
Computer Vision and Image Understanding 114 (2010) 827–834
Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate/cviu
Contour based object detection using part bundles

ChengEn Lu a,c,d,*, Nagesh Adluru b, Haibin Ling a, Guangxi Zhu c,d, Longin Jan Latecki a

a Dept. of Computer and Information Science, Temple University, 324 Wachman Hall, 1805 N Broad St., Philadelphia, PA 19122, USA
b Biotechnology Center, University of Winsconsin-Madison, T129 Waisman Center,1500 Highland Ave, Madison, WI 53705, USA
c Dept. of Electronics and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
d Div Commun and Intelligent Networks, Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China

a r t i c l e i n f o
Article history:
Received 22 March 2009
Accepted 30 March 2010
Available online 4 April 2010

Keywords:
Part bundle
Shape context
Object detection
1077-3142/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.cviu.2010.03.009

* Corresponding author at: Div Commun and In
National Laboratory for Optoelectronics, Wuhan, 4300

E-mail addresses: luchengen@gmail.com (C. Lu), a
hbling@ist.temple.edu (H. Ling), gxzhu@hust.edu.cn
(L.J. Latecki).
a b s t r a c t

In this paper we propose a novel framework for contour based object detection from cluttered environ-
ments. Given a contour model for a class of objects, it is first decomposed into fragments hierarchically.
Then, we group these fragments into part bundles, where a part bundle can contain overlapping frag-
ments. Given a new image with set of edge fragments we develop an efficient voting method using local
shape similarity between part bundles and edge fragments that generates high quality candidate part
configurations. We then use global shape similarity between the part configurations and the model con-
tour to find optimal configuration. Furthermore, we show that appearance information can be used for
improving detection for objects with distinctive texture when model contour does not sufficiently cap-
ture deformation of the objects.

� 2010 Elsevier Inc. All rights reserved.
1. Background

The key role of contours and their shapes in object extraction
and recognition in images is well established in computer vision
and in visual perception. Extracting edges in digital images is rela-
tively well-understood and there are robust detectors like [21,9].
However, it is often difficult to distinguish edge pixels belonging
to meaningful object contours. The main challenge is due to the
fact that most edge pixels represent background and irrelevant
texture, while only a small subset of edge pixels corresponds to ob-
ject contours. Further, the edge pixels do not simply form occlud-
ing contours but broken contour fragments due to noise and
occlusion.

Grouping edge pixels into contours using various saliency mea-
sures and cues has been studied for long and is still an active re-
search field [37,30,28,15,27]. Once contours are identified they
can be further grouped into objects by performing shape matching
with model contours. For example, Shotton et al. [26] and Opelt
et al. [24] use chamfer distance [2] to match fragments of contours
learnt from training images to edge images. McNeil and Vijayaku-
mar [23] represent parts learnt from semi-supervised training as
point-sets and establish probabilistic point correspondences for
the points in edge images. Ferrari et al. [6] use a network of nearly
ll rights reserved.
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straight contour fragments and a sliding window search. Thaya-
nanthan et al. [29] modify shape context [1] to incorporate edge
orientations and Viterbi optimization for better matching in clut-
ter. Flezenswalb and Schwartz [5] present a shape-tree based elas-
tic matching among two shapes and extend it to match a model
and cluttered images by identifying contour parts (smooth curves)
using a min-cover approach [4]. More recently, Zhu et al. [38] for-
mulate the shape matching of contours (identified using [37]) in
clutter as a set–set matching problem. They present an approxi-
mate solution to the hard combinatorial problem by using a voting
scheme [33,19] and a relaxed context selection scheme using linear
programming. They use shape context [1] as shape descriptor. Bai
et al. [40] provide a skeleton-based model decomposition scheme
to solve non-rigid object detection problem. Aside from the recent
work mentioned above, there are many early studies that use geo-
metric constraints for model-based object and shape matching
[13,11,12].

