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Abstract

In this paper, we propose a novel framework for con-
tour based object detection. Compared to previous work,
our contribution is three-fold. 1) A novel shape match-
ing scheme suitable for partial matching of edge fragments.
The shape descriptor has the same geometric units as shape
context but our shape representation is not histogram based.
2) Grouping of partial matching hypotheses to object detec-
tion hypotheses is expressed as maximum clique inference
on a weighted graph. 3) A novel local affine-transformation
to utilize the holistic shape information for scoring and
ranking the shape similarity hypotheses. Consequently,
each detection result not only identifies the location of the
target object in the image, but also provides a precise loca-
tion of its contours, since we transform a complete model
contour to the image. Very competitive results on ETHZ
dataset, obtained in a pure shape-based framework, demon-
strate that our method achieves not only accurate object
detection but also precise contour localization on cluttered
background.

1. Introduction

Compared to other image cues, the outline contour (sil-
houette) is invariant to lighting conditions and variations in
object color and texture. More importantly, it can efficiently
represent image structures with large spatial extents [20].
Because of these advantages, contour information is widely
used in object detection and recognition methods. Recently,
several contour-based methods have been demonstrated to
work well on the task of object detection and recognition,
such as [8], [7], [20] and [21].

Given a gray scale image, edge pixels are obtained by an
edge detector, such as Canny [4] or Pb [14]. Then edge pix-
els are grouped to edge fragments in a bottom up process
using an edge-linking algorithm, e.g., [10]. An example of
obtained edge fragments is shown in Fig. 1(b), where each
edge fragment is marked with a different color. These frag-

ments usually form the input to a contour-based object de-
tection algorithm. Given the contour of the target object as
a model, the goal of contour-based object detection is to se-
lect a small subset of edge fragments that match well to the
model contour. The processes of selection and matching are
challenged by the following problems with extracted edge
fragments in real images: (1) Edge fragments representing
part of the target object are missing, e.g., lower part of the
legs in Fig. 1(b). (2) Edge fragments are broken into several
pieces. In our example image in Fig. 1(b) both contours
of the woman and the swam are broken in many pieces.
(3) Part of the true contour of the target object object may
be wrongly connected to part of a background contour re-
sulting in a single edge fragment. An example is given in
Fig. 1(c), where the yellow edge fragment contains part of
the true contour of the swan neck and its reflection in water,
which obviously does not belong to the true contour of the
swam.

(a) (b)

(c) (d)

Figure 1. (b,c) show edge fragments obtained from (a), which usu-
ally are the input to shape based object detection algorithms. (d)
shows a detection example of the proposed approach; the corre-
sponding parts in model and image have the same colors.
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These problems are unavoidable in real applications,
since a perfect edge detector does not exist [14]. In addi-
tion (1) may also result from partial occlusion of the target
object, which is common in cluttered scenes. Therefore,
any object detection approach must address problems (1-
3). Assuming that the contour of the target object is given,
problems (1, 2) imply that edge fragments can only match
parts of the object contour. The situation is significantly
more complex due to (3), which implies that only part of
an edge fragment may match to part of the object contour.
While all recent approaches , e.g. [21] [12], address the
problems (1,2), they suffer from problem (3), since they
treat the edge fragments as nonseparable building blocks
of the target contours. This may result in missing the tar-
get object in the image or locating the object inaccurately,
e.g., if the entire yellow fragment is assigned to the swam,
the detected bounding box will be larger than the ground
truth. To our best knowledge, only the approach in [19]
explicitly addresses problem (3) by introducing an efficient
partial matching schema based on integral image [22].

However, the final detection evaluation in [19] is appear-
ance based (SVM on HOG features), which demonstrates
weakness in the discriminative power of their partial match-
ing schema. There are at least two main reasons for this,
one is the selection of the best matching fragments in the
integral image framework and the other is simply weak dis-
criminative power of their shape descriptor, which is only
angle based.

