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Abstract

The matching and retrieval of 2D shapes is an impor-
tant challenge in computer vision. A large number of shape
similarity approaches have been developed, with the main
focus being the comparison or matching of pairs of shapes.
In these approaches, other shapes do not influence the simi-
larity measure of a given pair of shapes. In the proposed ap-
proach, other shapes do influence the similarity measure of
each pair of shapes, and we show that this influence is ben-
eficial even in the unsupervised setting (without any prior
knowledge of shape classes). The influence of other shapes
is propagated as a diffusion process on a graph formed
by a given set of shapes. However, the classical diffusion
process does not perform well in shape space for two rea-
sons: it is unstable in the presence of noise and the under-
lying local geometry is sparse. We introduce a locally con-
strained diffusion process which is more stable even if noise
is present, and we densify the shape space by adding syn-
thetic points we call ’ghost points’. We present experimen-
tal results that demonstrate very significant improvements
over state-of-the-art shape matching algorithms. On the
MPEG-7 data set, we obtained a bull’s-eye retrieval score
of 93.32%, which is the highest score ever reported in the
literature.

1. Introduction
Shape is one of the most important features of an image

and it plays a key role in human perception. Human beings
tend to perceive scenes as being composed of individual ob-
jects which can be best identified by their shape. Further-
more, the shape of an object is simple for a user to describe,
either by giving an example or by sketching. However, us-
ing shape information to recognize objects has proven to
be a difficult task for computer vision systems. Many ap-
proaches have been introduced to better describe shape fea-

tures and to improve shape similarity measures. Although
many of these approaches can increase the accuracy of clas-
sifying and recognizing shapes, none of them can solve the
following problem. Suppose there is a space describing
shapes. Since differences between shapes in the same class
can be very large and differences between shapes in differ-
ent classes can be very small, no pairwise shape compari-
son can describe shape dissimilarity correctly. Therefore,
the distance between two shapes can be correctly described
only if it is considered in the context of other shapes sim-
ilar to them, which is the motivating idea of the proposed
approach.

In our approach, the influence of other shapes is propa-
gated as a diffusion process on a graph formed by a given
set of shapes. However, as the shape space is sparse (see
Sec. 2), in some cases the diffusion process can not prop-
agate properly. It is obvious that adding more data points
to the shape space would make the estimation of the data
manifold more accurate. In other words, if the shape space
is properly densified, a diffusion process is able to better re-
veal its underlying manifold structure. We propose a novel
method to add synthetic data points to distance spaces that
are not Euclidean spaces. We introduce synthetic points
with correct distances to the existing points. To the best of
our knowledge, this is the first time researchers try to solve
the problem of densifying non Euclidean data manifolds,
and as our experimental results illustrate, the diffusion pro-
cess performs significantly better on the desified manifolds.

(a) (b) (c)

Figure 1. (c) The mean horse computed by averaging correspond-
ing sample contour points of the aligned shapes in (a) and (b).
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Figure 2. First row: the retrieval results of the mean horse from Fig. 1(c). Second row: the retrieval results of the ghost horse created by
the averaging in distance space of the two shapes in Figs. 1(a) and (b).

There have been several proposed approaches to add syn-
thetic examples in the Euclidean space. They goal is also
different, since they try to solve the problem of balancing
the number of examples in different classes, specifically
over-sampling minority classes. For example, the SMOTE
(Synthetic Minority Over-Sampling Technique) [5] algo-
rithm and its variations [1, 16] have been found to be
successful in classification problems but their methods are
not suitable for shapes, since they work only in Euclidean
space. In those methods, synthetic points are added as a
weighted average of the Euclidean coordinates of two ex-
isting points. However, the Euclidean distance is known
to be unsuitable as a shape dissimilarity measure even if
shapes are represented as vectors of their contour sample
points. For example, the horse in Fig. 1(c) is computed as
the average of the Euclidean coordinates of the two horses
in Fig. 1(a) and Fig. 1(b). The Euclidean coordinates were
obtained as sequences of 2D coordinates of 100 aligned
contour sample points. Although the feature points of both
horses correspond, it is difficult to recognize the shape in
Fig. 1(c) as a horse. To demonstrate the problem, we sub-
mitted the mean horse as a query to the MPEG-7 CE-Shape-
1 part B data set [11]. The top ten retrieval results are shown
in the first row of Fig. 2, ordered from left to right. Obvi-
ously none of the retrieval results is correct, but they are
similar to the mean horse. For example, the tines of the
forks are similar to the ’legs’ of the average horse. The sec-
ond row of Fig. 2 shows the retrieval results of the ’syn-
thetic horse’ generated by the proposed approach, which
are all correct. We used the Inner Distance Shape Context
(IDSC) [12] as the shape distance in both cases.