In this paper we focus on object detection by grouping the edge
fragments in an image according to a contour model. Like many
previous studies [33,19,26,38,7], we follow a two-phase frame-
work: (1) generating object hypotheses, and (2) picking the best
one. Our main contributions are summarized below: For the first
phase, we propose a novel part bundle model that allows us to
use local shape similarity of contour parts to efficiently generate
accurate hypotheses. Specifically, we decompose a given contour
model into several part bundles, where each part bundle contains
several overlapping contour fragments (see Fig. 1 for example
decompositions). The model naturally handles hierarchical rela-
tions between fragments, as well as the AND/OR relations for

http://dx.doi.org/10.1016/j.cviu.2010.03.009
mailto:luchengen@gmail.com
mailto:adluru@wisc.edu
mailto:hbling@ist.temple.edu
mailto:gxzhu@hust.edu.cn
mailto:latecki@temple.edu
http://www.sciencedirect.com/science/journal/10773142
http://www.elsevier.com/locate/cviu


(a) a bottle model

(b) a giraffe model

(c) an apple logo model

(d) a mug model

(e) a swan model

Fig. 1. The part bundles of the hand-drawn contour models. Different parts and the
part bundles are shown in different colors. (a) a bottle model (b) a giraffe model (c)
an apple logo model (d) a mug model (e) a swan model.

1 We design the part bundles based on the hand drawn models provided in the
ETHZ dataset, but they are not optimal. For example, we observe that in the giraffe
category, the necks of many giraffes have different bending angles. If we add another
giraffe model to this category with a different neck, the performance of our method
on that object category improves significantly.
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co-existing and competing fragment pairs. By matching the con-
tours composed of fragments in the part bundles to that of the edge
fragments in a given image we can generate concise and accurate
hypotheses for part-configurations. The part bundle model is clo-
sely related to the hierarchical Random Filed model [18] and the
AND/OR graphs [14,39,3]. While our model avoids explicit graph-
theoretic parsing it keeps all the necessary properties for inferring
part-configurations.

In the second phase, we compute global shape similarity of the
part-configurations to the model contour using shape context [1]
to pick the best part-configuration. Global shape matching is an
expensive operation but we can afford to do this thanks to the con-
cise and accurate hypotheses generated in the first phase using
local shape matching of edge fragments to the part bundles. The
illustration of our framework is shown in Fig. 2.

Another contribution we made for the second phase is to inves-
tigate if appearance can compensate for the lack of model deforma-
bility for objects with distinctive texture. Using the bag-of-features
[36,35,32,10] model, we show that the detection performance can
be significantly improved for objects with distinctive texture.

The rest of the paper describes the details of our framework fol-
lowed by experimental evaluation. In Section 2 we describe the
first phase of hypotheses generation. Section 3 describes how we
select the best hypothesis in the second phase. In Section 4 we
present experimental evaluation of our method, followed by con-
clusions and discussions in Section 5.

2. Hypotheses generation using part bundles

We aim to find the objects in the image using a shape matching
scheme. The shape matching algorithm by Ferrari [8], called kAS,
groups k pieces of adjacent segments (AS) together and treats the
adjacent segments as an individual unit and performs shape
matching between them. Zhu et al. [38] perform many-to-many
matching between sets of model and image segments in their pro-
cess of contour selection.

We propose a simple scheme that only allows one-to-one map-
ping between a model segment and an image segment. Our part
bundle based decomposition of the model contour allows us to
perform the one-to-one matching. We first explain how a given
contour model is hierarchically decomposed into part bundles
and then explain how the edge fragments are obtained from a
given image. Using the part bundle model and edge fragments
we generate good candidate part configurations of edge fragments
in the image.