We utilize the well-known geometric relations of shape
context as shape descriptor, but without any histogram rep-
resentation. One of our main contributions is the selection
of the best matching contour fragments in the integral image
framework, which by the virtue of the problem is very dif-
ferent from image matching frameworks. As the result we
obtain a powerful shape matching framework particularly
tailored for partial shape matching. This framework allows
us to solve problem (3), since the partial shape matching au-
tomatically selects parts of edge fragments that best match
to parts of model contour, we essentially generates a new
sets of edge fragments. We observe that each of these new
edge fragments has a known correspondence to part of the
model contour. Thus, partial shape matching is utilized not
only to establish the correspondence of edge fragments to
model contour parts but also as edge fragment filter.

Given the set of filtered edge fragments and their cor-
respondences to parts of the contour model, our next step
is to infer the possible locations of the target object in the
image. The inference must simultaneously perform selec-
tion and grouping of the edge fragments so that the sim-
ilarity to the model contour is maximized. We first con-
struct a graph whose nodes are the partial correspondences
and edges represent the compatibilities of these correspon-
dences. The location hypotheses are determined as maxi-

mal cliques in this graph, i.e., as subgraphs of the weighted
graph with maximal affinity of all pairwise connections. To
infer the maximal cliques we utilize a recently proposed al-
gorithm [11]. It is very robust in a noisy affinity graph and
the number of nodes in a dense-subgraph is automatically
determined. These features make it extremely suitable for
our task, because the number of fragments to be grouped is
unknown and varies a lot depending on the quality of edge
fragments. Moreover, the shape of single edge fragments
in the image is usually not very discriminative. Each ob-
ject location hypothesis is identified by several partial cor-
respondences. For example, in Fig. 1(d), four partial corre-
spondences identify the target object. We stress that we not
only selected the edge fragments in the image but also the
corresponding parts of the model contour. Therefore, we
can perform a holistic evaluation of the location hypothesis
with global shape similarity, i.e., we score each detection
hypothesis with a global shape similarity of grouped edge
fragments to the model contour.

However, the target object in the image may be distorted,
e.g., due to view point change or nonrigid deformation. In
addition, as stated above some parts of the model contour
do not have any correspondence in image due to missing
edge fragments. Therefore, the shape similarity measure
must tolerate deformations and missing parts. However, this
makes it less discriminative and increases the risk of ”hal-
lucinating” the target object in the background. It follows
that it is impossible to tolerate deformations and at the same
time keep high discriminative power to avoid hallucinating.
This is a very important problem that has not been explicitly
addressed by most of the existing approaches.

We address this problem by performing a nonrigid de-
formation of the model contour according to each detec-
tion hypothesis. A nonrigid deformation transformation is
obtained by a composition of local affine transformations.
Our intuition is that if a detection hypothesis is correct, the
deformed model will become more similar to the selected
edge fragments, while at the same time it remains similar
to the original model. If a detection hypothesis is wrong,
the composition of local affine transformations will likely
result in a completely deformed model that resembles nei-
ther the original model nor the configuration of the selected
edge fragments. However, the key benefit of the proposed
local affine transformation is its high capability in estimat-
ing the position of missing model parts (i.e., parts that do
not correspond to any selected edge fragments). This not
only results in a robust scoring of the detection hypotheses
but also allows us to put the deformed model contour on the
image.

2. Related Work
In recent years a large number of contour-based ob-

ject detection and recognition methods has been proposed.
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Many methods achieve state-of-the-art performance by only
utilizing edge information. For example, Shotton et al. [20]
and Opelt et al. [16] first learn codebooks of contour frag-
ments, then use Chamfer distance to match learnt fragments
to edge images. Ferrari et al. [8] [7] build a network of
nearly straight adjacent segments (kAS). In [23], Zhu et al.
formulate the shape matching of contour in clutter as a set
to set matching problem, and present an approximate so-
lution to the hard combinatorial problem by using a vot-
ing scheme. They use a context selection scheme by alge-
braically encoding shape context into linear programming.
Ravishankar et al. [18] use short segments to approximate
the outer contour of objects. They decompose the model
shapes into segments at high curvature points. Dynamic
programming is used to group the matched segments in a
multi-stage process which begins with triples of segments.
Lu et al. [12] first decompose the model into several part
bundles. They use particle filters as inference tool to simul-
taneously perform selection of relevant contour fragments
in edge images, grouping of the selected contour fragments,
and matching to the model contours. To address the non-
rigid object deformation, Bai et al. [1] use the skeleton in-
formation to capture the main structure of an object, and use
Oriented Chamfer Matching [20] to match the model parts
to images. Most recently, Srinivasan et al. [21] address the
contour grouping problem as many-to-one matching, and
use this scheme in both training and testing phases. For
purpose of improving detection and score ranking, a sophis-
ticated training process is designed in which latent SVM is
used to guarantee the many-to-one score is tuned discrimi-
natively. Besides of literature mentioned above, edge infor-
mation is also utilized in [19, 15, 3].

