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a b s t r a c t 

In this paper, we present a novel unsupervised framework for automatically generating bottom up class 

independent object candidates for detection and recognition in cluttered indoor environments. Utilizing 

raw depth map from active sensors such as Kinect, we propose a novel plane segmentation algorithm for 

dividing an indoor scene into predominant planar regions and non-planar regions. Based on this parti- 

tion, we are able to effectively predict object locations and their spatial extensions. Our approach auto- 

matically generates object proposals considering five different aspects: Non-planar Regions (NPR), Planar 

Regions (PR), Detected Planes (DP), Merged Detected Planes (MDP) and Hierarchical Clustering (HC) of 3D 

point clouds. Object region proposals include both bounding boxes and instance segments. Our approach 

achieves very competitive results and is even able to outperform supervised state-of-the-art algorithms 

on the challenging NYU-v2 RGB-Depth dataset. In addition, we apply our approach to the most recently 

released large scale RGB-Depth dataset from Princeton University – “SUN RGBD”, which utilizes four dif- 

ferent depth sensors. Its consistent performance demonstrates a general applicability of our approach. 

© 2016 Published by Elsevier Inc. 

1. Introduction 1 

Automatically generating high quality class independent ob- 2 

ject segmentations is important for many high level computer vi- 3 

sion problems such as object detection and recognition. For object 4 

recognition, since feature extraction relies directly on the informa- 5 

tion of its supporting region, the full object region not only con- 6 

veys global features but also arguably enriches contextual features 7 

as confusing background is separated ( Cinbis et al., 2013 ). For ob- 8 

ject detection, an object can be located at any position and scale 9 

in the image. Most of existing work ( Felzenszwalb et al., 2010; 10 

Viola and Jones, 2004 ) is based on sliding window strategy where 11 

exhaustive searching is conducted at various scales and window 12 

aspect ratios. However, expensive computation prevents this strat- 13 

egy from utilizing sophisticated feature representations. As an al- 14 

ternative, providing a small set of high quality location hypotheses 15 

makes it possible to adopt richer features and complex learning 16 

algorithms ( Cinbis et al., 2013; Dong et al., 2014; Hariharan et al., 17 

2014 ). 18 

Many previous works are dedicated to propose class indepen- 19 

dent object hypotheses. Uijlings et al. (2013) proposed a selective 20 

search strategy that hierarchically groups similar neighbor super- 21 

pixels obtained from ( Felzenszwalb and Huttenlocher, 2004 ) for 22 
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predicting object locations. In contrast, besides predicting object 23 

bounding boxes, we also aim at providing pixel-level object seg- 24 

ments. Carreira and Sminchisescu (2012) generated a set of object 25 

segments by solving one constrained parametric min-cut (CPMC) 26 

problem for each configuration of predefined foreground and back- 27 

ground seeds. Lin et al. (2013) simply extends CPMC by integrating 28 

depth for computing potentials. Instead of treating all image region 29 

uniformly, we tactically generate hypotheses according to classified 30 

regions. Gupta et al. (2013) generalized gPb-UCM hierarchical seg- 31 

mentation ( Arbelaez et al., 2011 ) by making effective use of depth 32 

information. Arbelaez et al. (2014) proposed Multiscale Combina- 33 

torial Grouping (MCG) to collect segments from multiscale aligned 34 

gPb-UCM segmentations. Gupta et al. (2014) extend MCG to utilize 35 

depth cues for region proposals. While ( Arbelaez et al., 2014; Gupta 36 

et al., 2013, 2014 ) need to learn contour models or/and Pareto front 37 

for combinatorial purpose, our approach proposes object regions in 38 

an unsupervised way. 39 

We have designed and implemented an integrated system for 40 

automatically proposing both object bounding boxes and pixel- 41 

level segments in RGB-D images. All the object candidates are gen- 42 

erated without any training stage. The overall architecture is pre- 43 

sented in the diagram shown in Fig. 1 . The source code of this 44 

work will be available online. 45 

We first estimate a general scene layout by fitting planes to 46 

3D points recovered from depth maps. Hence we utilize a com- 47 

mon strategy of distinguishing clutter regions from planar re- 48 
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Fig. 1. The diagram of the proposed system for generating object regions in indoor scenes. Taking one color image and corresponding registered raw depth map from Kinect 

sensors as inputs, our approach automatically generates object proposals considering five different aspects: Non-planar Regions (NPR), Planar Regions (PR), Detected Planes 

(DP), Merged Detected Planes (MDP) and Hierarchical Clustering (HC) of 3D point clouds. Object region proposals include both bounding boxes and instance segments. The 

bottom row shows several examples of generated instances and bounding boxes (green color). (For interpretation of the references to colour in this figure legend, the reader Q2 

is referred to the web version of this article.) 