The second main idea in this paper is to replace the orig-
inal diffusion process with a locally constrained diffusion
process. As we will demonstrate in Section 4, it is signifi-
cantly more robust to noise than the original diffusion pro-
cess.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce metric embedding and the construction
of synthetic points. In Section 3, the classical diffusion pro-
cess is introduced. In Section 4 we describe the proposed
locally constrained diffusion process in detail. The experi-
mental results are shown in Section 5. In Section 6 we dis-
cuss the relation between the proposed approach and other
methods.

2. Ghost points and metric embedding
In this paper, we view shape space as a set X and a

distance function ρ : X × X → <, where < denotes
real numbers. We require only that ρ(x, y) ≥ 0 for all
(x, y) ∈ X × X and ρ(x, y) = 0 if x = y. Clearly, we
would like ρ to be as close as possible to a metric, but this
is not always possible, since there are clear arguments from
human visual perception that the distance between shapes
does not always satisfy the triangle inequality and the sym-
metry conditions. In any case, for theoretical reasons, we
assume in Section 2.1 that ρ is a metric. However, as we
will demonstrate in our experimental results, this assump-
tion is not necessary for practical applications.

By embedding a metric space into a Euclidean space, we
add new synthetic points to the shape space. We can do this
so that the new points have correct distances to all existing
points. Thus, the new points augment the shape space X
but we cannot visualize them, which is the reason we call
them ghost points.

2.1. Definition of ghost points

The goal of metric embedding is to embed a metric space
into a Euclidean space so that the distances between points
are preserved. A distance preserving mapping between two
metric spaces is called an isometry.

It is known that not every four point metric space can
be isometrically embedded into a Euclidean space <k, e.g.,
see [14]. However, every three point metric space can
be isometrically embedded into the plane <2. Let (∆, ρ),
where ∆ = {x, a, b} ⊆ X , be a metric space with three
distinct points. Then it is easy to map ∆ to the vertices of
a triangle on the plane. Let h : ∆ → <2 be the isometric
embedding, which means that for any two points y, z ∈ ∆,
ρ(y, z)2 = ||y − z||2, where || · || is the standard L2 norm
that induces the Euclidean distance on the plane.

Let µ(a, b) denote the mean of two points a, b. If a, b ∈
<2, then we have the usual formula µ(a, b) = 1

2 (a+ b) (see
Fig. 3, where e = µ(a, b)).

Our first key contribution is the definition of µ(a, b) for
any two points a, b in a metric space X . To define µ(a, b) in
a metric space X , we need to specify ρ(x, µ(a, b)) for every
x ∈ X . We first isometrically embed the three point metric
subspace ∆ = {x, a, b} ⊆ X into the plane <2 by h. We
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Figure 3. The construction of ρ(x, e) for e = µ(a, b).

define µ(a, b) = h−1( 1
2 (h(a) + h(b)). Since h(∆) defines

vertices of a triangle on the plane, we can easily derive that

||h(x)− h(a) + h(b)
2

||2 =

||h(x)− h(a)||2
2

+
||h(x)− h(b)||2

2
− ||h(a)− h(b)||2
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Since h is an isometry and µ(a, b) = h−1( 1
2 (h(a) + h(b)),

we obtain (see Fig. 3)

ρ(x, µ(a, b))2 =
1
2
ρ(x, a)2 +

1
2
ρ(x, b)2 − 1

4
ρ(a, b)2 (1)

Consequently, Eq. 1 defines the distance of every point
x ∈ X to the new point µ(a, b), which we call the mean of
a and b. By computing the distances of µ(a, b) to all points
in X , we define a new point µ(a, b), and the augmented set
X ′ = X ∪ {µ(a, b)} is also a distance space. We stress that
to add a new point µ(a, b) to X we do not need to compute
the embedding h. We use h only to derive Eq. 1. More-
over, since the embedding h is an isometry, Eq. 1 defines
correct distances from µ(a, b) to all points in X . This fact
is illustrated in the second row of Fig. 2, where we see the
sorted 10 closest shapes shapes to µ(a, b) with a and b being
the two shapes in Figs. 1(a) and (b). As shown in the first
row of Fig. 2, simple averaging in Euclidean space may not
produce correct distances, since the Euclidean distance is
not adequate for shape similarity. We used Inner Distance
Shape Context (IDSC) [12] as our shape distance function
ρ in this example.