2.1. Part bundles model for shape decomposition

To model an object class, we first get its contour representation
by tracing a sample image as in [8,38]. As stated in the above sub-
section, we try to apply the same criteria to the shape model as
that in the image segments to get fairly straight contour fragments.
Since the model contour is a complete contour, we only apply rule
2 (described below) to break the model contour to several contours
at high curvature contour points. Other methods like discrete curve
evolution (DCE) [17] also represent a shape contour as linear seg-
ments connected by several salient contour points. Salient points
are the contour points with high curvature. Fig. 3 shows an exam-
ple which use our rule 2 to decompose a shape model to several
contour pieces. Thus, both the image fragments and model seg-
ments are processed with the same criteria, which increases the
probability of their one-to-one matching.

Moreover, we obtain a more flexible model structure by manual
interference based on above decomposition. We manually decom-
pose contour segments at some salient points and the center of a
contour segment to form a hierarchical structure. Let F ¼ ffigm

i¼1 de-
note the set of such fragments. A part bundle B is a subset of F, such
that at most one fragment in B is allowed to have correspondence
to an edge fragment in E. In other words, all fragments in a bundle
B compete with each other during shape-to-image matching. With
this bundle decomposition, we now can write our contour model
as

B ¼ fBkgm0

k¼1: ð1Þ

where m
0
is the number of part bundles in model B, which is usually

very small. For bundles we have the following constraints

Bk � F; k ¼ 1; . . . ;m0;

Bi

\
Bj ¼ ;; 1 6 i < j 6 m0: ð2Þ

Sample bundle decompositions are shown in Fig. 1, we fix them
as the models for ETHZ dataset.1 It can be seen that a bundle can have
fragments representing overlapping parts thus having redundancy
and hierarchy. A cognitive motivation behind such decomposition



Fig. 2. Illustration of our framework: (a) The edge fragments are generated using edge linking software [16] (see Section 2.2). (b) Contour based model is decomposed into
part bundles (see Section 2.1). (c) Contour fragments similarity, the color varies from blue to red indicates similarity from weak to strong. (d) Using contour fragment
similarity we perform efficient centroid voting (see Section 2.3). (e) and (f) The part configurations generated using K-NN centroids around each centroid are evaluated using
shape and appearance information and the best part-configuration is picked (see Sections 2.3 and 3), the black dots are the centroids estimated by mapping a model fragment
to a image fragment.
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Fig. 3. A shape model is decomposed to several pieces at salient contour points using rule 2 of our edge linking criteria.
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scheme is that an object can be recognized even if some parts of it are
missing, as can be observed in Fig. 4. There are several reasons why
parts of objects can be missing in real images: missing edge informa-
tion, occlusion, failures in contour grouping. The main constraint for
Fig. 4. Parts of the objects are missed both due to missing edge information and due to b
missing.
the bundle design is to ensure shape flexibility, i.e., to accommodate
for possible deformations and broken edge fragments in the edge im-
age. Our experimental results presented in Section 4 show the superi-
ority of our part bundle scheme over the control point scheme.
roken edge links. Objects can still be recognized using shape even if some parts are



Fig. 5. Decomposing and linking of edge segments in a real image with our two rules described in the text.

2 0 denotes a dummy fragment that B maps to for handling missing parts.
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2.2. Extracting edge fragments from an image

Given is an input image I and its edge map extracted by the
edge detection algorithm [22]. We extract a set of edge fragments,
E ¼ feign

i¼1, from the edge map in the following way. First, single
pixel wide edge chains are obtained using the edge linking method
of Peter Kovesi [16]. Then each branching chain from a junction
point is treated as an edge segment. An example can be found in
Fig. 5b, where different color represents different edge segments.
The connected edges are partitioned to several branches at junc-
tion points.

We observe that if edge segments are long and straight, they are
more likely to correspond to a contour part of the model. Based on
this observation, we further group Peter Kovesi’s edge linker result
to generate fairly long and straight edge segments. At this step, no
shape prior is taken into consideration for contour grouping. We
apply following two rules.

� Rule 1 (Linking): Connect two edge segments if the distance
between two of their endpoints is less than DT and the cor-
responding turn angle is less than KT, and repeat the process
until there are no more edge segments to link. In cases
where there are more than two edge segments at a junction,
edge segments with smaller turn angle should be connected
first.
� Rule 2 (Decomposing): Split a given edge segment at a point with

turn angle larger than KT, and continue doing this till there is no
more edge segments to split.