gions. In contrast to earlier works like ( Hedau et al., 2009 ), we 49 

do not make any assumptions that edges representing joints of 50 

walls/floor/celling are visible. Such assumptions were necessary 51 

when only RGB data is given. Since we also utilize depth data, 52 

the planar surface may represent different objects like table top or53

other furniture tops. Then we classify planar regions into boundary 54 

and non-boundary planes, where a boundary plane is a plane with 55 

no objects behind it, e.g., walls and floors. Depending on the scene 56 

a table top can also be a boundary plane. Crude bounding box 57 

(BB) object proposals are obtained by fitting BBs to planar regions 58 

and to segments obtained from Multi-Channel Multi-Scale (MCMS) 59 

segmentations and 3D point cloud clustering with the guidance 60 

of the estimated scene layout. Finally, we utilize GrabCut ( Rother 61 

et al., 2004 ) to generate segment proposals and refined BB pro- 62 

posals. GrabCut is an excellent foreground object segmenter that is 63 

able to dynamically model global object and background proper- 64 

ties. However, it has two major limitations. It was developed as (1) 65 

interactive human in the loop approach, and it is based on the as- 66 

sumption that (2) the input image contains only one salient object 67 

and its background. We address both limitations in the proposed 68 

framework and turn GrabCut into a fully automatic, unsuper- 69 

vised segmenter. A general outline of the proposed approach is as 70 

follows: 71 

1. Estimate scene layout ( Section 2.2 ) 72 

(a) fitting planes to reconstructed 3D points 73 

(b) classify planar regions into boundary and non-boundary 74 

planes 75 

2. Generate crude BB object proposals ( Section 2.3 ) 76 

(a) Multi-Channel Multi-Scale (MCMS) segmentations 77 

(b) Euclidean point cloud clustering 78 

(c) five strategies to generate crude BB proposals 79 

3. Use extended GrabCut to generate segment proposals and re- 80 

fined BB proposals ( Section 2.1 ) 81 

We evaluate the proposed approach on standard NYU-v2 RGBD 82 

dataset ( Silberman et al., 2012 ) and recent released large scale SUN 83 

RGBD dataset ( Song et al., 2015 ) in Section 3 . 84 

To summarize, the main contributions of our approach are: 1) A 85 

novel scene structure guided framework for generating bottom-up 86 

object region candidates in cluttered indoor scenes. The framework 87 

is completely unsupervised, so there is no need to access ground 88 

truth information for region proposals, and no bias resulting from 89 

the selection of training data. 2) The number of proposed object 90 

regions is much less than the state-of-the-arts while the perfor- 91 

mance is comparable. Hence the proposed framework has a great 92 

potential for high-level computer vision tasks such as object detec- 93 

tion and recognition. 3) A novel 3D plane segmentation algorithm 94 

that is able to detect and segment predominant planar structures 95

of indoor scenes. It is demonstrated to be robust to noise in struc- 96 

tured light and other depth sensors. 97 

2. Object region proposals in RGBD images 98 

2.1. Grabcut extension 99 

In this section we describe our extension of GrabCut that gen- 100 

erates final object segments and BB proposals. The input are initial 101 

crude BBs generated by component two. 102 

GrabCut ( Rother et al., 2004 ) is an iterative GraphCut ( Boykov 103 

and Funka-Lea, 2006 ) based segmentation algorithm. Given a re- 104 

gion of interest (ROI) in an image, pixels inside ROI are initially la- 105 

beled as “unknown” and outside are labeled as “background”. The 106 

goal of GrabCut is to identify the object pixels within this “un- 107 

known” region. In general, two Gaussian Mixture Models (GMMs) 108 

of K components ( K = 5 typically) are used to model foreground 109 

and background color distributions, respectively. Model parame- 110 

ters π , μ, � are weights, mean and covariance matrices of the 2 K 111 

Gaussian components: 112 

θ = { π (α, k ) , μ(α, k ) , �(α, k ) , α = 0 , 1 , k = 1 . . . K} , (1) 

where α represents the foreground or background. A Gibbs energy 113 

function E is defined on the graph G in Eq. (2) , where each pixel is 114 

taken as a node. 115 

E = 

n � 

i =1 

D (p i , α, θ ) + 

� 

(u, v ) ∈ C 
γ ∗ [ αu � = αv ] ∗ exp(−β� p u − p v � 

2 ) 

(2) 

The data term D encodes the probability of pixel p i belonging to 116 

foreground or background. It is defined as GMM of K components. 117 

The smoothness term encourages regional coherence when pixels 118 

have similar properties. γ is a constant for balancing data term 119 

and smoothness term. C represents the set of pairs of adjacent pix- 120 

els (we use 4-connectivity), and the constant β is set as inverse of 121 

expectation of pixel differences over C defined in Eq. (3) . At each 122 

iteration, the optimal label assignment is obtained by minimizing 123 
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Fig. 2. Image samples comparison. The first three images are from GrabCut dataset. The last one from NYU-V2 dataset presents a typical cluttered indoor scene. 