3. Shape Descriptor

We propose a novel shape descriptor that is particularly
suitable for shape matching of edge fragments in images to
model contours of target objects. Its basic geometric units
are the same as in shape context [2]. Shape context (SC)
appears to be one of the best performing shape descriptor
and definitely the most popular one. Given a planar set X
composed of a finite number of points, for every point x ∈
X we consider both the length and direction of the vector
from x to other points in X . However, different from SC,
we do not build any histograms representing the lengths and
directions.

Given two sequences of points P = {p1 · · · pm} and
Q = {q1 · · · qn} representing two contour fragments in 2D,
we compute two matrices, one representing all lengths and
the second representing all pairwise orientations of vectors
from each pi ∈ P to each qj ∈ Q. As a special case when
P = Q, the matrices describe the shape of the contour frag-
ment P . The distance D(P,Q)(i, j) from pi to qj is defined

as Euclidean distance in the log space

D(P,Q)(i, j) = log(1 + ||p⃗i − q⃗j ||2) (1)

We add one to Euclidean distance to make the D(P,Q)(i, j)
positive. The orientation Θ(P,Q)(i, j) from pi to qj is de-
fined as the orientation of vector p⃗i − q⃗j :

Θ(P,Q)(i, j) = ∠(p⃗i − q⃗j) ∈ [−π, π]. (2)

The relative geometric relation of two contour fragments P
and Q is encoded in two m×n matrices D(P,Q) and Θ(P,Q).
An example is given in Fig. 2.

Figure 2. Shape descriptor.

Given another two contour fragments T and U consist-
ing of the same number of points as P and Q, respectively,
we define two affinity matrices that measure the similarity
of the two fragment configuration (P,Q) to the other two
fragment configuration (T,U). The first affinity matrix is
based on comparison of distances between two pairs of cor-
responding pairs of points

AD(P,Q, T, U) = exp(− (D(P,Q)(i, j)−D(T,U)(i, j))2

(D(P,Q)(i, j) σ)2
).

(3)
where σ represents the tolerance of distance differences (it
is set to 0.2 in all our experiments).

To make the value of AD(P,Q, T, U) invariant to scale,
we divide each distance difference by the distance between
the first pair of points. The second affinity matrix is based
on angle comparison of vectors connecting the correspond-
ing pairs of points

AΘ(P,Q, T, U) = exp(− (Θ(P,Q)(i, j)−Θ(T,U)(i, j))2

δ2
),

(4)
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where the difference of angles is taken modulo π, i.e., it is
the angle between vectors p⃗i − q⃗j and t⃗i − u⃗j , and δ repre-
sents the tolerance of angle differences (it is set to π

4 in all
our experiments). Since both AD and AΘ are normalized,
we can simply add them to obtain the affinity matrix

A(P,Q, T, U) = AD(P,Q, T, U) +AΘ(P,Q, T, U). (5)

We observe that A is m × n matrix representing the simi-
larities of corresponding point pairs in (P,Q) and (T,U).
The similarity of two configurations of contour fragments
(P,Q) and (T,U) is defined as

Ψ(P,Q, T, U) =
1

nm

n∑
i=1

m∑
j=1

A(P,Q, T, U). (6)

As a special case of Eq. (6), we obtain a similarity between
two contour fragments P and T defined as

Ψ(P, T ) = Ψ(P, P, T, T ) (7)

(here we slightly abuse the notation for the sake of sim-
plicity). When Q is the same as P in Eq. (1) and (2), the
matrices D(P,P ) and Θ(P,P ) represent all pairwise distances
between all pair of points of P and corresponding angles of
the vector connecting the points. Thus, two matrices form a
shape descriptor of the contour fragment P and similarly for
T . Hence Ψ(P, T ) simply compares the shape descriptor of
the contour fragments P and T .