In our work, we set DT = 10 pixels in most cases, and KT is mea-
sured by curvature with a certain scale. KT is typically set to 0.5. In
Fig. 5c, it can be seen that that short edge fragments are linked to
form longer edge segments at junction points following rule 1, and
in Fig. 5d, all edge segments are decomposed to fairly straight seg-
ments. We apply our edge rules to all the test images in the ETHZ
dataset.

To summarize, we obtain a set of edge fragments E ¼ feign
i¼1

by applying Peter Kovesi’s edge linker [16] and our two rules.
A sample set of resulting edge fragments can be seen in Figs.
5d and 2a.
2.3. Efficient centroid voting with part bundles

Given a set of model fragments F and edge fragments E, the task
now is to find a candidate subset of E such that the global shape
composed by it matches to that of B. Matching F and E is a hard
combinatorial matching problem. In [38], many-to-many matching
is utilized and a context selection scheme is introduced. They solve
a relaxed version (that utilizes additivity of shape context repre-
sentation) instead of the discrete version with linear programming.

In contrast by taking advantage of the exclusion property of part
bundles and our edge linking rules, we can model the mapping
from B to E as a one-to-one mapping. Denote such a mapping as
p : f1; . . . ;m0g ! f01;02; . . . ;0m0 ;1; . . . ;ng, such that Bi 2 B is
mapped to edge fragment ep(i) 2 E or empty edge when p(i) = 0i

2.
It can be seen that each such mapping can be considered as a part
configuration obtained by the fepðiÞgm0

i¼1 in the image and our task is
to find an optimal one p̂ that maximizes global shape similarity be-
tween the part-configuration and the model contour. Searching
among all configurations is very expensive since there areQm0�1

i¼0 ðnþm0 � iÞ ¼ Oððnþm0Þm
0
Þ � Oðnm0 Þ possible configurations.

As mentioned in the previous section, our part bundle generates
a very concise model decomposition, with m

0 � 4 for most objects.
Taking advantage of this fact, we design an efficient voting scheme
for searching in the configuration space. This allows us to explore
the configurations explicitly using any high-level shape matching
tool.

The basic idea is to use fragment correspondences between F
and E to vote for the object centroid. Specifically, for an image frag-
ment e 2 E and a model fragment f 2 F, we first build the mapping
between the sample points. Using sequences of tangent directions
along e and f as their shape descriptors, we perform sequence
matching with the Smith–Waterman algorithm [34]. Then, using
the part-centroid relation from the model, we can project the ex-
pected centroid of the object to the image. The scale transforma-
tion is estimated by the length ratio of the image fragment e and
the model fragment f. For each f 2 F, we rank all fragments in E
according to their similarities to f as computed above. Then we
choose the best two matches for centroid voting. Consequently,
i i



Table 1
Precision/recall pairs of the method of [7] and the Contour Selection method of [38]
are quoted from [38]. Our precision is higher than [7] on four classes (except for
‘‘mugs”) and higher than [38] on three classes (except for ‘‘bottles” and ‘‘giraffes”).

Class (Recall) (%) [7] (%) [38] (%) Our method (%)

Applelogos (86.4) 32.6 49.3 56.0
Bottles (92.7) 33.3 65.4 48.0
Mugs (83.4) 40.9 25.7 27.8
Giraffes (70.3) 43.9 69.3 50.0
Swans (93.9) 23.3 31.3 59.0
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the whole voting procedure generates 2m centroid votes (see
Fig. 2c and d).