Fig. 3. Examples for foreground segmentation comparison between GrabCut (GC) 

and its 3D extension (GC3D) both initialized with BBs in yellow frames. (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

energy E using GraphCut. Then GMMs parameters in Eq. (1) are 124 

updated according to the label assignment. 125 

β = 

� 

(u, v ) ∈ C 1 

2 
� 

(u, v ) ∈ C ( 
� 

� p u − p v � 

2 ) 
(3) 

GrabCut is an interactive segmentation algorithm in that it 126 

needs human to provide some hint such as a bounding box around 127 

the object candidate. Moreover, it is designed for images consist- 128 

ing of one single salient object with nearly uniform background, 129 

e.g., see Fig. 2 . 130 

We observe that when GrabCut is initialized with BBs around 131 

object proposals both requirements are met. Our initial guess for 132 

object locations is obtained as crude image segments described in 133 

Section 2.3 . Therefore, we initialize it with BBs around crude seg- 134 

ments. In order to increase the chance to cover the whole object 135 

by the BB region, we in practice slightly enlarge the BB region. The 136 

initial foreground object model is then estimated on the BB region 137 

while the initial background model is estimated on the remain- 138 

ing part of the image. It is worth noting that while the whole im- 139 

age is needed for foreground and background model estimations, 140 

the object segments are only based on local solution to Eq. (2) , 141 

i.e., the nodes of graph G are pixels within this region. By solving 142 

Eq. (2) locally for each proposal BB we convert GrabCut into a fully 143 

automatic, multiple object segmenter. 144 

Although original GrabCut algorithm shows good performance 145 

on foreground segmentation, it often fails to segment objects 146 

which have similar color distributions as background, or some- 147 

times decomposes objects into several separated components in 148 

image plane. For example, in Fig. 3 , the foreground derived from 149 

GrabCut consists of several disconnected pieces and some parts 150 

that should belong to the toilet instance are missing. 151 

In order to avoid assigning different labels to pixels that are 152 

spatially close, we extend GrabCut by utilizing depth information. 153 

We first fill missing data in raw depth map using colorization 154 

scheme of ( Levin et al., 2004 ) and extract 3D points ( x , y , z ). 155 

Then 3D point coordinates (in cm unit) are simply concatenated 156 

with RGB channels at each pixel. Hence we consider 6 dimensional 157 

GMMs. 158 

Although on average the extended GC3D outperforms the orig- 159 

inal one due to utilization of depth data, e.g., as is shown in 160 

Fig. 3 , the toilet instance has been segmented well even if it has 161 

similar color distribution to the background, the performance of 162 

GC3D may degrade when noise in depth is present. One exam- 163 

ple is shown in the right scene of Fig. 3 , where a small piece 164 

of background is mis-classified. In this case the original GrabCut 165 

works well, since the color of the foreground object differs signif- 166 

icantly from the background. Therefore, we output the segments 167 

from both GrabCut and GC3D as our final segment candidates. 168 

2.2. Scene layout estimation 169 

Structured indoor environments are often filled with man-made 170 

structures and objects, which can be approximately represented 171 

with planar segments. We first focus on extracting predominant 172 

planar regions such as wall, floor, blackboard, cabinet etc from 173 

dense point clouds derived from the depth image, not only because 174 

planar regions themselves are meaningful but also they are helpful 175 

for generating object hypotheses by focusing on point cloud not 176 

explained by major planes. As is well known, comparing to laser 177 

range finder, depth information from Kinect and similar sensors 178 

has low depth resolution and a limited distance range. To deal with 179 

such kind of noise contained in the depth image, traditional plane 180 

segmentation methods ( Khan et al., 2014; Silberman et al., 2012 ) 181 

resort to appearance based cues from RGB image. For example, 182 

Silberman et al. (2012) infers the assignment of points to planes 183 

by modeling Graph-Cuts with color and depth information, while 184 

( Khan et al., 2014 ) utilizes detected line segments in color image to 185 

decide about region continuity. However, we believe that integrat- 186 

ing color information here is a double sword, since the RGB im- 187 

age maybe noisy. Therefore, we use only 3D point clouds for plane 188 

detection and propose a plane segmentation algorithm that is de- 189 

signed to work with point clouds generated by Kinect like sensors. 190 

Plane Segmentation: We first determine the direction of grav- 191 

ity ( Gupta et al., 2013 ) and then rotate the point clouds to make 192 

them aligned with room coordinates. A normal vector N p is esti- 193 

mated for each point p that has valid depth information, which 194 

we call a valid point. To initialize plane candidates, we uniformly 195 

sample triple point sets on the depth map and store them in set 196 

T = { (p i 1 , p i 2 , p i 3 ) , i = 1 , 2 , . . . } . Then for each t i ∈ T we find inliers 197 