4. Partial Matching between Edge Fragments
and Model Contour

Given an image I , using edge-linking software [10], a set
of edge fragments E = {e1 · · · eK} is generated. Each frag-
ment ek is a list of Nk points (i.e., pixels) {q1, · · · , qNk

}.
According to our descriptor, the geometry of fragment ek is
encoded in two Nk ×Nk matrices: AD and AΘ. Similarly,
two M×M matrices are used to fully represent the contour
of a model M composed of points {p1, · · · , pM}.

Our goal is to find the best matching between a part of
image edge fragment ek with a part of model fragment pm.
Thus, we need to find a part M(i, l) = {pi, · · · , pi+l−1} ⊆
M, where i is the starting point of the part and l is its length.
(The indices are modulo M if the model contour fragment
is a closed curve.) Since cannot expect that the whole im-
age fragment participates in the matching, we need to si-
multaneously select part ek(j, l) = {qj , · · · , qj+l−1} ⊂ ek,
where j is the starting point of the fragment part and its
length is also l.

Our goal can be expressed as finding two corresponding
subblocks of their shape matrices with the maximum simi-
larity Ψ defined in (7). To achieve this goal we construct a
4D tensor matrix

Γ(i, j, l, k) = Ψ(M(i, l), ek(j, l)) (8)

and observe that Γ(i, j, l, k) can be computed efficiently by
utilizing the integral image algorithm, since it allows to ac-
cess any element in the 4D matrix in constant time [5, 22].

Intuitively, when very few points are involved in a
matching, the shape similarity is neither reliable nor dis-
criminative enough. Therefore, we set a threshold τ on the
minimal number of matching points and set Γ(i, j, l, k) = 0
if l < τ . We then take the maximum of the 4D matrix along
different l, and suppress it to

S(i, j, k) = max
l

Γ(i, j, l, k) (9)

We observe that the index of the maximal value of S deter-
mines a pair of best matching subsegments of M and ek:

G(i, j, k) = argmax
l

Γ(i, j, l, k) = (M(i, l), ek(j, l)).

(10)
Based on these local observations, the most popular

method to form object location hypothesis is using Hough
voting, such as in [19]: local maxima of S(i, j, k) for certain
fragment ek are identified, and corresponding fragment cor-
respondences are used to estimate object location by Hough
voting. However, Hough voting seems not to be an optimal
choice here. When each part correspondence independently
cast a vote, the cluttered background is more likely to get
a larger score, since single edge fragments are unlikely to
carry discriminative shape information.

More discriminative shape information can be obtained
by considering all pairwise shape relations of several edge
fragments. We introduce a graph-based clustering method
to find location hypothesis through which shape depen-
dency of local edge fragments is naturally captured.

5. Object Localization as Maximal Clique
Computation in a Weighted Graph

Each vertex v ∈ V of our graph corresponds to a par-
tial match G(i, j, k) (10), i.e., v represents a model segment
M(i, l) selected as best matching to part ek(j, l) of the edge
fragment ek. To limit the number of vertices G(i, j, k),
for each point i in model M, we only choose the best K
matches as vertices according to their corresponding simi-
larity S(i, j, k). Therefore, for a given model M contour
with M points, the number of vertices is equal to M ×K.

Given two pairs of matches, i.e., two vertices vi =
{M(i1, l1), em(j1, l1)} and vj = {M(i2, l2), en(j2, l2)},
if vi ̸= vj we define the edge weight as

A(i, j) = Ψ(M(i1, l1),M(i2, l2), em(j1, l1), en(j2, l2)),
(11)

which measures the shape similarity of the configuration
of two model segments M(i1, l1) and M(i2, l2) to a cor-
responding configuration em(j1, l1) and en(j2, l2) of two
parts of edge fragments. As a special case, we define

A(i, i) = Ψ(M(i1, l1), em(j1, l1)), (12)
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which measures the shape similarity of a single model seg-
ment M(i1, l1) to a corresponding edge part em(j1, l1).

To sparsify the affinity matrix A, we observe that
em(j1, l1) and em(j2, l2) can only correspond to M(i1, l1)
and M(i2, l2) if they are relatively close to each other.
In practice, we compare the average value of dis-
tance matrix D(em(j1,l1),em(j2,l2)) to average value of
D(M(j1,l1),M(j2,l2)). If the difference is larger than a rea-
sonable value, we set A(i, j) = 0 (for instance in our ex-
periment, it is the square root of model size multiply the
scale).

