Sl = l1, l2, ..., ln.
Output: the local lines set Slo and global lines set Sgl

1: procedure ”LINE-MERGING AND CLASSIFICATION”
2: for i = 1→ n do
3: for j = 1→ n− 1 do
4: if flag(llom) == 0 and flag(llon ) == 0
5: and i 6= j then
6: if θ = arctan| k(l1)−k(l2)1+k(l1)k(l2)

| < γ1 and
7: dis

(
lj , p

s
li

)
−dis

(
lj , p

e
li

)
< γ2 and

8: dis(peli , p
s
lj
) < γ3 ·dis(psli , p

e
lj
) then

9: merge li and lj as a new line lij and
10: Sl ← Sl ∪ {lij}, n = n+ 1 and
11: flag(llom) = 1, flag(llon ) = 1
12: end if
13: end if
14: end for
15: end for
16: for each l ∈ Sl do
17: if len (l) > µ then
18: Sgl ←− l
19: else
20: Slo ←− l
21: end if
22: end for
23: return Sgl and Slo
24: end procedure

energy function E(V̂ ) is
E(V̂ ) = Elp(V̂ ) + Ea(V̂ ) + Ed(V̂ ), (3)

where Elp(V̂ ) addresses line preserving term by protect-
ing both local and global lines, Ea(V̂ ) addresses point-line
alignment term by improving the correspondences between
matching points and lines, and Ed(V̂ ) addresses distortion
control term by preserving the slope of grid lines and warp-
ing the adjacent grids evenly.

4.2. Line Preserving Term

Both local individual salient lines and global collinear
line segments are crucial for warps. Thus, line preserving
term is defined as

Elp(V̂ ) = λloElo(V̂ ) + λglEgl(V̂ ), (4)
whereElo(V̂ ) andEgl(V̂ ) are constraints on local lines and
global co-linear line segments, respectively. λlo and λgl are
the weights of each term.

As shown in Fig. 4, the local red lines l1 . . . , l5 are sepa-
rated in space, but they are co-linear as illustrated by the
global blue line l6. As demonstrated in the second im-
age in Fig. 4, the local line structures can be kept but their
collinearity are easily destroyed during warping. Since such
distortions are very disturbing for human perception of im-
age quality, we design a merging strategy of local warp-

ings to preserve global linear structure by evaluating the
collinearity of line segments, which is one of our main con-
tributions. The merging process is detailed in Algorithm
1. We evaluate pairs of lines each time, and the merged
lines should meet three constraints. First, the slope of two
lines slope(li) and slope(lj) should be close. Second, the
distances from the endpoints to another line, which are
dis(lj , p

e
li
) and dis(lj , psli) should be small. Third, the dis-

tance of adjacent endpoints dis(peli , p
s
lj
) of two lines should

be small, shown in Fig. 4. Note that we introduce flag to
avoid infinite loop of merging lines, which is set to 0 ini-
tially and set to 1 after merging. While local lines are most
likely obtained by the original line fitting, the global lines
usually result from the merging process. It is worth noticing
that the length of each line len (l) is used to classify local
and global line segments by threshold µ.

Let us take lines {lg}g=1,2,...,Q in global line set Sgl as
an example, where Q is the number of lines. Each line is
uniformly sampled with Mg points {pgk}

g=1,2,...,Q
k=1,2,...,Mg

. Then,

Egl(V̂ ) =

Q∑
g=1

Mg−1∑
k=1

‖(τ(p̂gk+1)− τ(p̂
g
k)) ·
−→
ng‖2

= ‖WglV̂ ‖2,

(5)

where
−→
ng is the normal vector of lg , and Wgl ∈

R(
∑Q

g=1(Mg−1))×2n. We use the same method to construct
the constraint term for local lines.

Figure 4: A diagram demonstrating line merging.

4.3. Point-Line Alignment and Distortion Control

The point-line alignment term is defined based on an in-
tuitive constraint that matched point and line pairs should
be coincident with each other after warps, which is defined
as

Ea(V̂ ) = λpEp(V̂ ) + λlEl(V̂ ), (6)

where Ep(V̂ ) and El(V̂ ) are point and line alignment term,
respectively. λp and λl are the weights of each term.