The correspondences in the optimal configuration
ðp̂ð1Þ; . . . ; p̂ðmÞ) should consistently estimate the centroid of the
object. Assuming there exists a centroid whose K-NN centroids cor-
respond to the optimal fragment-bundle correspondences, we just
need to examine part-configurations obtained from K-NN centroids
around all 2m centroids (see Fig. 2e). A group of K-NN centroids
gives us K

m0
� �m0 part-configurations. So we have to examine a total

of 2mð K
m0 Þ

m0 hypotheses or part configurations. We denote the set
of these hypotheses as H. The number of configurations to be ex-
plored is exponential in the number of part bundles but usually
m
0 � 4 for most of the models. Also since m� n; 2m K

m0
� �m0

� Oðnm0 Þ as long as K� nm
0
. Theoretically, a larger K implies high-

er probability to get the optimal configuration, thus, the larger the
value of K, the better the performance is. However, the search time
increases significantly with the increasing of the value of K, and we
observe that the performance improves only slightly when K is lar-
ger than 20. This is explained by the fact that we have a concise
model structure and the improved edge linking method allows
one-to-one mapping. We chose K = 20 empirically to strike a bal-
ance between performance and time complexity.

Note that the proposed searching approach uses a brute force
scheme, which provides a more robust configuration estimation
than traditional solutions that usually rely on mode seeking or re-
lax the matching problem. Though more reliable, brute force solu-
tions are usually forbidden due to their high computational
complexity. The key factor that makes our solution computation-
ally trackable is the part bundle model and the one-to-one map-
ping scheme. In particular, we benefit from the fact that the
number of part bundles m

0
is small. This fact is a general property

that is rooted in human visual perception, since humans decom-
pose a given shape only in a small number of parts of visual form
[25].
Fig. 6. Precision/Recall curves of the Contour Selection method by Zhu et al. [38] (black)
performs significantly better on two categories viz. Applelogos and Swans.
3. Hypotheses evaluation

3.1. Utilizing local and global shape information

Our part configurations are groups of image edge fragments
and our models are based on contour parts. Hence it is natural
to use shape constraints for evaluating the part configurations.
Instead of just using geometric relationship between contour
parts, we use global shape similarity to judge the quality of
candidates.

We perform a coarse-to-fine shape matching to evaluate the
hypotheses (part configurations). We first eliminate hypotheses
hi 2H whose cumulative part-to-fragment similarities measured
using [34] is below a certain similarity threshold. Then for the
remaining hypotheses we use Shape Context [1] which is a well
known global shape descriptor and has demonstrated excellent
performance for shape analysis tasks. We use it to estimate the
similarity between a model and a hypothesis. The shape distance
between them is defined by the their shape context distance [1]
dscðhi;BÞ. We then pick the best candidate according to dsc:

argmin
hi

dscðhi;BÞ ð3Þ
and the method by Ferrari et al. [7] (green) on ETHZ shape classes. Our method (red)
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3.2. Combining shape and appearance

In addition to shape, appearance information often provides
distinctive cues for object detection and recognition. Appearance
can be helpful in cases of objects with distinctive texture and
where the object model does not capture the variance in the
shape. In this subsection, we describe our investigation along this
line.

We use the popular bag-of-features [36,32] framework for
appearance analysis. First, local patch descriptors are generated
from training images using SIFT [20], which are used to build a dic-
tionary D ¼ fwigM

i¼1 using k-means. Second, all local features in a
window are mapped to visual words in D, and the window is then
represented by its word frequency vector. Third, we collect all such
Fig. 7. Sample detection results. The edge map is overlaid on the image in white. The dete
left corners. The bottom most row (enclosed in red) shows some failure cases and false
word frequency vectors to form a training set, and use support vec-
tor machine (SVM) [31] to learn a classifier.

For object class, Giraffes, the neck in the model does not capture
the variance in the neck poses of the test images. Further, Giraffes
have distinctive texture. For this class we evaluate the hypotheses
by combining appearance and shape. Again we first eliminate part-
configurations whose cumulative part-fragment similarities is be-
low a certain threshold. Then for each of the remaining hypothesis
h, we use the texture inside the smallest bounding box enclosing
the fragments to get its visual word frequency representation.
Then we measure its relevance to a class using the confidence of
the learned SVM model, denoted as dapp(h). Combining shape con-
text and appearance similarity, we have the following weighted
evaluation criterion for picking the best hypothesis:
cted fragments are shown in black. The corresponding model parts are shown in top
positives.