If the space X is finite, i.e., X = {x1, . . . , xn}, then
the distance function ρ : X ×X → <≥0 is represented by
a square matrix Mρ(X). Each row of the square distance
matrix Mρ(X) is the distance of one shape x to all shapes
in the data set, i.e., for all y ∈ X , Mρ(x, y) = ρ(x, y). The
matrix for X ∪ {µ(a, b)} is obtained by simply adding one
row and one column to Mρ(X), with each entry computed
using Eq. 1.

2.2. Strategies for adding ghost points

There are many possible strategies for adding ghost
points. Our strategy is very simple. We add to X =
{x1, . . . , xn} a point µ(x,NN1(x)) for each x ∈ X , where

NN1(x) is the first nearest neighbor of x different from x,
i.e., NN1(x) = argminy∈S(ρ(x, y)) for S = X \ {x}.
However, if y = NN1(x) and x = NN1(y), this strategy
would insert the same ghost point twice. Therefore, we need
to take care to not add duplicate ghost points. After adding
the ghost points, we obtain a new shape space X ′. As we
will show in the experimental results, the augmented space
X ′ densifies the original shape space X in such a way as to
make the estimation of the data manifold more accurate.

This densification of space X is performed in the unsu-
pervised setting, since we do not assume any knowledge of
the class labels of points in X . To augment X in a super-
vised setting, we add ghost points to X as described above
with the one exception that the first nearest neighbors are
computed within the class of a given point, i.e., instead
of S = X \ {x}, we define S = {y ∈ X| class(y) =
class(x) and y 6= x}

We use the augmented shape space X ′ in the diffusion
process (Sec. 3) to influence the shape similarity measures
between the query shape and all other shapes. After the
diffusion process is run, we exclude the ghost points and
calculate our retrieval and classification rates based on only
the original shape data set to allow for a fair comparison to
existing methods.

3. Diffusion process

Given a set of data points X = {x1, . . . , xn}, we con-
sider a fully connected graph G = (X,E). The vertices of
G are the data points and each edge E is labeled with the
strength of the connection E(i, j) = k(xi, xj), where k is
a kernel function that is symmetric and positivity preserv-
ing. In this paper, given two shapes xi and xj , k(xi, xj)
is defined by applying a Gaussian to the shape distance
ρ(xi, xj).

From the symmetric graph defined by (X, E), one can
construct a reversible Markov chain on X . This is a clas-
sic technique in many fields. The degree of each node is
defined as

D(xi) =
n∑

j=1

k(xi, xj)

and the transition probability is defined as

P (xi, xj) =
k(xi, xj)
D(xi)

.

It is obvious that the transition matrix P inherits the
positivity-preserving property, but it is no longer symmet-
ric. However, we have gained a conservation property:

n∑

j=1

P (xi, xj) = 1



From a data analysis point of view, the reason for studying
this diffusion process is that the matrix P contains geomet-
ric information about the data set X . Indeed, the transitions
that it defines directly reflect the local geometry defined by
the immediate neighbors of each node in the graph of the
data. In other words, P (xi, xj) represents the probability
of transition in one time step from node xi to node xj and it
is proportional to the edge-weight k(xi, xj). For t ≥ 0, the
probability of transition from xi to xj in t time steps is given
by P t(xi, xj), which is the tth power P t of P . One of the
main ideas of the diffusion framework is that the chain run-
ning forward in time, or equivalently, taking larger powers
of P , allows us to integrate the local geometry and there-
fore reveals relevant geometric structures of X at different
scales, where t plays the role of a scale parameter. In [6],
the data points can be embedded into Euclidean space by
diffusion maps (DM), which can then reorganize the data
points according to their geometric relation as revealed by
the diffusion process.