S i in the 3D space and a plane candidate P i in RANSAC framework 198 

( Fischler and Bolles, 1981 ). Each inlier is represented by a pixel in 199 

the depth map and a corresponding 3D valid point. See steps 1 –6 200 

in Algorithm 1 . The definition of inliers follows below. 201 

In general, a point is considered as an inlier when its distance 202 

to the plane is within certain constant range ( Hähnel et al., 2003; 203 

Poppinga et al., 2008 ). However, as indicated in Khoshelham and 204 

Elberink (2012) , depth resolution (i.e., minimum depth difference 205 

that can be measured by a sensor) is inversely proportional to the 206 

depth, which is defined in Eq (4) , where f is focal length, b is base 207 

length of Kinect sensors, m is the parameter of a linear normaliza- 208 

tion and Z represents depth value. Therefore, we vary plane inlier 209 

distance tolerance based on depth resolution rather than heuristi- 210 

cally choosing one constant threshold. 211 

D tol = 

�
m 

f b 

�
∗ Z 2 (4) 

We define a point p to be an inlier of plane P i if d ( p , P i ) < D tol ( d ), 212 

where d is the Euclidean distance in 3D space. We then remove 213 

plane candidates which have small number of pixels and merge 214 

spatially close and nearly coplanar planes. However, many fake 215 

planes which consider points of other non-planar objects as inliers 216 

exist due to noisy surface normals and depth. To filter out fake 217 

planes (steps 10 –20 of Algorithm 1 ), we first compute connected 218 
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Algorithm 1 Plane Segmentation of Indoor scenes 

Input: Raw depth map and its 3d point cloud { p i , i = 1 , 2 , . . . } in 
room coordinate system. 

Output: A series of major plane segments. 

1: compute distance tolerance D tol accordingto Eq. (4) and normal 

vector N p for each valid point. 

2: uniformly sample triple point sets T on image grid. 

3: for t ∈ T do 

4: get plane candidate P i and its inlier set S i = { p| d(p, P i ) < 

D tol (p) , � N P i 
, N p � < th N } 

5: discard plane P i if the inlier number in S i is less than 

th min _ pts . 

6: end for 

7: sort { P i } w.r.t # of inliers in decreasing order and remove heav- 

ily overlapping ones. 

8: merge spatially close and nearly parallel plane candidates. 

9: remove points that have multiple plane IDs from sets { S i } . 
10: for each survived P i do 

11: compute connected components CC i = { c i 1 , · · · , c i j , · · · } of S i 
in the depth map. 

12: for each component c i j do 

13: remove c i j from S i if its size is small. O/W, estimate plane 

P c i j by RANSAC. 

14: if acos (N P i 
, N P c i j 

) > 10 ◦ then 

15: add new plane P c i j to the plane set if size (c i j) > 

th min _ pts ;remove points c i j from S i . 

16: end if 

17: end for 

18: discard P i if the remaining inliners is less than th min _ pts . 

19: end for 

20: re-estimate plane parameters for P i by RANSAC on its current 

inliers. 

21: re-sort planes w.r.t their number of inliers in descreasing order. 

22: assign pixels to planes one by one if d(p, P i ) < 3 · D tol (p) and 

� N P i 
, N p � < th N 

23: for each plane, remove its components where d a v g > D tol a v g and 

angle a v g > th a 
24: filter out plane component whose size is less than th min _ pts . 

components CC i = { c i 1 , · · · , c i j , · · · } of pixels in S i in the depth map. 219 