Meanwhile, partial matching vi and vj may refer to the
corresponding of the similar position of model only with
a few pixels offset. We do not want to have these kind of
partial matches co-occur in a solution of clustering, since
for a true positive configuration of an object hypothesis, it is
impossible that several fragments in image corresponding to
the same part of model. Based on f = |M(i1,l1)∩M(i2,l2)|

|M(i1,l1)∪M(i2,l2)| ,
we tell if vi and vj get the same part of model involved in.
If f < t, we set A(i, j) = 0. In experiment, t equals to 0.5.

The obtained weighted affinity graph is denoted as G =
(V,A). Our goal is to find all maximal cliques in this graph.
As stated in [17], a maximal clique is a subset of V with
maximal average affinity between all pairs of its vertices,
which is equivalent to the fact that the overall similarity
among internal elements is higher than that between exter-
nal and internal elements. In our case, given a shape model
and corresponding partial matches in the image, clustering
is expected to find several pairs of matches with high values
of all pairwise similarities. To formally state our goal, we
introduce an indicator vector x over the vertices V , i.e., has
M ×K coordinates. A vertex v ∈ V is selected as belong-
ing to a maximal clique if and only if xv > 0, where xv

denotes the v coordinate of x. Then each maximal clique is
defined as the solution of the following quadratic program

maximize f(x) = xTAx
subject to x ∈ △,

(13)

where △ = {x ∈ RM×K : x ≥ 0 and ||x||1 = 1} is the
simplex in RM×K .

Each maximal clique corresponds to a local solution of
Eq. (13). We are using the recently proposed algorithm
in [11] to compute the local solutions. Each solution x, i.e.,
maximal clique, is treated as an object detection hypothesis.
It consists of several model contour segments and the cor-
responding parts of edge fragments. The final evaluation of
the hypotheses is presented in the next section.

6. Evaluation of Detection Hypotheses
By considering the partial matches as a whole, a de-

tection hypothesis is expressed as the correspondence be-
tween a subset of points on the model and a subset of edge

points in image. We denote the subset of model points as
Ma ⊂ M, and subset of image edge points as Ea ⊂ E.
Clearly there exists a bijection T between Ma ⊂ M and
Ea ⊂ E, i.e., if x ∈ Ma, T (x) ∈ Ea. For each hypothe-
sis, there are usually some points in the model that have no
correspondence in the image, i.e., Mb = M \ Ma ̸= ∅.
The mapping T : ℜ2 → ℜ2 can be regarded as affine-
transformation Z which consists of scaling, translation and
rotation. Here, we intend to extend T to conclude the trans-
formation Z for x ∈ Mb. Therefore, we define T for
x ∈ M as following:

T (x) = Ma → Ea, if x ∈ Ma

= xZ, if x ∈ Mb

(14)

For each point among Mb, our goal is to determine the
appropriate affine-transformation based on existing map-
ping relations Ma → Ea. We attempt to locally estimate
Z for every x ∈ Mb. This is motivated by the observa-
tion that affine transformations of points belong to the same
part of model are usually consistent, e.g., the points on swan
neck. Based on the distance of indices in the model points
sequence, we find the a certain number of close points of
x ∈ Mb, and denote them by N(x) ⊂ Ma. The reason that
we define distance as difference between points indices in-
stead of their geometry closeness is: M is an ordered points
set, point connectedness is more important than the close-
ness in geometry. Then Z is computed as:

Z = min
Z∗

d(T (N(x)), N(x)Z∗) (15)

Here, function d is simply computing the accumulate square
distance between T (N(x)) and N(x)Z∗. Thus, Eq. (15) is
turned into

T (x) = Ma → Ea, if x ∈ Ma

= xmin
Z∗

d(T (N(x)), N(x)Z∗), if x ∈ Mb

(16)

By applying mapping T on every point x ∈ M, a set of
points T (M) corresponding to model points is obtained. It
is used for later scoring.

6.1. Scoring and Ranking

As mentioned above, the confidence for a hypothesis is
evaluated from two aspects.

