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Abstract—Diffusion process has advanced object retrieval greatly as it can capture the underlying manifold structure. Recent studies
have experimentally demonstrated that tensor product diffusion can better reveal the intrinsic relationship between objects than other
variants. However, the principle remains unclear, i.e., what kind of manifold structure is captured. In this paper, we propose a new affinity
learning algorithm called Regularized Diffusion Process (RDP). By deeply exploring the properties of RDP, our first yet basic
contribution is providing a manifold-based explanation for tensor product diffusion. A novel criterion measuring the smoothness of the
manifold is defined, which simultaneously regularizes four vertices in the affinity graph. Inspired by this observation, we further
contribute two variants towards two specific goals. While ARDP can learn similarities across heterogeneous domains, HRDP performs
affinity learning on tensor product hypergraph, considering the relationships between objects are generally more complex than
pairwise. Consequently, RDP, ARDP and HRDP constitute a generic tool for object retrieval in most commonly-used settings, no matter
the input relationships between objects are derived from the same domain or not, and in pairwise formulation or not. Comprehensive
experiments on 10 retrieval benchmarks, especially on large scale data, validate the effectiveness and generalization of our work.

Index Terms—Image retrieval, 3D shape retrieval, cross-modal retrieval, affinity learning, re-ranking, diffusion process

1 INTRODUCTION

IVEN a query object, the goal of retrieval task is to return

similar objects in the database according to a pre-defined
similarity measure. Conventionally, it is accomplished by
computing the pairwise dissimilarity between features in the
euclidean space. Then, similar objects are expected to be dis-
tributed with larger similarities to the query. Thus, they can
be ranked in higher positions of the ranking list. However, it
has been demonstrated [1] that the pairwise formulation is
insufficient to reveal the intrinsic relationship between
objects. Instead, similarities can be estimated more accurately
along the geodesic path of the underlying data manifold, i.e.,
in the context of other objects.

To illustrate the concept, we present a toy example in
Fig. 1. The data distribution is a two-spiral pattern with 200
data points, with each spiral having 100 points and one
query point in cross shape. An ideal retrieval result is that
points in one spiral have larger similarities with the query in
this spiral than the query in the other spiral. The euclidean
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distance (see Fig. la) is inadequate, while the proposed
method (see Fig. 1b) is able to reveal the data structure.

To capture the geometry structure of the manifold, many
algorithms have been developed in the literature. Those
algorithms share a very diverse nomenclature, including
but not limited to context sensitive similarity [2], [3], affinity
learning [4], [5], re-ranking [6], [7], [8], [9], ranking list com-
parison [10], [11], [12]. Nevertheless, most of them model
the relationship between objects on a graph-based manifold,
where the vertices in the graph represent objects and the
edge connecting two adjacent vertices is weighted by their
similarity. Then, similarity values are diffused on the graph
in an iterative manner (e.g., random walk [13]). This proce-
dure is usually called diffusion process [14], [15] in the
retrieval domain.

Most existing algorithms focus on iteration-based models,
with differences in similarity initialization, transition matrix
initialization and iteration scheme. A recent survey paper [1]
summarizes most common variants of diffusion process in a
unified framework, and provides a strong experimental sup-
port for those iteration-based models in terms of retrieval
performance. According to its taxonomy, diffusion process
on tensor product graph [16], built by computing the tensor
product of the original affinity graph with itself, exhibits its
superiority over other kinds of diffusion process. Tensor
product graph naturally takes into account high order infor-
mation, which is stated to be helpful for retrieval on mani-
fold. However, no works, including [16] itself and the
survey [1], have explained the mechanism behind. Some crit-
ical questions are: 1) what kind of manifold structure is cap-
tured and why it is better; 2) why high order information is
useful; 3) what is the essence of iteration and how many iter-
ations are needed. Unfortunately, though the iteration-based
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Fig. 1. The retrieval results returned by the euclidean distance (a) and
the proposed algorithm (b). The two crosses denote the query points. All
other points are colored according to the larger similarity to one of the
two query points.

models have been extensively studied (e.g., [1], [16]), those
issues are still unexplored. In this sense, the existing investi-
gations about diffusion-based affinity learning remain heu-
ristic and insufficient.

Considering that, the first yet basic contribution of this
work is to use regularization-based model to theoretically
expose the inherent principle of tensor product graph diffu-
sion, in particular to answer those unexplored questions. To
this end, a novel algorithm called Regularized Diffusion
Process (RDP) is proposed. Though RDP has multiple for-
mulations, its key novelty lies in the regularization frame-
work (Section 3.1), which defines a novel smoothness
criterion to simultaneously regularize four vertices in the
affinity graph (illustrated in Fig. 2a). Instead of heuristically
defining the iterative model as [16], we provide strong evi-
dences that regularization can be a better theoretical and
practical guidance for tensor product graph diffusion.

By solving the objective function with regularization, one
can easily obtain the target similarity. However, it is too
computationally demanding to directly use the closed-form
solution. To make the computation feasible in practice, we
resort to an efficient iteration-based solver (see Section 3.2)
like existing algorithms [1], [16], [17]. Hence, the essence of
the iterative model of RDP is to minimize a kind of relation-
ship among four vertices at each iteration, i.e., to approxi-
mate the optimal solution of the regularization framework.

Nevertheless, the proposed RDP, as well as most previ-
ous works [1], [14], [15], [16], is only applicable in simple
retrieval settings, where the input similarity 1) is within the
same data domain, and 2) is in pairwise formulation, limit-
ing its usage in more challenging retrieval situations.
Inspired by the regularization framework of RDP, we fur-
ther contribute two important variants so that the generali-
zation of our work is significantly improved, as

1) Asymmetric Regularized Diffusion Process (ARDP) con-

siders affinity learning across two heterogeneous
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domains (see Fig. 2b). In this case, the context consid-
ered in two domains is asymmetric, as the sizes of
the two domains are not necessarily equal.
Hypergraph Reqularized Diffusion Process (HRDP) con-
siders that the relationships between objects are
more complex than pairwise in many applications.
Thus, it essentially performs affinity learning on the
tensor product of the hypergraph (see Fig. 2c), where
hyperedges are utilized to capture the complex rela-
tionships. By doing so, HRDP can leverage the high-
order information brought by both the hypergraph
itself and the tensor order learning.

With the supplement of ARDP and HRDP, our work is
suitable to deal with most commonly-used retrieval set-
tings. Given an input similarity, it not only can learn more
faithful similarities than other diffusion-based algorithms,
thus yielding better retrieval performances. But more
importantly, it can handle more challenging retrieval sce-
narios, which cannot be handled by [1], [16], [17]. In other
words, we systemically propose a generic and versatile tool for
tensor-order affinity learning between objects, with which many
previous algorithms can further enhance their retrieval perfor-
mance. Meanwhile, as a unified theoretical framework about
tensor-order affinity learning is established, we believe that
it would be inspiring for other researchers to design algo-
rithms about re-ranking, graph learning and feature fusion,
and advance research directions like geometric verifica-
tion [18], point registration, low-shot learning [19].