Ideally, diffusion coordinates generated by diffusion
maps should reveal the intrinsic geometric structure of the
underlying data manifold. However, as we illustrate by the
following example, the diffusion process is still sensitive
to noise. Our example illustrates that the diffusion process
may fail to capture the correct topology if the actual topol-
ogy of the data manifold is changed because of noise or
outliers. Since noise and outliers can influence the distri-
bution of data points, low density areas may become high
density areas or vice versa, which will make the transition
probability of the diffusion process incorrect. In Fig. 4, the
samples are taken from a spiral as a function of arc length
l with added Gaussian noise and a noise ’bridge’ between
inner and outer samples. Since the underlying manifold has
a 1D structure, we would expect the diffusion process to be
able to recover it when we use the coordinates of the second
most important eigenvector, as described in [18, 23].

In Figs. 4(a) and (c), we plot the coordinates of the sec-
ond most important eigenvector as a function of arc length
(measured as point index). As can be clearly observed
in Fig. 4(a), the function from arc length to the second
diffusion coordinate is not one-to-one, which means that
the intrinsic 1D structure of the spiral has not been recov-
ered by the standard diffusion process. Correspondingly, in
Fig. 4(b), the order of points according to their second dif-
fusion coordinate is color coded. Points with similar color
have similar second diffusion coordinates. The fact that the
1D structure is not recovered is shown by the yellow col-
ored points that are present in the bottom left as well as
in the top right parts of the spiral. As shown in Figs. 4(c)
and (d), the proposed locally constrained diffusion process
(Sec. 4) is able to recover the 1D structure of the spiral. The
graph in (c) does jitter a bit since we approximate the arc
length coordinates of the spiral with the point index.
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Figure 4. An example comparing the standard diffusion process
(DM) to our method (LCDP). (a) is the plot of second most impor-
tant eigenvector as a function of arc length. (b) shows the points
color coded according to their second diffusion coordinate using
DM. (c) and (d) show the same plots as (a) and (b) but using LCDP.

4. Locally Constrained Diffusion Process
As the diffusion process can be influenced even by mod-

erate noise and outliers, in order to reduce the effect of noisy
data points we introduce in this section a locally constrained
diffusion process.

In the classical diffusion process setting, all paths be-
tween nodes xi and xj are considered when computing the
probability of a walk from xi to xj . If there are several noisy
nodes, the paths passing through these nodes will affect this
probability as we demonstrated in Fig. 4.

A solution to this problem is introduced in [22], where a
random walk is restricted to the K nearest neighbors of the
data points by replacing the original graph G with a K near-
est neighbor (KNN) graph GK that has the edge weights
defined as follows: EK(i, j) = k(xi, xj) if xj belongs to
the KNNs of xi and EK(i, j) = 0 otherwise. Then, the
one-step transition probabilities PK(xi, xj) from xi to xj

are defined

PK(xi, xj) =
EK(i, j)∑
j EK(i, j)

.

Through replacing the P in Section 3 by PK , the ef-
fect of noise is reduced, but the process is still not robust
enough to noise. The reason is that the relation between
the KNN(xi) and KNN(xj) is too hard and too narrow.
It counts a data point xk only if xk is a KNN of both xi

and xj . This causes problems if both points xi and xj be-
long to the same dense cluster, in which case they may have
no common KNNs although they are very similar. In other
words, although xi and xj are very similar to each other



and there are many short paths connecting them in graph G,
they may have no common neighbor in GK .

In order to solve this problem, we consider the paths be-
tween KNNs of xi and KNNs of xj , which can be viewed
as a soft measure of their KNNs’ compatibility. The prob-
ability of transition from node xi to xj is high if all the the
paths between points in KNN(xi) and in KNN(xj) are
short. We define

P t+1
KK(xi, xj) =

∑

k∈KNN(xi),l∈KNN(xj)

P (xi, xk)P t
KK(xk, xl)P (xl, xj)

(2)

Eq. 2 can be viewed as a symmetric version of the approach
in [22], and can be expressed as matrix multiplication

P t+1
KK = PK P t

KK (PK)T .

The embedding results of our proposed approach on the
noisy spiral data are shown in Figs. 4(c) and (d). These
figures demonstrate that the proposed locally constrained
diffusion process (LCDP) is able to recover the intrinsic ge-
ometric structure of the spiral.