S(T (M)) = Ψ(M, T (M))×Ψ(T (M), T ′(M)) (17)

The first score indicates how well M is corresponded
to T (M) considering the geometric arrangement, which is
simply computed using Eq. (6).

Moreover, we also need to measure if T (M) is consis-
tent with the contour cues in image. This is indicated by
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the second score. For this purpose, we first calculate tan-
gent direction θ for both points in T (x), x ∈ Mb and edge
points E in image. This makes each point to be 3D data, i.e.,
[x, y, θ]. In this 3D space, for each point in T (x), x ∈ Mb,
we use kd-tree algorithm to find the closest point in E. All
these closest points from E are aggregated, together with
the points in Ea, are denoted by T ′(M). We measure the
similarity between T (M) and T ′(M) using Eq. (6). Fi-
nally, we rank all obtained hypothesis according to the con-
fidence S(T (M)).

7. Experimental Results
We present results on the ETHZ shape classes [8] which

features five diverse classes (bottles, swans, mugs, giraffes,
apple-logos) and contains a total of 255 images. For all
categories, there are significant inner-class variations, scale
changes, and illumination changes. Most importantly, the
dataset comes with ground truth gray level edge maps,
which is computed by Pb edge detector [14]. This makes
it possible to have a fair comparison of contour-based ob-
ject detection methods.

Depending on the way of selecting shape models for
each category, we follow two different experiment proto-
cols. First, we utilize single hand-drawn shape model for
each class, and testing is done on all 255 images. Second,
we follow the protocol in [7]. We use the first half of images
in each class for training, and test on the second half of this
class as positive images plus all images in other classes as
negative images. In our approach we only use the ground
truth outlines of objects present in the first half of images
for each class. We apply our shape descriptor to compute
pairwise similarity of the outlines, and use affinity propaga-
tion clustering algorithm [9] to automatically obtain several
prototype shape models. Thus, our training is only used to
select prototype contour models.

For the purpose of detection evaluation, we follow the
PASCAL criteria, i.e., a detection is deemed as correct if the
intersection of detected bounding box and ground truth over
the union of the two bounding boxes is larger than 50%.

To convert the gray level edge map to binary edge map,
we set all pixels with their values larger than 0 as edge pix-
els. This means we do not adjust the threshold to get better
edges. During detection, 5 different scales are searched for
every image. Non-maximum suppression is used to remove
duplicate hypothesis.

We focus on comparison to the state-of-the-art contour-
based object detection methods, in particular to [7, 21, 12].
We plot the precision/recall (PR) curves in Fig. 3. Table 1
shows the interpolated average precision (AP) value for 5
methods. Our method achieves the best mean AP and the
best AP for category Swans. Our AP is comparable to the
best ones in the other four classes. The mean AP of our
method is slightly better than [21] and much better than the

other contour-based methods.
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Figure 3. Precision/Recall curves of our method compared to Lu
et al. [12], Felz et al. [6], Maji et al. [13], and Srinivasan et al. [21]
on ETHZ shape classes. We report both the results with single
hand-drawn model and with learned models.

We also show the false positives per image (FPPI) vs. de-
tection rate (DR) in Fig. 4. Table 2 compares the detection
rates at 0.3/0.4 FPPI. Our method also achieve comparable
result to [21], but the mean value of [21] is slightly better
than ours for this measure. We observe that our method is
the only one with no difference in detection rates at 0.3 FPPI
and 0.4 FPPI. The curve of our methods increases sharply
at the beginning and reaches the peak of the detection rate
before 0.3/0.4 FPPI.

Besides the presented evaluation of the object detection
accuracy, which is based on bounding box intersection, ac-
curacy of localizing the boundary of detected objects is ex-
tremely important in many applications. Since our final de-
tection evaluation includes nonrigid deformation of a con-
tour model and positioning the deformed model on the edge
image, we are able not only to precise localize the bound-
ary but also to complete the missing contours. This fact is
illustrated by our example detection results shown in Fig. 5.