To demonstrate the generalization of our work, a series
of experiments is conducted. We first verify the effective-
ness of RDP in simple retrieval settings but with different
data modalities, such as face retrieval on the ORL and the
YALE datasets [20], shape retrieval on the MPEG-7 data-
set [21], natural image retrieval on the Ukbench [22], the
Holidays [23], the Oxford5K [24] and the large scale
Oxford105K datasets, and sketch retrieval on the TU Berlin
Sketch dataset [25]. Experimental results suggest that RDP
can achieve state-of-the-art performances on those datasets
as presented from Sections 5.2, 5.3, and 5.4. In Section 5.5,
we also apply ARDP to cross-modal retrieval on the Wikipe-
dia dataset [26], [27], where retrieval is done between text
data and image data. And in Section 5.6, the validity of
HRDP is testified with view-based 3D model retrieval on
the Princeton Shape Benchmark (PSB) [28], where 3D mod-
els are connected with hyperedges on a hypergraph.

The rest paper is organized as follows: Section 2 reviews
the relevant methods. The details of RDP are given in
Section 3, and its two variants ARDP and HRDP are
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Fig. 2. The illustrations of the smoothness criterion of the proposed RDP (a), ARDP (b) and HRDP (c). W denotes the input similarity, and A denotes

the output similarity.
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described in Section 4. The experimental comparison and
analysis are presented in Section 5. The conclusions and the
future work are summarized in Section 6. All the used theo-
rems, lemmas and definitions are put in the supplementary
material, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2018.2828815.

2 RELATED WORK

Affinity learning between objects is a fundamental topic in
computer vision, which has been investigated for decades.

Manifold ranking [17], derived from semi-supervised
learning [29], proposes to rank the data with respect to the
intrinsic manifold structure. Graph Transduction (GT) [3]
takes the query point as the only labeled data, and spreads
the labeled information to unlabeled database in a similar
way of label propagation. Locally Constrained Diffusion
Process (LCDP) [14] further stresses that it is crucial to con-
strain the diffusion process “locally” since it is susceptible
to noise edges in the affinity graph. In [30], an ultra-efficient
diffusion process called Regional Diffusion is proposed,
which is conducted on descriptors of image regions rather
than on global image descriptors considered in this paper.
Motivated by the observation that a good ranking is usually
asymmetrical, Contextual Dissimilarity Measure (CDM) [2]
improves Bag-of-Words (BoW) [31] retrieval system by iter-
atively estimating the pairwise distance in the spirit of
Sinkhorn’s scaling algorithm.

Despite those diffusion processes on the original graph,
Tensor Product Graph diffusion (TPG) [16] manages leverag-
ing the high-order information from the tensor product of
the affinity graph. Its key contribution is that the information
propagation on TPG can be computed with the same compu-
tational complexity as that on the original graph. The sur-
vey [1] defines a general framework for those diffusion
processes. By varying 4 different affinity initializations, 6 dif-
ferent transition matrices and 3 different update schemes, it
enumerates 72 variants of diffusion process, and experimen-
tally benchmarks that affinity learning on the tensor product
graph is more robust in the scope of retrieval. The previous
conference version [32] of this paper theoretically explains
why this kind of diffusion process is superior by defining a
new smoothness criterion among four vertices.

To leverage the complementarity of multiple cues, large
efforts are also devoted to feature fusion in the framework of
diffusion process. As a representative work, Graph Fusion [6]
integrates multiple features in a query-specific manner, and
learns the affinity by utilizing the local PageRank algorithm.
Co-transduction [33] combines the concept of co-training
and graph transduction for robust shape retrieval. In [34],
weight learning and affinity learning are jointly done in a
unified framework, which makes it particularly robust to
noisy similarities. Locally Constrained Mixed Process [15]
partly fuses multiple similarities into one, then propagates
on the locally dense data space. In [35], multiple features are
combined by a mixture Markov model, and a feature selec-
tion method using group sparsity is proposed in [36].

Most aforementioned algorithms are run in an itera-
tive manner. Besides, some methods directly define a new
context-sensitive similarity via analyzing the ranking list
or the neighborhood structures. For example, Pedronette
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et al. [10], [12] propose a novel similarity measure based on
the similarity of the ranking lists. Re-ranking with k-nearest
neighbor (kNN) [9], mutual kNN [5] and reciprocal kNN [8],
[37] are also explored respectively. The principle of those
algorithms is that similar data points tend to have more com-
mon neighbors. Though appear different from our work, we
demonstrate that they also have inherent connections as pre-
sented in Section 3.4. Interestingly, diffusion process also
relates to dominant sets [38], a well-known graph-theoretic
notion which is successfully applied to neighborhood selec-
tion [16], image segmentation [39] and geo-localization [40].

3 REGULARIZED DIFFUSION PROCESS

Regularized Diffusion Process (RDP) models the data mani-
fold as an weighted graph G = (X, W), where the vertices of
the graph denote the data points X = {z;,zs,..., 2y}
W e RMV is the graph adjacency matrix, and W;; repre-
sents the pairwise similarity between z; and z;. Our aim is
to learn a new similarity measure A = {4;;},_; ..y, which
varies sufficiently smooth along the graph G.

Although modeled on the graph G, the proposed RDP, as
expounded below, essentially learns the similarity A on the
tensor product graph G while maintaining the same algo-
rithmic complexity as diffusion on G. In the tensor product
graph G, each vertex corresponds to two vertices and each
edge depicts the relationship among four vertices in the
original graph §. Formally, the tensor product graph
G = (X, W) is defined as

X=X xJX,
W=WaeW,

where x denotes the Cartesian product and @ denotes the
Kronecker product.

3.1 Regularization Framework

Most pervious works [1] are run in an iterative manner.
However, we propose to obtain the new similarity measure
A as the closed-form solution of the following optimization
problem

2
1 & Api Ay
min — Wi Wi —— — J
A ”;::1 ’ (\/Dz’kak \/D;iDy "
N
+ 122 Z(Alw - Y}wﬂ)?a

k=1

where p > 0 is a regularization parameter. Y € RVN
denotes the initial affinity values. D is a diagonal matrix
with elements D;; = E;VZI Wij.

As presented in Eq. (1), the objective function of RDP con-
sists of two terms. The first term describes a kind of influence
of the input similarity W on the learned similarity A. By anal-
ogy to Local and Global Consistency (LGC) [29], we will call
it smoothness term. However, the inherent meanings of two
smoothness terms are quite different. As a semi-supervised
learning algorithm, the smoothness term of LGC indicates
that if x; is similar to x; (large Wj), their probabilities of
belonging to the same category should have a small differ-
ence. By contrast, the smoothness term of our method regu-
larizes that if x; is similar to x; (large W;;) and z; is also
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similar to z; (large Wy;) in the input similarity space, then the
learned similarities A;; and A;; should be similar (see Fig. 2a).

Manifold ranking [17] directly applies LGC to retrieval
task by interpreting the probability of belonging to categories
as the similarities between objects. Thus, one can find that the
smoothness term in our method actually imposes a relaxed
constraint against that in manifold ranking, i.e., the individ-
ual object x; is replaced by a pair of objects z; and x; with
similarity W;;. Consequently, to interrelate four tuples simul-
taneously, tensor product graph is a natural choice since each
of its vertices contains two data points and each of its edges
records the relationship between four data points.