5. Experimental results
In this section, we demonstrate the validity of our ap-

proach for shape retrieval on two standard data sets, MPEG-
7 and Swedish Leaf. We compare the Locally Constrained
Diffusion Process (LCDP) to three closely related meth-
ods: diffusion process based on Locally Appropriate Metric
(LAM) [22]; diffusion distances after embedding by Diffu-
sion Maps (DM) [9]; and the Label Propagation (LP) ap-
proach in [25]. We show also the positive effect of adding
ghost points in both unsupervised and supervised settings.

In all of the following experiments, the σ for the Gaus-
sian Kernel function follows the approach in [25]. The num-
ber of K nearest neighbors is 20 for the MPEG-7 data set
and 40 for the Swedish Leaf data set. The number of itera-
tions of the diffusion process, t, is set empirically.

5.1. MPEG-7 data set

First we show the experimental results on the MPEG-7
CE-Shape-1 part B data set [11]. MPEG-7 is a standard
data set and is widely used to test shape classification and
retrieval methods. It contains 1400 binary images divided
into 70 shape classes of 20 images each. Every shape in
the data set is compared to all other shapes, and the number
of shapes from the same class among the 40 most similar
shapes is reported. The bull’s-eye retrieval rate is the ra-
tio of the total number of shapes from the same class to the
highest number possible (which is 1400× 20), thus the best
possible score is 100%. To show that the proposed approach

can improve shape retrieval results on existing shape dis-
tance measures, we choose the well-known shape similarity
method, Inner Distance Shape Context (IDSC) [12], to com-
pute the pairwise distances between the shapes. The bull’s-
eye scores of the proposed approaches and the other ap-
proaches using IDSC are shown in Table 1, and the retrieval
scores (the ratio of the number of correct shapes among the
first k shapes for k = 1, . . . , 40) are shown in Fig. 5. The
lowest overall retrieval results of Diffusion Maps (DM) il-
lustrate the fact that embedding the shape space into Eu-
clidean space may lead to significant loss of information.
This is the only method that performs worse than the origi-
nal IDSC pairwise distance measure.

Although the accuracy of LAM is higher than IDSC, it
is still significantly lower than the proposed LCDP. Even
without ghost points, LCDP increases the bull’s-eye score
to 92.36%, which is better than the highest previously re-
ported bull’s-eye score of 91.00% in [25] and demonstrates
that our method does reduce the effect of noise and outlier
shapes. By adding ghost points in an unsupervised setting,
the bull’s-eye score reaches 93.32%, the highest ever re-
ported. It is consistent with our assumption that the ghost
points densify the data space, which improves the perfor-
mance of the diffusion process.

In Fig. 6, we report the percentage gain for each of the
70 shape classes in the MPEG-7 data set obtained by LCDP
with unsupervised ghost points when compared to IDSC.
We observe that the bull’s-eye retrieval rate was improved
by over 20% on 9 shape classes. This demonstrates the abil-
ity of the proposed approach to learn object appearance in
the context of other shapes. But as learning involves gen-
eralization, there is always a danger of overgeneralization.
Yet this graph demonstrates that this danger is very small for
the proposed approach since the bull’s-eye score of only one
class decreases significantly. Furthermore, this decrease in
accuracy can be explained by the fact that this class con-
tains shapes of spoons which are very similar to sea-snakes,
pencils, and keys in the MPEG-7 data set.

From the graph in Fig. 5, it is clear that the retrieval rate
when using the unsupervised ghost points is not always bet-
ter than the other approaches. For the early nearest neigh-
bors, i.e., when k is small, it is worse than the other meth-
ods because in the unsupervised setting we assume that the
very local structure of each data point is correct; that is, that
the first nearest neighbor of each of the data points should
be from the same class as the data point itself. However,
since IDSC can not attain 100% accuracy when finding the
first nearest neighbors, a few inter-class ghost points will be
generated. This reduces the accuracy of the retrieval rates
for small k. However, since most of the ghost points gener-
ated are intra-class (and this is what we want), the retrieval
rates for later k improves significantly, and the bull’s-eye
score reaches 93.32% for k = 40. To solve this problem of



generating inter-class ghost points, we also generate ghost
points in a supervised setting. With supervision, only intra-
class ghost points are created and this gives us the bull’s-eye
score of 97.21%. Furthermore, the retrieval curve is always
above the curves of the other approaches. Hence we can
conclude that the performance gain in the retrieval rates is
optimal when the shape space is densified in a supervised
setting. We want to stress that this scenario is realistic, since
we usually know the class labels of the database objects.
Hence the addition of ghost points in a supervised setting
can be viewed as a novel supervised learning method for
relevance ranking.