Then we fit a plane P c i j to 3D points in each connected component 220 

c ij and estimate the plane parameters, including its normal N P c i j 
. 221 

We assume that N P c i j 
should be at least similar to N P i 

. Hence, if 222 

the angle between N P i 
and N P c i j 

is large, we remove the connected 223 

component c ij from CC i . We then re-estimate plane parameters of 224 

P i based on inlier points in survived components. 225 

For plane segmentation, which is performed on the depth map, 226 

we assign to plane P i corresponding pixels in image plane if d ( p , 227 

P i ) < 3 D tol ( p ). The goal is to avoid artificial holes on plane seg- 228 

ments on the depth map. Since now preliminary plane segments 229 

are available, we further remove false positive plane segments by 230 

checking statistical features, i.e., average to-plane distance d a v g and 231 

average normal angle angle a v g between the average of normals 232 

of points in S i and plane normal N P i 
. More details are illustrated 233 

in Algorithm 1 . To our best knowledge, we are the first to seg- 234 

ment multiple indoor planes by considering quadratic sensor noise 235 

model and relying purely on 3D point cloud. Khoshelham and 236 

Elberink (2012) only proposed the depth noise model but did not 237 

apply it to multiple plane segmentation. Silberman et al. (2012) use 238 

a linear noise model to detect planes and use color information for 239 

pixel assignment. 240 

Plane Classification: After major planar regions are detected, 241 

we further classify them into boundary and non-boundary planes, 242 

where a boundary plane is a plane with no objects behind it. Sup- 243 

posed that the normal vector of a plane points towards the viewer, 244 

we compute the ratio r of points on the other side of the plane to 245 

the total number of points in the room. Ideally, a planer region is a 246 

boundary plane if r is zero. We set r to 0.01 to tolerate the sensor 247 

noise. 248 

2.3. Initial crude region and BBs proposals 249 

Indoor scenes are usually composed of several predominant 250 

planar geometric structures such as ceiling, floor, wall, cabinet, etc 251 

and many small cluttered things including clothes, bottles, cups, 252 

etc. Based on this prior knowledge, we propose to generate ob- 253 

ject regions by different strategies with respect to the geometric 254 

properties of image regions, rather than treating all image regions 255 

uniformly. Since low level image segmentations often indicate cues 256 

for object candidate shapes and locations, we adopt Multi-Channel 257 

Multi-Scale (MCMS) segmentations for obtaining crude object seg- 258 

ments. Note that segments obtained from MCMS segmentation are 259 

crude (either too coarse or too fine), and they do not represent fi- 260 

nal instance segments we are looking for. We utilize five different 261 

strategies, described below, to select crude segments for initializ- 262 

ing object BB proposals. 263 

For objects in Non-Planar Regions (NPRs) (e.g., cups, faucets 264 

etc.) all segments except those that have small overlapping area 265 

with NPRs are used, while for objects in Planar-Regions (PRs) (e.g., 266 

pictures, papers, etc.) only segments that are generated from RGB 267 

channel segmentation and lie in the planar areas are reserved. Seg- 268 

ments from Detected Planes (DPs) can be used directly for objects 269 

such as ceiling, wall, floor, etc. However, sometimes big objects are 270 

inclined to be decomposed into several planar regions (e.g., bed 271 

and sofa), and then it is very likely that the proposed bounding 272 

boxes are not covering the whole object. 273 

To address this problem, we focus our attention on non- 274 

boundary planes, which usually represent big objects like bed or 275 

other furniture. For each non-boundary planar region, we then find 276 

its border points, which are used to compute minimum distance to 277 

other non-boundary planer regions. This distance is used to merge 278 

non-boundary planar regions that are close in 3D space (within 279 

5cm) to obtain Merged Planar Regions (MPRs). BBs are then fitted 280 

to MPRs. 281 

In addition, we apply Hierarchical Clustering (HC) to 3D point 282 

cloud to obtain object instances that are ambiguous in the color 283 

image while separated well in 3D world. 284 

2.3.1. Multi-Channel multi-Scale (MCMS) image segmentations 285 

Indoor scenes typically consists of a relatively large number of 286 

alike objects that are often cluttered and in disorder, which makes 287 

our task of finding a small set of high quality class independent 288 

object candidates non-trivial. Moreover, the contents in images are 289 

intrinsically organized in a hierarchical way. For example, in Fig. 5 , 290 

the “bed” can refer only to mattress and box part or include every- 291 

thing on its top such as sheet and pillows. Besides, indoor scene 292 

objects are always in different sizes, colors and shapes, and pre- 293 

sented under various light conditions. Therefore, it seems impos- 294 

sible to get object partitions from a generic segmentation strategy 295 

that relies on a single signal. Based on these observations, we pro- 296 

pose to initialize object locations by using low level segmentations 297 

from multiple signal channels and image scales. 298 

In this paper, we get low level segments based on two unsu- 299 

pervised segmentation methods: graph based segmentation (GBS) 300 

Felzenszwalb and Huttenlocher (2004) and watershed based seg- 301 

mentation (WBS) Meyer (1992) for their high computing efficiency, 302 

but other excellent generic image segmenters such as gPb-UCM 303 

( Arbelaez et al., 2011 ) could also be used in our framework. For 304 

GBS, except for using color image alone, we use depth map and 305 
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(a) (b) (c) (d)

Fig. 4. An example of Euclidean clustering of 3D point cloud. (a) Color image: two adjacent blue chair instances within yellow bounding box share similar appearance. (b) 