In this sense, RDP can be expressed as an extended ver-
sion of manifold ranking with a relaxed smoothness term.
The second term in Eq. (1) is called fitting term, which explic-
itly penalizes the difference from the initial similarity. Previ-
ous works [16], [17] take Y as identity matrix I, indicating
that only the self-affinity of each node is fastened. In the
experiments, we verify that this is not an optimal setup.

It seems difficult to derive a closed-form solution of
Eq. (1) owing to the difficulty in computing the derivative
with respect to A. However, our key observation shows that
it is possible to transform Eq. (1) so that, it can be easily
solved by adapting standard tools from graph theory. To
this end, we need two additional operators:

1) vec(:): vectorize an input matrix by stacking its col-
umns one after the next,
2)  vec(-)"': the inverse operator of vec(-),
and two identical coordinate transformations o« = N(i—
1)+k and p=N(j—1)+1 To simplify the notation, we
define A = vec(A) throughout this paper. Then, the smooth-
ness term of Eq. (1) can be transformed into

1 Ae Ay
- W, _
2 a%; ! (V Do/ Dﬂﬂ)

NZ - 2 5\[2
A - W
- Wa A ————— A
a,ﬂzzl *Dea a,ﬁzz1 \/m 4

N @)
— -2 T __ R

:ZAa — A D '?wDp 124
a=1

— A (I . D”/QWD”/Q)A'

= A (I-9)4,

where [ is an identity matrix of an appropriate size,
W=WeWeR" D=DeDeRV*N, s=505¢
RV*N and S = D-Y2WD~1/2, The following three facts
are applied during the transformation above:

1) Wis symmetnc, since W is symmetric.

D Bu-¥),
N N
Do = Dii Dy = »_ Wi > Wi
p=
N N
= Z Z WiiWyu =

J=1 1=1 =1

W o, since

3)
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4)

In summary, the objective function in Eq. (1) is equiva-
lent to

J=AY(I—S)A+ ul|A-Y|> )

By taking the partial derivative of J with regard to /_(, we
obtain

%:2(1—S)Z+2u(ﬁ—f). (6)

By setting Eq. (6) to zero, we have
- 1% 1 -1
A=——|I-——S) Y. (7)

After applying vec™! to both sides of Eq. (7) and setting

_ 1 .
a =g we obtain

A" = (1 —a)vec! ((I —aS® S)flvec(Y)),
= (1 —a)vec (I —

i ®
asS)'Y).

Since Eq. (5) is convex with respect to A, A* is the optimal
closed-form solution of Eq. (1). As can be clearly seen, the
equilibrium state relates to the adjacency matrix S® S of
the tensor product graph G, which naturally takes into
account the high order relationships between data points.

A in Eq. (5) can be deemed as a function, which gives
each vertex in G (also a pair of vertices in the original graph)
a real value to describe the pairwise relationship. I — S is the
normalized graph Laplacian of the tensor product graph.
So, the proposed method also aims at taking graph Lapla-
cian as a smooth operator to preserve the local manifold
structure as [29]. However, the key insight of our approach
is utilizing tensor-order graph Laplacian to smooth the pair-
wise relationship in the original graph.

3.2 lteration-Based Solver
Solving RDP using the closed-form solution in Eq. (8) is
too computationally demanding (refer to Section 4.3 for
detailed analysis). To remedy this, we propose an efficient
iteration-based solver following [16].

In RDP, an iterative solver can be

A = ¢SADST 4 (1 — )Y )

To facilitate the iteration, we need to initialize A!"). Opposed
to most variants of diffusion process summarized in [1], we
do not consider different types of initialization A", since
our algorithm is guaranteed to converge to the same solu-
tion. The only difference is that the convergence speed is
not the same with different initializations as demonstrated
in the experiments. In each iteration, similarity values are
propagated on the affinity graph through the contextual
information around both query nodes and database nodes,
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which is involved by pre-multiplying A" by S and post-
multiplying A® by ST. In other words, the considered con-
text is bidirectional. To summarize, our update scheme dur-
ing each iteration is to propagate similarities on the affinity
graph with probability « € (0,1) and go back to the initial
affinities Y with probability (1 — «).

Theorem 1 proves the iteration converges to exactly the
same solution presented in Eq. (8) obtained by the regulariza-
tion framework of RDP. This provides a different yet impor-
tant explantation of diffusion process on tensor product graph
which well reveals its essence, i.e., before convergence, the
iterative similarity propagation is always decreasing the objec-
tive value of Eq. (1), in turn, maximizing the smoothness of the
manifold in terms of the newly-defined smoothness criterion.
Moreover, the generated equilibrium is independent from the
initialization of A, which supports our previous claim that
the initial value of A(!) is irrelevant in our algorithm.

3.3 Limit-Based Interpretation
In this section, we show that RDP can be also understood as
a diffusion process on a tensor product graph.

As is known, a simple realization of diffusion process on
an affinity graph can be done by computing powers of the
adjacency matrix of the graph. In this paper, the edge weights
at time ¢ can be obtained from («S)’. Many previous
works [6], [7], [14] find that it is crucial to stop the diffusion
process at a “right” time ¢. However, this is usually problem-
atic especially when no labelled data are available. To remedy
this, accumulating the results at different ¢ is suggested [33],
[41]. When t — oo, the limit of the accumulation is

> (@8)
=1

7

=T -aS) " (10)
Since the Kronecker product of the adjacency matrix of the
graph with itself is the adjacency matrix of tensor product
graph, diffusion process on tensor product graph can be
simply achieved by replacing S in Eq (10) with S=S5® S,
thus yielding

> (@S) = —as).

i=1

S*

(11)

Note that S* € RV’ *N* and our aim is to learn a new con-
text-sensitive similarity A* € RV*¥. Therefore, we need to
gather a portion of elements in S* to substitute A*. In this
paper, it can be achieved by

A* = vec ' (S'Y), (12)
where Y € RV*V determines the entry indices of the
selected elements in S*. Meanwhile, since Y does not need
to be binary containing only 0 or 1, it also specifies a degree,
to which extent the elements in S* should be selected.

By multiplying a constant weight (1 — «), Eq. (12) is iden-
tical to Eq. (8), which suggests that the proposed method is
essentially a variant of diffusion process operating on tensor
product graph.

3.4 Metric-Based Interpretation

We present in this section that RDP is tightly related with
soft cosine similarity (see Definition 1).
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Let S, = [57;1, Siz, .. .,Sj,N] S RIXN be the ith row of S.
Then, the similarity between z; and a; associated to the tth
propagation step of Eq. (9) can be expressed as

N
< S, S >= Z A/E;)Skislj, (13)
ij=1

where we omit the norm of S); and S; for approximation.

As S, (or 5)) records the contextual distribution of x;, (or
1), i.e., its neighbors which are visually similar to x, (or ;).
The propagation step of RDP actually computes the soft
cosine similarity between two context vectors S and ;. The
difference is that instead of using a fixed correlation matrix
as [42], the correlation matrix Af; is updated dynamically at
each iteration. It also implies that it is crucial for diffusion
process to possess the property of convergence of iteration
and the robustness to the initialization of AV).