Fig. 8. The Precision/Recall curves using shape based evaluation (dSC) and combin-
ing shape and appearance (dmix) on the class of giraffes. We also show the results of
[38] for comparison. The combination of shape and appearance significantly
improves the results.

Fig. 9. Two examples to show the improvement obtained by combining appearance
information. Top row: Results of using only shape. Bottom row: Results of
combining appearance with shape.

C. Lu et al. / Computer Vision and Image Understanding 114 (2010) 827–834 833
argmin
hi

dscðhi;BÞ þ kdappðhiÞ ð4Þ

where k balances the weight between shape and appearance.

4. Experimental results

We present results on the ETHZ shape classes ([8]). This dataset
has 5 different object categories with 255 images in total. Many
objects are surrounded by extensive background clutter and have
interior contours. All categories have significant intra-class varia-
tions, scale changes, and illumination changes. The advantage of
our method is to be able to identify good part-configurations
among clutter. The ability to handle deformations depends on
the capacity of global shape matching module or in other words
the hypothesis evaluation method.

4.1. Experiments using shape information

Similar to the experimental setup in [38], we use only the single
hand-drawn models provided for each class. For each model we
introduce breakpoints at high curvature contour points. The part
bundles created from the contour models can be seen in Fig. 1. In
addition to longer contour segments, we need to select shorter
ones, since contour parts may be missing in edge images.

Since we compare our results to the state-of-the-art [38], we
use Precision vs. Recall (P/R) curves for quantitative evaluation.
To compare with the results of [7] that are evaluated by detection
rate (DR) vs. false positive per image (FPPI), we translate their re-
sults into P/R values as in [38]. Fig. 6 shows P/R curves for the three
methods: Contour Selection method of [38] in black, that of [7] in
green3, and our method in red. Our approach performs better than
method in [7] on three categories, outperforms the Contour Selection
method [38] on three categories, and outperforms both methods on
two categories (‘‘applelogos” and ‘‘swans”).

We also compare the precision to [38,7] at the same recall val-
ues in Table 1. The precision/recall pairs of [38,7] are quoted from
[38]. We use the same criterion for correct detection as in [7]. Sam-
ple successful detections, failure cases and false-positives are
shown in Fig. 7.

On a PC with 2.3 GHz Pentium (D) CPU and 3 GB RAM, the aver-
age processing time of our method in MATLAB implementation is
around 25 s per image.

4.2. Experiments using shape and appearance information

We now present results of using appearance information on the
class of giraffes that have distinctive texture because of their skin.
We pick the first 16 images from the class to obtain the code book
D of 100 visual words. We only selected the SIFT features inside
the ground truth bounding boxes. The detection is based on a near-
est neighbor retrieval according the distance dmix, with k = 8.

Fig. 8 shows the P/R curves using only shape and combining
shape and appearance. Fig. 9 shows the improvement of using
appearance information on two sample images. As can be seen
using appearance information can significantly improve the detec-
tion performance.

5. Conclusions

In this paper we study the problem of contour based object
detection. A new contour model, part bundles, is proposed that
decomposes contour fragments into subsets. We show that this
3 For interpretation of color in Figs. 1–3 and 5–9, the reader is referred to the web
version of this article.
decomposition efficiently groups competing fragments and there-
fore enables brute force search hypothesis voting, which generates
high quality and concise candidate detection sets. With these
candidate sets, we use global shape similarity for false positive
pruning and achieved excellent performance on ETHZ dataset. In
addition, we show that appearance information, which can be eas-
ily integrated into our approach, can help to achieve further
improvement for objects with distinctive texture when contour
model and shape matching do not sufficiently capture the defor-
mability of objects. Integrating such additional cues is straightfor-
ward in our framework.
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