To qualitatively evaluate the contour detection accuracy,
we use the coverage and precision measure defined in [7].
The coverage value shows what percentage of true bound-
aries have been successfully detected. The precision val-
ues measures how many detected edge points are inside the
true boundaries. We compare the coverage/precision of our
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Applelogos Bottles Giraffes Mugs Swans Mean
Our method 0.881 0.920 0.756 0.868 0.959 0.877

Srinivasan et al. [21] 0.845 0.916 0.787 0.888 0.922 0.872
Maji et al. [13] 0.869 0.724 0.742 0.806 0.716 0.771

Felz et al. code [6] 0.891 0.950 0.608 0.721 0.391 0.712
Lu et al. [12] 0.844 0.641 0.617 0.643 0.798 0.709

Table 1. Comparison of interpolated average precision (AP) on ETHZ Shape classes.

Applelogos Bottles Giraffes Mugs Swans Mean
Our method 0.92/0.92 0.979 / 0.979 0.854/0.854 0.875/0.875 1 / 1 0.926 / 0.926

Srinivasan et al. [21] 0.95/0.95 1 / 1 0.872/0.896 0.936/0.936 1 / 1 0.952 / 0.956
Maji et al. [13] 0.95/0.95 0.929 / 0.964 0.896/0.896 0.936/0.967 0.882 / 0.882 0.919 / 0.932

Felz et al. code [6] 0.95/0.95 1 / 1 0.729/0.729 0.839/0.839 0.588 / 0.647 0.821 / 0.833
Lu et al. [12] 0.9/0.9 0.792 / 0.792 0.734/0.77 0.813/0.833 0.938 / 0.938 0.836 / 0.851

Riemenschneider et al. [19] 0.933/0.933 0.970 / 0.970 0.792/0.819 0.846/0.863 0.926 / 0.926 0.893 / 0.905
Ferrari et al. [7] 0.777/0.832 0.798 / 0.816 0.399/0.445 0.751/0.8 0.632 / 0.705 0.671 / 0.72
Zhu et al. [23] 0.800/0.800 0.929 / 0.929 0.681/0.681 0.645/0.742 0.824 / 0.824 0.776 / 0.795

Table 2. Comparison of detection rates for 0.3/0.4 FPPI on ETHZ Shape classes.
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Figure 4. Comparison of DR/FPPI curves on ETHZ shape classes.

method with [7] in Table 3. Our method achieves a higher
precision value on all 5 classes, especially there is a big
improvement for Applelogos, Bottles, and Swans. For cov-
erage, our method is better on 3 classes, but worse on the
classes of Giraffes and Mugs. The reason is that our models
for Giraffes and Mugs are very simple, in particular, we do

Our method Ferrari et al. [8]
Applelogos 0.923/0.948 0.916/0.939

Bottles 0.845/0.903 0.836/0.845
Giraffes 0.456/0.784 0.685/0.773
Mugs 0.735/0.803 0.844/0.776
Swans 0.848/0.909 0.777/0.772

Table 3. Accuracy of boundary localization of the detected objects.
Each entry is the average coverage/precision over trials and correct
detections at 0.4 FPPI.

not have the inner contour of the mug handle and the lower
part of the giraffe outline as can be seen in Fig. 5. There-
fore, some part of the true boundaries, such as the internal
handle of mugs, are not detected.

8. Conclusion
We present a novel framework for contour based object

detection with three main contributions. First, we intro-
duce a partial shape matching scheme suitable for matching
of edge fragments, in which the shape descriptor has the
same geometric units as shape context but is not histogram
based. Second, we group partial matching hypotheses to
object detection hypotheses via maximum clique inference
on a weighted graph instead of Hough voting. Third, a
unique feature of our approach is that we perform nonrigid
deformation of a contour model and position the deformed
model on the edge image. Our deformation is based on
a local affine-transformation guided by the partial match-
ing to edge fragments. By combining these components,
we obtain an effective purely shape-based object detection
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Figure 5. Some detection results of ETHZ dataset. The edge map
is overlaid in white on the original images. Each detection is
shown as the transformed model contour in black. The red framed
images in the bottom row show two false positives.

framework. Our method compares favorable to other state-
of-the-art purely shape based methods. In particular, we
achieve the best average precision (AP) value averaged over
all 5 classes of the ETHZ dataset. The evaluation on the
ETHZ dataset demonstrates that the proposed method not
only achieves accurate object detection but also precise con-
tour localization on cluttered background.
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