In this sense, RDP is related to those algorithms which
leverage the comparison of ranking list or neighborhood to
refine the input search results, such as RL-Sim Re-ranking [10],
Reciprocal kNN Graph Learning [37], KNN Re-ranking [9],
RNN Re-ranking [8]. Most those methods only simply count
how many common neighbors which z;, and z; have. However,
this strategy may lead to unsatisfactory performances, since it
often occurs that two points belong to the same dense cluster,
but have no common neighbors. In comparison, the strategy
that RDP adopts is not so strict. It considers how many similar
neighbors which z;, and z; have, by using the learned correla-
tion matrix A®).

4 VARIANTS

In this section, two important variants of RDP are proposed
towards two different goals.

In Section 4.1, we extend RDP to tackle two heterogeneous
graphs, with each graph from one particular data domain.
Since the bidirectional context is asymmetric in this specific
scenario, we name this variant as Asymmetric Regularized
Diffusion Process (ARDP). By doing so, ARDP can be applied
to improve the performance of cross-modal retrieval.

In Section 4.2, we generalize RDP to hypergraph, so that
more complex relationships (instead of pairwise relation-
ships) between objects can be handled. Since affinity learn-
ing here is done by performing RDP on the tensor product
of the Hypergraph with itself, we call this variant as HRDP.

4.1 Learning on Heterogeneous Graphs

Assume ¢V = (X, W) and g® = (X®, W®) are from
two heterogeneous data domains, where X@ denotes N;
data points in the ith domain, and W € RY>*Vi is the
graph adjacency matrix, respectively (i =1,2). Now, we
need to derive the similarity A € RV**2 which measures
the pairwise similarities between the data points in one
domain and the data points in the other domain. Accord-
ingly, we can have D € RY>Ni and W € RV>Ni (j =
1,2). Note A is not necessarily a square matrix, as the sizes
of those two domains may be different.

Let z;, and z; be two exemplars in the first domain, and z;
and z; be two exemplars in the second domain. The objec-
tive function of Asymmetric Regularized Diffusion Process
(ARDP) is given as
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2
Aki

. u
+ 1 Z Z(Aki - Vi),

i=1 k=1

IIlln Z Z VV<2

L/ 1 kl=

\/D11 ll

(14)

where Y € RV** denotes the original cross-modal similar-
ity which we want to preserve, and u is the regularization
parameter which has the same effect as in the standard RDP.

Defining the two identical coordinate transformations as
a=N(i—1)+k and B=Ni(j—1)+1[, we can convert
Eq. (14) in the same form as presented in Eq. (5), via defin-
ing S= 5% ®S1 € RMM)xIMNo) - Also, the closed-form
solution A* € RM*M2 can be adapted from Eq. (8). More-
over, the iterative formulation of ARDP is

At — M A0SO (1 )y, (15)

It is easy to prove that the above iteration converges to the
closed-form solution of Eq. (14).

Since RDP is only suitable for within-domain retrieval,
one can set Y = I to enforce the self-similarity. However, it
is not the case for ARDP, since the data points from different
domains are different. From a mathematical point of view,
Y is also not a square matrix in general. This indicates that
we need to initialize Y by using other algorithms which can
provide the cross-modal similarity. In this sense, ARDP can
serve as a postprocessing procedure for other cross-modal
algorithms to learn more reliable cross-modal similarities.
Meanwhile, the acquisition of S is simple and can be done
within each individual domain.

4.2 Learning on Tensor Product Hypergraph

Both RDP and almost all the aforementioned diffusion pro-
cesses [1], [4], [14], [15] assume pairwise relationships
between objects. To handle more complex relationships, we
propose a novel and important variant called HRDP, to
show how to perform affinity learning on the tensor product
hypergraph in this section.

Apart from a simple graph where each edge connects two
vertices, the edge in a hypergraph [43] connects more than
two vertices. Let G = (X, W) denote the hypergraph with N
vertices and M hyperedges. The vertices of the graph denote
the data points X = {1, zs,...,zy}. Each hyperedge ¢ in G
is assigned a weight W, with all the weights stored in a
diagonal matrix W € RM*M_ The hypergraph G can be
denoted by an incidence matrix H € RYV*M ag

. 1, if z;€¢
H(,e) = {0, if x; ¢ e (16)
Based on H, the vertex degree of each vertex z; € X is
M
Dij = W.H, )
e=1
and the edge degree of hyperedge ¢ is
N
=Y Hi (18)

i=1
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Note that both D € RY*Y and B € RM*M are also diagonal
matrices.

Let A € RV*Y be the target similarity matrix learned by
HRDP. The objective function of HRDP is

1 M i W€€H7€ Jje WEEH]CEHZE
B&?

2 :
Ay Ay v 2
(\/Dikak \/Dj;Dy Z( ' )

k=1

(19)

The motivation of HRDP is similar to the standard RDP, but
differs in the usage of hyperedges which can capture more
complex relationships. More specifically, four data points
are also involved simultaneously, i.e., z; and z; are from the
hyperedge ¢ (H;. = Hj = 1), and z; and z; are from the
hyperedge ¢ (H. = H). = 1). As illustrated in Fig. 2c, the left
smoothness term regularizes that if z; and x; are connected
by the hyperedge € with edge weight W, and if z;, and z; are
connected by the hyperedge ¢ with edge weight .., then
the learned similarities A;; and A;; should be similar.

The right fitting term also imposes a probability of fasten-
ing the initial similarities ¥ between objects. However, it is
usually trivial to obtain such similarities in the hypergraph
settings, since the complex relationships between objects
are described by the incidence matrix H. Hence, Y can be
naturally set to an identity matrix / in this situation.

To derive the solution of Eq. (19), we need three identical
coordinate transformations, i.e., « = N(i — 1) + k, B = N(j—
1)+l and y = M(e — 1) 4 £. Then, the smoothness term of
Eq. (19) can be described as

12 - 2
_Z Z W, HayHpg, Aa Aﬂ
y=1a,p=1 ]Byy v O“)‘ V Dﬂﬂ

_ AZIQ NZZ WWHwHﬂV (A2 _

A A, )
vV DoaDgp

y=1 a,p=1 By, L
M? N N2 M2
S et S Bt
y_l a= p=1 BVV a,f=1 y=1 B ]D)cht]D)ﬂ
A2 » B,
= Z ©N "W, H,y — ATDTV2HWB I HTD Y24
a=1 D‘w‘ y=1
N2
=Y A2 A"V HWB'H'D 24
a=1

= AT(I - D PHWB'TH D /)4,
(20)
where W=W oW e RM>*M* H = HgHecRV>M B=

B BeRM>*M and D=D®DeR¥* The above
transformation utilizes the following facts

1) W W.=W,, HiH. =Hay, HicH;. = Hg,, BeB.. =
Bwr
2) Z 1 Hpy,s
3) Z“Q W,,He,
Afterwards, Eq. (19) can be converted to the same formu-
lation as Eq. (5) with § = D"'?HWB'H"D~'/2. Therefore,
the closed-form solution of HRDP can be adapted from
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Fig. 3. The two crosses denote the query points. The retrieval results of MR (first row) are given when iteration number is 5 (a), 10 (b), 20 (c) and 100
(d). The retrieval results of RDP (second row) are given when iteration number is 5 (e), 10 (f), 20 (g) and 100 (h). The gray points have zero similari-

ties with both query points.