5 10 15 20 25 30 35 40

IDSC+Label Propagation
Original IDSC
IDSC+LAM
IDSC+LCDP + unsupervised ghost point
IDSC+LCDP+ supervised ghost point
LCDP
IDSC+Diffusion Map

Figure 5. Comparison of our approach to other methods using
IDSC.
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Figure 6. The percent gain in bull’s-eye retrieval rates for each of
the 70 shape classes of the MPEG-7 data set for IDSC [12]

5.2. Swedish Leaf data set

We also tested our approach on the Swedish leaf data set,
which comes from a leaf classification project at Linköping

University and the Swedish Museum of Natural History
[21]. The data set contains images of leaves from 15 dif-
ferent Swedish tree species, with 75 leaves per species,
for a total of 1125 images. Previous work focused on 1-
nearest-neighbor (1NN) classification [12, 21]. In this pa-
per, in addition to our results for 1NN classification, we
also show the retrieval results as the ratio of correct shapes
among the first k shapes for k = 1, . . . , 75. Again, we use
IDSC to find the distances between the shapes of the data
set and compare our approach to two of the three meth-
ods discussed above (there are no reported results on this
data set for LP [25]). The results for the different methods
are shown in Fig. 7. Once again, the retrieval results for
DM are significantly worse than the other approaches. Al-
though LAM’s performance is quite good, it is still worse
than LCDP. LCDP without ghost points improves the re-
trieval results significantly with the 1NN classification rate
increasing from 94.12%[12] to 98.2%, the highest score in
the literature.

Consistent with the results obtained on the MPEG-7 data
set, the addition of unsupervised ghost points does not im-
prove the retrieval rates of LCDP for small k, but does im-
prove them for larger k. Adding ghost points in the super-
vised setting achieves the best performance of all. The 1NN
classification rates are 97.6% and 99.3% for unsupervised
and supervised ghost points respectively.

The reason for the difference between the results for un-
supervised and supervised ghost points is that the data set
contains several classes that are very similar to each other
and thus some of the ghost points added in the unsuper-
vised setting are inter-class and we have the same problem
as we discuss in Sec. 5.1. The addition of ghost points in the
supervised setting solves this problem by generating only
intra-class ghost points, and the retrieval rate increases sig-
nificantly.

We can make some conclusions based on the experi-
mental results. First, LCDP performs better than LP and
LAM, which is consistent with the discussion in Sec. 4.
Second, the effect of adding unsupervised ghost points de-
pends greatly on the accuracy of the original shape similar-
ity measure. If majority of the first nearest neighbors of the
data points belong to the same class, adding unsupervised
ghost points can achieve an enormous improvement. If this
is not the case, adding unsupervised ghost points may ac-
tually cause the k nearest neighbor retrieval rate to decline
for small k (though there still may be a substantial improve-
ment for large k). Third, the ghost points generated in a su-
pervised setting consistently and significantly improve the
retrieval rates for all k. Although it is not fair to compare
adding supervised ghost points to unsupervised ghost points
in shape retrieval, the excellent performance indicates the
application potential of ghost points in other areas of super-
vised and semi-supervised data mining.



Table 1. Retrieval rates (bull’s-eye) of the MPEG-7 data set using Inner Distance Shape Context (IDSC).
Alg. IDSC IDSC IDSC IDSC IDSC IDSC IDSC

[12] + LAM +DM +LP[25] +LCDP +LCDP +LCDP
+unsupervised GP +supervised GP

Score 85.40% 89.00% 78.56% 91.00% 92.36% 93.32% 97.21%
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Figure 7. Retrieval curves of Swedish Leaf data set