In order to control the distortion of the target image I , a
series of horizontal and vertical lines are constructed, which



(a) Warpping result with cross lines of SPW

(b) Warpping result with cross lines of ours

Figure 5: Comparison of warpping result between SPW and
our method showing by the same number of cross lines.

are called cross lines. These constructed lines are regarded
as inherent linear structure of image I , as demonstrated as
red lines in Fig. 5. The slope of the lines and space be-
tween their intersections are used to control the distortion.
The distortion term is defined by global term Edg and non-
overlapping term Edn

Ed(V̂ ) = λdgEdg(V̂ ) + λdnEdn(V̂ ), (7)

where λdg and λdn denote the weights of each term.
As all constraint terms are quadratic, they can be refor-

mulated and minimized by a sparse linear solver. More
details can be found in [17]. The warping result is com-
pared with SPW [17], which also has line constraints. Both
methods have the same number of evenly spaced cross
lines for target image I in original. The warping result is
demonstrated in Fig. 5, and our method exhibits dense cross
lines and moderate transition from overlapping area to non-
overlapping area, showing good control to distortions, while
evident distortions appear in the results of SPW [17] shown
in the zoomed-in rectangle.

Figure 6: Quantitative evaluation for linear structures.

5. Quantitative Evaluation for Collinearity
In order to quantify the stitching performance on linear

structures, we design a new evaluation method that consid-
ers three aspects: the collinearity of points, the distance
of matched lines, and the discrepancy in the direction of
matched lines.

We sample Ps points {pjk}k=1,2,...,Ps
on line lj uni-

formly, which are labeled in red in Fig. 6. The bottom-
left figure in Fig. 6 demonstrates the fitted line lπj =

π({̂pjk}k=1,2,...,Ps
) to warped points {̂pjk}k=1,2,...,Ps

by
least square method. The error term Eerr for L lines is
defined as

Eerr =

√√√√ 1

L

L∑
j=1

||
Ps∑
k=1

(lπj (y)x=p̂jk(x)
− p̂jk(y))||2, (8)

where p̂jk(y) is the y-coordinate of p̂jk, and lπj (y)x=p̂jk(x)
is

the y-coordinate on lπj with the same x-coordinate as p̂jk.
As demonstrated in the upper-right figure of Fig. 6, the

distance term Edis represents the average distance between
two warped endpoints and the matching line, which is de-
fined as

Edis =

√√√√√ 1

L

L∑
j=1

||
dis(l

′
j , p̂

j
1) + dis(l

′
j , p̂

j
Ps
)

2
||2, (9)

where p̂j1 and p̂jPs
are two endpoints of l̂j .

The direction term Edir estimates the direction differ-
ence between the warped line and the matching line. We

represent line l̂j and line l
′

j as direction vectors
−→
l̂j and

−→
l
′

j , respectively. The endpoint with smaller x-coordinate
is used as the start point of each vector. As demonstrated
in the bottom-right figure of Fig. 6, the cross product of

two lines
−→
l
′

j ×
−→
l̂j = len(l

′

j)× len(l̂j)× sin(θ) can reflect
the direction difference of two vectors, which also takes the
length of two lines len(l

′

j) and len(l̂j) into consideration.
Hence, Edir for all lines is denoted as

Edir =

√√√√ 1

L

L∑
j=1

||
−→
l
′

j ×
−→
l̂j ||2. (10)

6. Experiments
We demonstrate the effectiveness of the proposed

method with an ablation study and with quantitative and
qualitative comparisons to the state-of-the-art on 15 testing
images pairs, which covered different types of datasets with
respect to camera motions, scenes and fields of view. In-
put images pairs are resized to 1000 × 800 pixels, and the
size for each mesh grid is 40 × 40. This allows us to keep



(a) Evaluation on collinearity of warped lines. (b) Distance of matched line pairs. (c) Angle difference of matched line pairs.

Figure 7: Quantitative comparison on linear structure preservation between SPW [17] and our method.

(a) Matching lines and points separately.

(b) Joint matching with the proposed consistent point and line pairs.
Figure 8: Ablation study on consistent lines and points matching.

all the parameters constant. The threshold µ to divide local
and global line segments is set to three times the diagonal
length of the grid. In energy function, λlo and λgl are set to
50 and 100 for lines preserving, λp and λl are set to 1 and 5
for point-line alignment, λdg and λdn are set to 50 and 100
for distortion minimization.