Eq. (8). The iterative framework can be also adapted from
Eq. (9) via defining S = D-'2HWB'H"D~'/2.

4.3 Complexity Analysis
In this section, we analyze the algorithmic complexity of the
proposed three methods.

Eq. (8) suggests that RDP requires O(N*) space complex-
ity and O(N®) time complexity when the closed-form
expression is directly used. Such a complexity is impractical
even for small graphs. The iterative solver presented in
Eq. (9) significantly reduces the complexity, requiring
O(N?) in the space and O(N?) in the time. Certainly, some
mathematical optimization can further reduce the complex-
ity of matrix multiplication. For example, if optimized CW-
like algorithms are used, the time complexity of RDP
decreases to O(N*37). The complexity of ARDP is slightly
different, as it handles two different domains probably in
different sizes. However, if we assume the two domains
have the same scale, i.e., O(V;) = O(Ny) = O(N). Its com-
plexity is exactly the same as RDP. As for HRDP, it appears
that it incurs much heavier cost than RDP, since six matrices
are multiplied to compute the transition matrix S. Neverthe-
less, D, W and B all have non-zeros elements only on their
diagonal, making the operation computationally cheap.
Hence, HRDP also shares the similar complexity with RDP.

Throughout our experiments below, the iterative solver
is used in light of complexity.

5 [EXPERIMENTS

In this section, we evaluate the validity of the proposed three
methods. The experimental comparison of Regularized Dif-
fusion Process (RDP) is given from Sections 5.1, 5.2, 5.3, and
5.4 with toy problems and real retrieval tasks. ARDP and
HRDP are tested in Sections 5.5 and 5.6, respectively.

Since the proposed algorithms are guaranteed to converge
to the same solution at different initializations of A" after a
sufficient number of iterations, we set A(Y) randomly and the
iteration number to 100 if no specified otherwise. In particu-
lar for RDP and ARDP, as suggested by [14], it is crucial to
constrain diffusion process locally, i.e., only propagating
similarities through neighborhood structures. Therefore,
graph sparsification is applied by only preserving edges

within % nearest neighbors. Since graph sparsificatioTn
destroys its symmetry, we re-symmetrize it via W := "=,
The regularizer p is set to 0.18, indicating that o ~ 0.85.

5.1 Toy Problems

We first present toy examples to illustrate that RDP can cap-
ture well the geometry of manifold structures. The data dis-
tribution is a two-spiral pattern as introduced in Fig. 1.

The parameter setup of Manifold Ranking (MR) [17] is the
same as RDP, and Y is set to identity matrix 1. A(!) is set to
zero matrix in order to observe the procedure of similarity
propagation. In Figs. 3d and 3h, we present the retrieval
results of MR and RDP after convergence (100 iterations). We
can find that the retrieval performance of RDP is significantly
better than MR. MR fails to reflect the intrinsic structure of
two spirals probably because the two spirals are very close.

The retrieval results of MR and RDP at different itera-
tions are also given in Fig. 3. Since kNN graph is used, there
exist points that do not receive any similarity values at a
small amount of iterations, which are marked in gray color.
By comparing Figs. 3a with 3e, Figs. 3b with 3f, and Figs. 3c
with3g respectively, we can observe that RDP exhibits a
much faster diffusion speed than MR due to the usage of
high order information.

5.2 Face and Shape Retrieval

Following the survey paper [1], we then assess the proposed
RDP on the ORL face dataset, the YALE face dataset B [20],
and the MPEG-7 shape dataset [21].

To ensure a fair comparison, we employ the same param-
eter setting and the same baselines as in [1]. On two face
datasets, k is set to 5 and vectorized raw image pixels are
used to represent face images. On MPEG-7 dataset, k is set
to 10. However, we do not use AIR descriptor [44], since its
performance on the MPEG-7 dataset is already saturated.
Instead, we turn to a more frequently-used shape descrip-
tor, Inner Distance Shape Context (IDSC) [45]. The retrieval
task is defined as follows: each image is used as query in
turn and the rest images serve as the database. The evalua-
tion metric is called Bull’s eye score, which counts the recall
within top- K returned results. K = 15 on two face datasets
and K = 40 on MPEG-7 dataset.
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TABLE 1
The Performance Comparison with Other Variants of Diffusion
Process on the ORL, the YALE and the MPEG-7 Datasets

Methods ORL YALE MPEG-7
Baseline 62.35 69.48 85.40
SD [4] 71.67 71.46 83.09
LCDP [14] 74.25 75.59 89.45
TPG [16] 73.90 75.32 89.06
MR [17] 77.05 70.85 89.26
MR* [17] 77.58 76.91 92.61
GDP [1] 77.42 77.30 90.96
RDP (Y=D) 78.53 78.07 93.77
RDP (Y=W) 79.27 78.24 93.78

The best performances are marked in red and the second best performances are
marked in blue.

In Table 1, the comparison with other variants of diffusion
process is given, including Self Diffusion (SD) [4], Locally
Constrained Diffusion Process (LCDP) [14], Tensor Product
Graph (TPG) diffusion [16], Manifold Ranking (MR) [17] and
Generic Diffusion Process (GDP) [1]. These baseline methods,
except manifold ranking, all use the sparsified affinity graph
as RDP. One should first pay attention to the fact that RDP
with Y = W achieves almost 1 percent percent performance
boost compared with Y = I. The reason behind is that small
euclidean distances are meaningful in retrieval since they can
well approximate the small geodesic distances along the
manifold. After graph sparsification, W actually only records
those small euclidean distances. Consequently, we can pre-
vent those meaningful relationship from vanishing by setting
Y = W, thus yielding more reliable performances.

Among the compared methods, LCDP, TPG and GDP
can be considered to work on tensor product graph. LCDP
cannot guarantee the convergence of iteration. Although
TPG is guaranteed to converge, it lacks a weighting mecha-
nism to balance the contribution of smoothness term and fit-
ting term. As can be seen, RDP outperforms these variants
of diffusion process by a large margin. The performance
gain is especially valuable, considering that GDP enumera-
tes 72 variants of diffusion process.

Excluding those three diffusion processes, the most
related work to ours is MR. Besides the essential difference
in the update scheme, the standard MR has three nuances:
1) it spreads affinities on fully-connected graph, while the
sparsified graph used by RDP and other methods is proven
more robust; 2) it avoids self-reinforcement by setting the
diagonal elements of W to zero, while RDP does not; 3) it
initializes Y = I, while it is demonstrated above that better
performances can be achieved with Y = . Hence, we also
report the results of a modified version of MR using the
three improvements, referred as MR* in Table 1. As the table
presents, the modified MR achieves much better performan-
ces than its standard version. However, the inferior per-
formances of both two versions of manifold ranking to RDP
justify the conclusion that tensor product diffusion is more
robust in the scope of object retrieval.