The plane segmentation (refer to Section 2.2 ). (c) 3D point clusters at 5 cm scale. (d) Proposed bounding boxes (red) based on point clusters. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

combined RGB-D channels for computing the edge weights of 306 

neighboring pixels at different scales respectively. To be more spe- 307 

cific, in total we collect superpixels from 10 different layers based 308 

on GBS including 4 scales from color channel, 3 scales from depth 309 

channel and 3 scales from RGB-D fusion channels. In RGB-D fu- 310 

sion channels, we normalize associated 3D point coordinates ex- 311 

tracted from raw depth into [0, 255], and compute affinity weights 312 

as the maximum gradient value of RGB and depth channels. In 313 

practice, the segmentations from multi-scale GBS are helpful for 314 

finding most of object locations but are inclined to ignore some 315 

salient objects that only occupy small number of pixels in images. 316 

To fixed the problem, we adopt WBS as a complementary segmen- 317 

tation tool, which shows more respect to salient object boundaries. 318 

In WBS, we first smooth input maps using a 9 × 9 Gaussian 319 

mask and then compute gradient magnitude maps. Since we care 320 

more about strong boundaries, we normalize gradient maps into 321 

[0, 1] range and keep values that are above a predefined threshold 322 

(we use 0.1 in this paper). This is also useful for avoiding generat- 323 

ing segments that are too fine. Then we apply watershed algorithm 324 

to gradient maps estimated from intensity image in CIELAB color 325 

space, rawDepth map, inpainted depth map, and normals map, re- 326 

spectively. For each gradient map, we obtain one single layer seg- 327 

mentation. As is mentioned in Section 2.3 , using superpixels from 328 

color channel GBS only for object proposal in planar regions is 329 

an effective strategy for reducing redundant proposals obtained 330 

from other signals. But we do not apply the same strategy to WBS 331 

segmentations. 332 

2.3.2. Euclidean clustering of point cloud 333 

The goal of point cloud clustering is to partition 3D points into 334 

several meaningful structures. Taking advantage of 3D geometry 335 

of 3D scenes, it is able to remove ambiguities between object in- 336 

stances caused by similar colors or poor illuminations in indoor 337 

environments. Take the two chair instances that are within the yel- 338 

low bounding box in Fig. 4 , for example. While it is very difficult to 339 

distinguish them based on color image alone, they are well sepa- 340 

rated in the 3D world. We adapt the Euclidean clustering algorithm 341 

in Rusu (2010) for generating object candidates from 3D points. 342 

We first remove detected predominant planes (both horizontal 343 

and vertical) from point cloud before clustering. Then we create a 344 

Kd-tree representation for the remaining 3d points. As depth data 345 

from Kinect sensor are noisy, we filter out sparsely distributed or 346 

isolated points (less than 30 points within 1 cm 

3 ) and get a point 347 

cloud P . Starting from any point p i ∈ P as one cluster, we search for 348 

its unlabeled neighbors that are within certain radius d th and add 349 

them into the cluster. Then we keep searching neighbors for each 350 

member of current cluster until the size of cluster is stable. Clus- 351 

tering terminates when all points in P are assigned a cluster label. 352 

Similar to 2D segmentation, we set multiple radii d th for getting 353 

multiple scale clusters ( d th ∈ {2, 5, 10} cm ). In Fig. 4 , we present 354 

one example of Euclidean clustering in a typical office environ- 355 

ment, where both blue chair instances and green plant instances 356 

are well identified. Moreover, planar instances such as door and 357 

Table 1 

Performance comparison of plane segmentations on NYU Depth V2 

dataset. Jaccard Index (JI) is used as metric for evaluating obtained pla- 

nar segments w.r.t. both Exactly Planar Classes (EPC) and Exact and 

Nearly Planar Classes (E+NPC). 