Dataset SVA CPW APAP GSP SPW Ours
[21] [22] [30] [5] [17]

APAP- 7.30 6.77 4.51 4.58 2.28 1.78railtracks
DH- 12.21 2.54 2.04 2.21 2.31 1.78temple

APAP- 11.36 7.06 5.16 5.01 4.4 2.02conssite
APAP- 9.16 6.33 5.24 4.47 2.11 1.89train
APAP- 8.98 6.36 5.19 4.15 2.85 1.44garden

DH- 4.05 3.60 1.38 1.78 1.54 1.31carpark
SVA- 20.78 9.45 2.96 2.88 1.88 1.69chessgirl

Table 1: RMSE on matched feature points.

6.1. Ablation Study

Consistent lines and points constraints can provide
accurate alignment and suppress artifacts. We substitute
our joint matching strategy with a separate points and lines
matching strategy [17] with other parts unchanged. Sam-
ple results are shown in Fig. 8. There are three stitching
instances, the enlarged overlapping areas are shown on the
right of each result. As we can see, our joint points and lines
matching produces clear stitching result in Fig. 8(b), while
there are obvious artifacts in Fig. 8(a).

Linear structure preserving can keep both local and
global linear structures and suppress the distortion as shown
in Fig. 9. In Fig. 9(a), local shapes are well preserved
but the lines are bent without linear constraints. When we
roughly use lines detected by LSD, the short lines on build-
ings and the ground are much better, but they are still not
straight enough. Especially, the bike has severe deforma-
tion in Fig. 9(b). By contrast, the local and global linear
constraints are well balanced in our method, as shown in
Fig. 9(c).

6.2. Comparison with the state-of-the-arts

Couple of experiments are conducted to compare the
stitching results with the existing methods including



(a) Without linear constraints. (b) With only local linear constraints. (c) With our local and global linear constraints.
Figure 9: Ablation study on structure preserving.

SVA [21], CPW [22], APAP [30], ELA [14], SPHP [4],
GSP [5], and SPW [17]. The quantitative and qualitative
results are from their papers or the released code.

We adopt quantitative evaluation on both points and
lines. The alignment accuracy on points is measured by the
root mean squared error (RMSE) [30] on a set of matched
points. Table 1 depicts the RMSE values on 7 image pairs
named in the first column. Our method yields the lowest
errors on all 7 pairs. Our average error is 1.7014, which is
31% lower than that of SPW. Moreover, the variance of our
errors is 0.05, which is 93% lower than the value 0.75 of
SPW.

Further, we evaluate linear structures using our three
measures proposed in Sec. 5. In Fig. 7, we compare our
method to SPW [17], which has local but not global line
constraints. As shown in Fig. 7, the x-coordinate indi-
cates the name of the image pairs, and vertical coordi-
nate indicates the errors. Our method outperforms SPW on
collinearity and difference of angles, as shown in Fig. 7(a)
and Fig. 7(c). In Fig. 7(b), the variance of our error is
0.0855, which is 87.11% less than 0.6630 of SPW, show-
ing less divergence errors for all pairs. SPW shifts severely
with about twice errors of us on the image pairs ’School’
and ’Building’.

A comprehensive visual comparison is demonstrated in
Fig. 10. Our method outperforms all the other methods
in preserving linear structure and in producing clear and
artifacts-free overlapping areas. The linear structures in the
first four rows all exhibit severe bent, labelled in red. Ev-
ident artifacts appear in the results of the existing methods
shown in the zoomed-in rectangles, such as the flowers, ta-
bles, and parasols.

7. Conclusion

We propose a structure preserving image stitching
method based on line-guided warping and line-point con-
straint. We partition input images into sub-regions, and
match them by line-point invariants. The local matching
provides accurate line and point pairs for pre-alignment,
showing no blur or artifacts in overlapping areas. We pro-

Figure 10: Comparison of different stitching methods.
pose a line-guided warp to preserve both local and global
structures while eliminating distortion for non-overlapping
area. Furthermore, we design a new quantitative evalua-
tion measure for linear structures, which is consistent with
human perception in that human vision is very sensitive to
distortions in linear structures. Experimental results demon-
strated that the proposed method accurately aligns overlap-
ping and non-overlapping areas on challenging test images,
and yields a significantly better performance compared with
the state-of-the-arts.
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