In addition, some other re-ranking algorithms also report
the retrieval performances on the MPEG-7 dataset using
IDSC as the raw descriptor. Compared with them, RDP is
better than Contextual Dissimilarity Measure [2]: 88.30,
Index-Based Re-Ranking [12]: 91.56, Graph Transduction [3]:

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41,

NO.5, MAY 2019

TABLE 2
The Performance Comparison on the Ukbench
and Holidays Datasets

Methods Ukbench Holidays
kNN Re-ranking [9] 3.56 -
TPG [16] 3.61 68.5
RNN Re-ranking [8] 3.67 -
CDM [2] 3.68 -
LCMD [15] 3.70 -
Graph Fusion [6] 3.77 84.6
Graph Fusion [7] 3.83 84.6
SCA [46] 3.86 -
Yang et al. [35] 3.86 88.3
MSCE [49] 3.88 89.1
Gordo et al. [50] 3.91 94.8
RDP (Y=I) 3.929 95.664
RDP (Y=W) 3.932 95.666

The compared methods are sorted by N-S score on the
Ukbench dataset in an ascending order. The best performan-
ces are marked in red and the second best performances are
marked in blue.

91.61, RL-Sim Re-Ranking [10]: 92.62, Mutual kNN Graph [5]:
93.40, and Sparse Contextual Activation [46]: 93.44. With
the higher baseline (93.55 achieved by AIR [44]) used in GDP,
the proposed RDP can also yield the perfect performance
100 as [1].

5.3 Natural Image Retrieval

Besides the toy examples and baseline comparisons presented
above, the proposed RDP is evaluated with real image
retrieval tasks in this section. Four widely-used image datasets
are used, including the Ukbench dataset [22], the Holidays
dataset [23], the Oxford5K dataset [24] and the Oxford105K
dataset.Experiments on Ukbench and Holidays. Ukbench dataset
consists of 2,550 objects, with each object having 4 different
view points. All 10,200 images are both indexed as queries
and database images. The evaluation metric is N-S score,
which counts the average recall of the top-4 ranked images.
Thus, the best N-S score is 4. Holidays dataset is composed of
1,491 images, among which 500 images serve as the queries.
The standard evaluation protocol is mean Average Precision
(mAP). The parameter & in RDP is set to 4.

Driven by the tremendous development of deep learning,
the image retrieval performance has been boosted signifi-
cantly in recent years. To generate the baseline similarity used
in RDP, we utilize a representative algorithm [47], which cur-
rently achieves the state-of-the-art performances with global
image signatures. Using the public available codes, we re-
implement its results, i.e., N-S score 3.829 on the Ukbench
dataset and mAP 93.855 on the Holidays dataset. Note that we
use the rotated version of Holidays dataset released in [48]. As
can be drawn in Table 2, after applying RDP, its performance
is increased to 3.932 (by 0.103) on the UKbench dataset and to
95.666 (by 1.811) on the Holidays dataset, respectively.

As enormous number of algorithms have reported
results on those two datasets, it is unrealistic to give com-
parisons with all of them. Therefore, besides diffusion pro-
cesses (e.g.,, LCMD [15] and TPG [16]), we only include
those which are relevant to ours or some other representa-
tive algorithms in Table 2. Among them, CDM [2], Graph
Fusion [6], [7] and Yang et al. [35] are also iteration-based
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Fig. 4. The qualitative comparison between the baseline and RDP on the
Ukbench dataset. Query images are in blue boxes. False positives and
true positives are in red and green boxes, respectively.

re-ranking algorithms as RDP. kNN Re-ranking [9], RNN
Re-ranking [8] and Sparse Contextual Activation (SCA) [46]
aim at refining the search result by directly defining a cer-
tain metric on the context (without iteration). One may
observe that those non-iterative methods usually do not
report results on the Holidays dataset. The reason is that
most categories on the Holidays dataset only have one
groundtruth image. Consequently, it becomes much more
difficult to derive a rational similarity by simply counting
the number of common neighbors of two images. In com-
parison, RDP is capable to handle this challenging case due
to usage of the correlation matrix defined on the context
(refer to Section 3.4). To support our conjecture, we applied
the kNN Re-ranking [9] using the same baseline as RDP,
and obtained a poor mAP 0.07. Moreover, we can also
observe that the performance difference of RDP between
Y =W and Y = I becomes tiny on the two datasets. One
possible reason is that there are only a few groundtruth
images in each category, making it easier to preserve the
local euclidean distance during the iteration.

Besides, the results of several deep-learning based algo-
rithms have also been reported. In [50], Gordo et al. give a
thorough extension of [47] (also the baseline used by RDP).
By combining query expansion (QE) [18] and database-side
feature augmentation (DBA), N-S score on the Ukbench
dataset is improved from 3.84 to 3.91, inferior to 3.93
achieved by RDP. QE shares a similar principle with RDP,
which uses the features of top-ranked candidates to aug-
ment the query feature. On the Holidays dataset, QE is not
used as it is not a standard practice. Instead, via extracting
descriptors on multiple scales for both query and database
images, mAP on the Holidays dataset is improved from
94.0 to 94.8. Multi-scale Contextual Evidences (MSCE) [49]
integrates discriminative signatures from the local level, the
regional level and the global level via probabilistic analysis,
where Convolutional Neural Network (CNN) is used to
depict the regional and global patches. Nevertheless, we
believe that those descriptors can be also enhanced by RDP.

Fig. 4 gives a qualitative comparison with the baseline for
an additional evaluation, which shows RDP can effectively
filter false positives at the top of the ranking list.

Experiments on Oxford5K. As RDP is graph-based, it has
an innate advantage that multiple queries can be concur-
rently retrieved after the pairwise similarities among the
vertices in the graph are updated. However, this also gives
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TABLE 3
The Comparison in mAP with the State-of-the-Art
on the Oxford5K and Oxford105K Datasets

Methods Oxford5K  Oxford105K
Yang et al. [35] 76.2 -
RNN Re-ranking [8] 814 76.7
Radenovic¢ et al. [52] 85.4 82.3
kNN Re-ranking [9] 88.4 86.4
DELF[53] 90.0 88.5
FSR [51] 95.8 93.0
Gordo et al. [50] 94.7 93.6
Regional Diffusion [30] 95.8 94.2
RDP 91.3 88.4
QE+DBA+RDP 95.3 94.0

RDP a disadvantage that if the query is not the part of the
graph, adding new queries to the graph can be time-con-
suming as the graph-based affinity learning should be done
with each query independently.

To handle the scenario where the queries are unseen at
the testing time, we get inspirations from a representative
algorithm called Regional Diffusion [30] and resort to the
following testing procedure: 1) excluding the query images,
learn the similarity 4* € R"*" using RDP with N database
objects; 2) compute S, the transition probability from ¢ to
all the database objects j (1 < j < N); 3) the similarity
between ¢ and a certain database object i after diffusion,
that is Ay, can be approximated by the weighted average
A7 over all the j, with the weight proportional to S;.