Method Silberman et al. (2012) Khan et al. (2014) Ours 

EPC JI 34 .15% 33 .87% 36 .72% 

E+NPC JI 30 .91% 32 .33% 32 .67% 

white board are also identified. We use red bounding boxes to 358 

mark identified instances. 359 

3. Experiments 360 

We compare our method with the state-of-the-art methods on 361 

the NYU Depth V2 dataset ( Silberman et al., 2012 ). Since some of 362 

baselines generate their object proposals with supervised learning, 363 

for fair comparison, we follow the standard split (i.e., 795 train- 364 

ing images/654 test images), and report results on test set, ex- 365 

cept for plane segmentation evaluation which is measured on the 366 

whole dataset. To demonstrate, the general applicability of our ap- 367 

proach, we also test on a large scale dataset “SUN RGBD” Song 368 

et al. (2015) without changing any parameters. 369 

In our approach, we provide two sets of bounding boxes: one 370 

called BB-init, which are all bounding boxes used to initialize fore- 371 

ground segmentations (FG) in Section 2.1 , and the other called BB- 372 

full that includes bounding boxes fitted to segments obtained by 373 

FG plus bounding boxes fitted to segments obtained by plane and 374 

watershed segmentations. 375 

3.1. Evaluating plane segmentations 376 

We compare with two state of art works ( Khan et al., 2014; 377 

Silberman et al., 2012 ) with respect to plane segmentation on RGB- 378 

D images. For qualitative evaluation, we provide segmentation re- 379 

sults under different indoor scenarios in Fig. 5 . Both ( Silberman 380 

et al., 2012 ) and ( Khan et al., 2014 ) utilize color image with depth 381 

map for region smoothness consideration. However, they either fail 382 

to detect certain predominant planar regions or have planar re- 383 

gions spread across multiple object boundaries, while our method 384 

shows more respect to geometric boundaries and have most ma- 385 

jor planes detected (e.g., the window frame plane in the office). In 386 

addition, we provide quantitative evaluation in Table 1 . Following 387 

( Khan et al., 2014 ), we consider both Exactly Planar Classes (EPC) 388 

(e.g., floor, ceiling, wall, cabinet etc) and Exact and Nearly Planar 389 

Classes (E+NPC) (e.g., bookshelf, books, sofa, bed etc) for evalua- 390 

tion. We compare the obtained planar segments with planar ob- 391 

ject instances by averaged Jaccard Index. In both cases, our method 392 

outperforms the other two methods. 393 

Failure cases analysis 394 

In the Fig. 5 , we present 4 scenes that have failure detection 395 

cases. One case is false positive. For example, in the fifth row, the 396 
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Fig. 5. Examples of qualitative plane segmentations for RGB-D indoor scenes. The 1st column are original color images. The 2nd column presents plane segmentations by 

Silberman et al. (2012) . The 3rd column shows plane segmentations by Khan et al. (2014) . We present our segmentation results in the last column. The black pixels mark 

non-planar objects. The last four rows show some failure cases..(For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

man’s body and part of his arm has been identified as one plane. 397 

And in the 6th row, the surface of the ladder is merged with the 398 

green bag since they are co-planar in the space. The other case 399 

is missing detection. Taking the 7th row for example, a majority 400 

part of scene is lacking of depth data since infra-red light was lost 401 

under a strong sun shine. Another example is from last row where 402 

the table is transparent so that the raw depth does not reflect a 403 

real plane surface. 404 

3.2. Evaluating object region proposals 405 

3.2.1. NYU-V2 Dataset 406 

In this section, we compare our object proposal approach with 407 

five state-of-the-art class independent object proposal methods on 408 

NYU-V2 RGBD dataset. MCG ( Arbelaez et al., 2014 ), MCG3D ( Gupta 409 

et al., 2014 ), and gPb3D ( Gupta et al., 2013 ) are supervised meth- 410 

ods, and CPMC ( Carreira and Sminchisescu, 2012 ), CPMC3D ( Lin 411 

et al., 2013 ) are unsupervised methods (excluding segments rank- 412 

ing). Following MCG ( Arbelaez et al., 2014 ), for object segmenta- 413 

tion evaluation, we compute global Jaccard Index (i.e., intersection 414 

over the union of two sets) at instance level as the average best 415 

overlap for all the ground truth instances in the dataset, in or- 416 

der to avoid bias on object sizes. For object location proposals, we 417 

define bounding box proposal recall score as the ratio of positive 418 

predictions that exceed 0.5 Jaccard score, over the number of all 419 

ground truth object instance locations. As is shown in Table 2 and 420 

Fig. 6 , our method achieves the best performance ( 91.1% ) for ob- 421 

ject location proposals while our number of maximum proposals is 422 
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Table 2 

Performance comparison of best global Jaccard Index at instance level for both bounding box and segment proposals on NYU-V2 RGBD dataset. 

Gupta et al. (2013) Carreira and 

Sminchisescu (2012) 

Lin et al. (2013) Arbelaez et al. (2014) Gupta et al. (2014) Ours-BB-init Ours-BB-full 

Global Best (bbox) 0 .74 0 .706 0 .473 0 .879 0 .901 0 .893 0 .911 

Global Best (seg) 0 .67 0 .646 0 .478 0 .737 0 .779 - 0 .77 

# Proposals 1051 885 138 4202 7482 1575 3066 

Fig. 6. Quantitative evaluation of object region proposals with respect to the number of object candidates on NYU-V2 RGBD dataset. Left: recall curves on proposed bounding 

boxes evaluation. Right: average best Jaccard Index curves on proposed segments evaluation. Note the curves of MCG3D and CPMC3D are based on supervised ranking of 

segments, while the other curves including ours do not use any ranking. 