6. Relation to other approaches

Originally, researchers focused on global features for
shape matching and shape retrieval. However, the limita-
tion of these approaches is that the descriptors are sensi-
tive to local changes, which is a crucial property of shapes.
To overcome the problems of global descriptors, local fea-
tures and non-linear methods have been introduced, espe-
cially using parts of the objects. In [10], tangent distances
are used to represent the difference between parts. Then
the relation between sequences of parts is considered when
constructing the shape correspondence. In order to capture
the local features, Belongie and Malik [4] introduce the 2-
dimensional non-linear histogram, Shape Context (SC), to
describe the distance and angles between contour points.
Since SC cannot solve the problem of matching articulated
shapes, Ling and Jacobs [12] modified SC by using the
geodesic distance inner shape instead of the Euclidean dis-
tance to represent shapes, which is called Inner Distance
Shape Context (IDSC). Similar to IDSC, skeleton based ap-
proaches [19, 20, 3] can describe the articulated shapes well
and implicitly take into account the part information. Re-
cently, a hierarchical segment-based shape matching algo-
rithm has been proposed by McNeill and Vijayakumar [15].
Felzenszwalb and Schwartz [7] decompose shape into seg-
ments and organize them by a novel concept, shape tree.
In [24], a descriptor called Contour Flexibility is proposed
to represent the deformable potential at each point along a

contour. Besides, Rodriguez et. al [17] represent 2D shapes
by mapping them to an analytic function on the complex
plane, which is called Analytic Signature.

In [25], a graph transduction learning approach based on
label propagation is introduced. It is the first approach in
which the shape similarity of a pair of shapes is computed
in the context of other shapes as opposed to considering
only pairwise relations between two shapes as is the case
in the above approaches. There are two key differences in
the proposed approach. First, our diffusion process frame-
work does not require label clamping as is the case in label
propagation. Consequently, we need less than 10 iterations
while label propagation requires on the order of 10,000 it-
erations. Second, they key step to improve the performance
of a diffusion process is the introduction of ghost points,
which densify the manifold structure allowing the diffusion
process to better propagate.

In order to find relevant structures in complex geometries
for classification and clustering, Markov chain techniques
have been combined with graph-based methods. In [22],
the L1 distance between probabilities of transition is used
as a metric between data points, and this metric is then em-
ployed to induce class labels. Zhou et al [26] assume a met-
ric to arbitrarily convey a probability transition metric (pro-
portional to weights) over the data to cluster it; [27] also
assumes a metric from the beginning to arbitrarily claim
a probability transition metric based on the original met-
ric which is then used to propagate labels using accumu-
lated correlations; In [2], Azran assumes a metric over the
data to induce a probability transition metric over an M -
NN graph (where labeled points are absorbing), which is
used to produce a probability distribution over the labels of
each unlabeled point. While our setting is similar to these
approaches, we treat the Markov random walks in a unsu-
pervised setting. In order to make it more suitable for shape
space, the transition matrix is focused on k nearest neigh-
bors and point set correspondence is constructed for robust-
ness.

For the metric embedding, one of the most popular di-
mensionality reduction algorithms is Principal Component
Analysis (PCA) [13]. PCA performs dimensionality reduc-
tion by projecting the original n-dimensional data onto the
d(¿ n)-dimensional linear subspace spanned by the lead-
ing eigenvectors of the data’s covariance matrix. However,
in many real world problems, there is no evidence that the
data is sampled from a linear subspace. Various researchers



have considered the case then the data lives on or close to
a low dimensional sub-manifold from random points ly-
ing on this unknown sub-manifold. Along this direction,
many subspace learning algorithms have been proposed,
such as Locality Preserving Projection [8], Locally Linear
Embedding [18], and ISOMAP [23]. Compared to these
approaches, the proposed synthetic points directly densify
the data manifold in the original distance space instead of
the metric embedding. In other words, we use metric em-
bedding to add new synthetic data points in the original dis-
tance space. A key feature of our approach is that we can
do this without distorting the original distances.

7. Conclusions
In this paper, we introduce the addition of synthetic data

points (ghost points) to densify sparse data spaces and the
locally constrained diffusion process to reveal the intrin-
sic relation between shapes. We also describe the relation-
ship between our proposed approach and other closely re-
lated methods. Instead of using the direct distance between
shapes, our unsupervised approach can capture the topol-
ogy of the data so that the distance measure between ob-
jects is found through the manifold enclosing the data. The
experimental results demonstrate a significant increase in
the retrieval rates on both toy and real data sets demon-
strate the advantage of the proposed approaches on noisy
and sparse data sets. The addition of ghost points can also
be performed in a supervised setting, which can be viewed
as a novel supervised learning method for relevance rank-
ing. The supervised scenario is realistic, since we usually
know the class labels of the database objects.
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