The main benefit of such an approximate solution is that
we do not need to run RDP for each query. Instead, A is only
learned once with database objects, but can be adaptively
reused with different queries at the testing time. Namely, we
do not add all the queries to the graph when running RDP,
but can also index each query one-by-one without graph
learning, which makes RDP more flexible and efficient in
this specific situation. Readers can refer to [30] for more
detailed analysis and a different application where diffusion
process is applied to overlapping image regions.

Following [30], [50], the Oxford5K dataset [24] is emp-
loyed for simulation. The Oxford5K dataset contains
5,062 images collected from Flickr. Additionally, there are
55 queries, each annotated with a region of interest. Table 3
shows that, the approximate version of RDP can effectively
improve the baseline performance of [47] from 86.1 to 91.3.
As analyzed above, in [50], a better similarity can be achie-
ved by using QE and DBA additionally. With this baseline,
the performance is further improved by RDP from 94.7 to
95.3. It suggests that although the principle of QE and RDP
is similar, they also have complementary effects in affinity
learning. Meanwhile, this result is comparable to the state-
of-the-art, 95.8 reported by fast spectral ranking (FSR) [51]
and regional diffusion [30].

Scalable Experiments on Oxford105K. To test the potential
capacity in scalable retrieval, RDP is evaluated with the
Oxford105K dataset. This dataset is an extension of the
Oxford5K dataset, enlarged with 100 K distractor images
from [24].

Since it is computationally prohibitive to directly run
graph-based learning algorithms on such large graphs on
standard PCs in light of the deficiency in storage and



1222 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.41, NO.5, MAY 2019
TABLE 4 TABLE 5
The mAP Comparison with the Baselines The Comparison with the State-of-the-Art
on the Wikipedia Dataset on the Wikipedia Dataset
Baseline ARDP (ours) Image Text Average Methods Image Text Average
cM X 0.249 0.196 0.223 LCFS [55] 0.279 0.214 0.247
Vv 0.308 0.271 0.289 LGCFL [56] 0.279 0.217 0.248
JESSL [57] 0.306 0.227 0.266
SM \X/ %ig g'ggg g'ggg JGRHML [58] 0.329 0.256 0.292
: : : ARDP (ours) 0.369 0.311 0.340
SCM X 0.277 0.226 0.252
Vv 0.369 0.311 0.340

\/ indicates the proposed ARDP is used, while x indicates not used.

calculating speed, we adopt a truncated solution inspired by
query expansion [18] and regional diffusion [30], which runs
as follows: 1) for each query, return the top-500 ranked
images using the baseline similarity; 2) construct the affinity
graph with 501 vertices by including the given query; 3)
apply RDP to this smaller graph; 4) refine the ranking list
with the learned similarity to the top-500 ranked images. As
can be drawn in Table 3, the truncated version of RDP still
achieves mAP 94.0 on this challenging dataset, a competitive
performance against the state-of-the-art. It is only outper-
formed by [30], which uses subimages in addition to the
whole images. The average indexing time of this truncated
solution will be analyzed in Section 5.7.

5.4 Sketch Retrieval

We also verify RDP with sketch retrieval on the TU Berlin
Sketch dataset [25]. It is one of the largest sketch dataset to
date, which gathers 20,000 unique sketches evenly distrib-
uted over 250 object categories.

Similar to N-S score used above, we define the retrieval
accuracy as the average recall at top-80 ranked sketches,
indicating that the best performance is 80. Each sketch is
used as the query in turn, and the rest serves as the data-
base. To represent the sketch, we use the same Bag-of-
Words [31] representation built upon a variant of SIFT [54]
as described in [25]. Its retrieval accuracy is merely 10.95.
That is to say, among the first 80 returned candidates, only
11 are correct positives on average. Obviously, the baseline
similarity involves masses of noise in the context, which
sets difficulty for RDP to learn similarities. However, our
results show that RDP can still learn a better similarity,
achieving retrieval accuracy 13.10 when setting k£ = 20. It
firmly demonstrates the robustness of RDP in the presence
of considerable noisy context.

5.5 Cross-Modal Retrieval
To demonstrate the effectiveness of ARDP in cross-modal
retrieval, the Wikipedia dataset [26], [27] is used.

The Wikipedia dataset is generated from Wikipedia’s
“featured article”, a continuously growing collection that
has been selected and reviewed by Wikipedia’s editors. It
contains a total of 2,866 documents, which are text-image
pairs annotated with 10 semantic categories. The dataset is
randomly split into a training set of 2,173 documents and a
test set of 693 documents. Two retrieval tasks are usually
investigated, i.e., image-based text retrieval and text-based
image retrieval. In the first case, the images serve as the
queries and the texts serve as the database to be indexed. In

the second case, the roles of images and texts are reversed.
The used evaluation metric is mean Average Precision
(mAP), which computes the average precision at the ranks
where the recall changes.

To generate the baseline similarities, the public-available
codes and features provided along with the dataset are
used. Specifically, each image is represented using an 128-
dimensional SIFT [54] histogram in the Bag-of-visual-Words
(BoW) [31] model, and each text is represented using a his-
togram of a 10-topic Latent Dirichlet allocation (LDA)
model. Three approaches [26], i.e.,, Correlation Matching
(CM), Semantic Matching (SM), and Semantic Correlation
Matching (SCM), are used separately to learn the initial
cross-modal similarity Y in Eq. (15). To learn the two
within-domain transition matrices S and S@, the similar-
ity between two images (or texts) is directly obtained by
comparing their features in the euclidean space.

In Table 4, we show the comparison between ARDP and
the baseline similarities. As can be drawn, ARDP signifi-
cantly improves the performances of all the three baselines
with both image queries and text queries. For instance,
the performances of SCM are improved by 9.20 percents
with image queries, 8.50 percents with text quires, and
8.80 percents on average.

Table 5 presents the comparison with other state-of-the-
art algorithms, including Learning Coupled Feature Spaces
(LFCS) [55], Local Group based Consistent Feature Learning
(LGCFL) [56], Joint Feature Selection and Subspace Learn-
ing (JFSSL) [57] and Joint Graph Regularized Heteroge-
neous Metric Learning (JGRHML) [58]. Among them, a
closest work to ARDP is JGRHML [58]. Though both use
graph regularization, there are many essential differences
between JGRHML and ARDDP. First, the affinity graph used
by ARDP directly models the relationship between data
points from two domains, while JGRHML mixes the two
domains together to construct a larger affinity graph. Sec-
ond, ARDP benefits from the similarity constraint of each
modality by using the transition matrices within each indi-
vidual domain. It is known that within-domain similarity is
generally more reliable than cross-domain similarity. Third,
ARDP enables a simple implementation with only iteration,
while JGRHML requires an alternative optimization for
multiple variables that needs to compute the matrix inverse.
As can be drawn from Table 5, ARDP sets a new state-of-
the-art performance on the Wikipedia dataset.

At last, it should be mentioned that ARDP is not limited
to text-based image retrieval and image-based text retrieval.
It can be expected that ARDP can improve other cross-
modal retrieval fields, such as sketch-based 3D shape
retrieval [59], [60], sketch-based image retrieval [61], etc.
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Fig. 5. The performance comparison in FT (a) and ST (b) between
hypergraph learning, HRDP and HRDP+RDP on the PSB dataset.