only 40% of the rank-2 method MCG3D ( Gupta et al., 2014 ). More- 423 

over, our initial bounding boxes require even less proposals ( 21% of 424 

( Gupta et al., 2014 )) while the recall score only degrades 2% w.r.t 425 

the best performance. 426 

For object instances proposal, our method also show very com- 427 

petitive performance: our score is 0.9% less than the best perfor- 428 

mance but our number of proposals is less than half of theirs. It is 429 

worth noting that we do not rank our bounding box proposals in 430 

our result presentation, while ( Gupta et al., 2014; Lin et al., 2013 ) 431 

perform supervised ranking. Since we already provide high qual- 432 

ity object segmentations with much less number of proposals in 433 

a complete unsupervised framework, ranking proposals is beyond 434 

the scope of this paper. 435 

In addition, we provide results of global Jaccard index at class 436 

level for both object location and segmentation proposals in Fig. 7 . 437 

We divide 894 classes into 40 classes following the definition of 438 

( Gupta et al., 2013 ) including 37 specific object classes and 3 ab- 439 

stract classes: “other struct”, “other furniture” and “other props”, 440 

which include 68, 82, 707 subclasses respectively. We obtaine best 441 

performance on 26 classes for object location proposals and 9 442 

classes for segment proposals. It is worth noting that our method 443 

achieves best performances on the three abstract classes for ob- 4 4 4 

ject location proposals. It indicates that our approach is general to 445 

different object types since abstract classes cover 95.8% subclasses 446 

and 32.3% instances on the test set. 447 

Except for quantitative evaluation, we also provide qualitative 448 

evaluation for proposed object regions in Fig. 8 . The first six scenes 449 

show objects that have been segmented successfully, and in the 450 

last two rows we list several failures cases. The grabcut segmenter 451 

is inclined to fail either when the foreground and background have 452 

similar color information, or when the foreground object is too 453 

small or has irregular shapes (e.g, plants). 454 

Ablation Study 455 

In order to understand the individual impact of the five pro- 456 

posal strategies on the performance of our RGB-Depth object pro- 457 

posal system, we evaluate our algorithm on the NYU-V2 RGB-D 458 

dataset by removing one strategy each time. The corresponding re- 459 

sults are listed in the Table 3 . As can be seen all the strategies con- 460 

tributes to the performance. The ranking of strategies in decreasing 461 

significance order is NPR, PR, DP, HC, and MPR. 462 

3.2.2. SUN RGBD Dataset 463 

We also test our unsupervised approach without changing any 464 

parameters on the recently released SUN RGBD dataset. SUN RGBD 465 

is a large scale indoor scenes dataset with a similar scale as PAS- 466 

CAL VOC. It contains 10,335 RGB-D images in total, which are 467 

collected from four different active sensors: Intel RealSense, Asus 468 

Xtion, Microsoft Kinect v1 and v2. While the first three sensors 469 

obtain depth map using IR structured light, the Kinect v2 (kv2) 470 

estimates the depth based on time-of-flight. With respect to raw 471 

depth data quality, kv2 can measure depth with the highest accu- 472 

racy but at the same time there are a lot of small black holes in 473 

the depth map due to light absorption or reflection. The RealSense 474 

has the lowest raw depth quality. 475 

As can be seen in Table 4 , in general, our approach exhibits 476 

similar performance to the NYUV-2 dataset. We observe that while 477 

the bounding box predictions show consistent performance, the ac- 478 

curacy of instance proposals degrades around 2%. This reasonable 479 

degradation might be due to higher variance in sensor depth res- 480 

olution. The average number of proposals is similar to the number 481 

on NYUV-2 dataset except for the tests on RealSense data, where 482 

it increases by around 50%. This is expected as the effective depth 483 

range of RealSense is very short (depth becomes very noisy or 484 

missing beyond 3.5m). 485 
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Fig. 7. Classwise (40-class) performance comparisons based on the standard PASCAL metric (Jaccard Index) at object instance level for both bounding box and segment 

proposals on the NYU-v2 RGB-D dataset. 

Table 3 

Ablation study: each time we remove one of the five object proposal strategies from the 

full system and report how the performance degrades with respect to both bounding 

box and segment proposals. 

no NPR no PR no DP no HC no MPR Ours-full 

Global Best (bbox) 0 .666 0 .813 0 .889 0 .897 0 .901 0 .911 

Global Best (seg) 0 .610 0 .699 0 .733 0 .748 0 .753 0 .77 

Table 4 

Performance evaluation of our method on the large scale SUN RGB-D dataset, the images of which are collected from four 

different RGB-D sensors. ∗: newly captured RGB-D images in Song et al. (2015) . 

SUN RGB-D dataset ( Song et al., 2015 ) 

Sensors Kinect v1 Kinect v2 RealSense Xtion 

Resources B3DO ( Janoch et al., 2013 ) NYUV2 ∗ ∗ SUN3D ( Xiao et al., 2013 ) 

Global best (bbox) 0 .929 0 .911 0 .908 0 .909 0 .912 

Global best (segment) 0 .742 0 .77 0 .746 0 .745 0 .752 

# proposals 2972 3066 2971 4628 2969 
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Fig. 8. Qualitative performance evaluation for proposed object segments on NYU-V2 RGBD dataset. Object proposals are highlighted with green color. And several failure 

cases are provided at the last two rows. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

4. Conclusion 486 

We propose an unsupervised unified framework for class inde- 487 

pendent object bounding box and segment proposals. Our method 488 

produces object regions with very comparable qualities to the 489 

state-of-the-arts while requiring much less proposals, which indi- 490 

cates its great potential for high level tasks such as object detec- 491 

tion and recognition. The source code will be available on authors’ 492 

websites. 493 
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