5.6 3D Model Retrieval on the Hypergraph

In this section, we assess the performance of HRDP in the
hypergraph settings [43] with view-based 3D model retrieval.
As a basic and popular methodology in 3D model retrieval,
view-based algorithms have drawn much attention for deca-
des. Especially in recent years, the progressive evolution of
planar image representation (e.g., BoW [31], convolutional
neural network [62]) makes it easier to describe 3D models
using depth or silhouette projections.

Following [63], the evaluation pipeline is defined as fol-
lows: 1) The views of all 3D models are grouped into multiple
clusters via K-means. Each cluster is deemed as one hyperedge
that connects the 3D models which have views in this cluster,
thus constructing the hypergraph structure G with the inci-
dence matrix H. 2) The weight W of each hyperedge is defined
as the sum of the pairwise similarities between any two views
in the cluster. 3) The retrieval on the 3D models is performed
via running the proposed HRDP on the hypergraph G.

The experiments are conducted on the well-known
Princeton Shape Benchmark (PSB) [28], which is comprised
of 1,804 3D polygonal models. The entire dataset is split into
training set and testing set with 907 models each. Following
the convention, only the testing set having 92 categories is
used for evaluation. We employ two evaluation measures,
that is First Tier (FT) and Second Tier (ST). The values of FT
and ST range from 0 to 1, and larger values mean better per-
formances. One can refer to [28] for their mathematical defi-
nitions. Following [64], [65], we render 64 projections for
each 3D model. Each projection is fed into the trained CNN
model VGG-S [66]. The L, normalized activations from the
7th fully connected layer are taken as the view features.

In Fig. 5, we plot the retrieval performances of the base-
line (hypergraph learning [43]) and the proposed HRDP,
with a different number of the hyperedges. As can been
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seen clearly, HRDP outperforms the baseline consistently.
This firmly demonstrates the positive effects brought by the
affinity learning on the tensor product of the hypergraph.

Meanwhile, as expatiated above, the input relationships
handled by HRDP are not pairwise as in RDP. It means that
though the sophisticated multi-view matching is evaded, we
can still obtain the pairwise similarities between 3D models by
using HRDP. On the other hand, it also inspires that the output
of HRDP can be the input of RDP, since the similarities A
learned by HRDP can be naturally converted into the transition
matrix S in Eq. (9). Fig. 5 further presents the performances
(blue line) of the combined usage of HRDP and RDP. It verifies
that HRDP is well compatible with RDP in a cascade manner.

The best performances achieved by our methods are
FT 0.588 and ST 0.729. Compared with the state-of-the-art,
this achievement is higher than tBD [67], 2D/3D Hybrid [68],
Makadia et al. [69] and PANORAMA [70], but is still
inferior to other algorithms, such as 3DVFF [71], GIFT [64],
[72], etc. However, as emphasized, the focus of this paper is
not to establish a developed retrieval system. Instead, we pro-
pose a generic affinity learning algorithm. Particularly in this
section, we are demonstrating the capacity of HRDP in learn-
ing more reliable similarities on the tensor product hyper-
graph. It can be envisioned that the performance of HRDP can
be better if more discriminative features [73], [74], [75] are used.

Of course, HRDP is not restricted by the application of
view-based 3D model retrieval. Most tasks which require
the affinity learning on the original hypergraph (e.g., clus-
tering) can be reconsidered by using HRDP to bring into
account the beneficial high-order (tensor) information.
Meanwhile, one could also improve HRDP via feature selec-
tion [76], probabilistic modeling, etc.

5.7 Discussion

Analysis of Iteration. In Fig. 6a and 6e, we present the influence
of iteration number on the objective value defined in Eq. (1)
and the retrieval performance of RDP on the YALE dataset.
Here we set Y = I. We use five types of initialization A(,
among which the first 4 types are used in generic diffusion
process [1] and the last one is random values. A first glance at
Fig. 6a shows that when propagating affinities on the affinity
graph iteratively, RDP tries to minimize the objective func-
tion in Eq. (1) until convergence. It reveals the essential

Objective va

1 6 11 16 21 2% 3 6 41 1 6 11 16 21 2% 31 6 4
Iteration

(b) RDP

.5
1 6 1 16 21 2 31 36 41 1 6 11 16 21 26 31 36 41
Iteration Iteration

(c) ARDP (d) HRDP

Retrieval accuracy

26 31 36 41 1 6 11 162 % 31 I
Tteration

(e) RDP (f) RDP

1 6 11 162 % 3 3% a1 1 6 11 162 26 31 36 41
Tteration i

(g) ARDP

Fig. 6. The objective value (1st row)and the retrieval performance (2nd row) of the proposed approaches as a function of iteration number on the
YALE (a)(e), the MPEG-7 (b)(d), the Wikipedia (c)(g), and the PSB (d)(h) datasets.
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TABLE 6
The Average Query Time on the 10 Datasets Used in This Work
Methods Datasets Type Size Time
ORL Face 400 0.51 ms
YALE Face 165 0.22 ms
MPEG-7 Shape 1400 2.53 ms
Ukbench Image 10,200 491 ms
RDP Holidays Image 1,491 3.11ms
Oxford5K Image 5,062 5.45 ms
Oxford105K Image 100 K 809 ms
TU Berlin Sketch 20K 58.9 ms
e Text 2,866 0.77 ms
ARDP Wikipedia Image 2,866 0.80 ms
HRDP PSB 3D Model 907 0.54 ms

Note that on the Oxford5K dataset, we use the approximate version of RDP,
and on the Oxford105K dataset, we use its truncated version.

behavior of diffusion process on tensor product graph at each
iteration. It also means that the number of iteration can be the-
oretically determined when the objective value reaches its
minimum. Second, it is observed that different initializations
of A will reach the same equilibrium with different conver-
gence speed. Generally, starting from kNN transition matrix
leads to the fastest convergence speed while random initiali-
zation is the slowest one. Third, the retrieval performances
are exactly the same at equilibrium as presented in Fig. 6e. It
demonstrates the robustness of RDP as opposed to the var-
iants summarized in [1] that require a careful initialization of
AW, The same phenomena can be observed on the MPEG-7
dataset, as presented in Figs. 6b and 6f.

We draw readers’ attention that the objective value at the
equilibrium is the smallest. However, it does not necessarily
indicate that the equilibrium achieves the best retrieval per-
formances. For example, the purple curve of “identity
matrix” in Fig. 6e shows that the best performance 79.29
percent is achieved when iteration number is 7, better than
78.07 percent after convergence reported in Table 1.

Similar to RDP, we can also observe from Figs. 6c and 6g
that the convergence status of the iteration of ARDP approx-
imates the closed-form solution of its regularization formu-
lation. It also holds for HRDP at Figs. 6d and 6h.Average
Query Time. In Table 6, we present the average query time
of the proposed three methods (RDP, ARDP and HRDP) on
the 10 datasets used in this work. All the experiments are
carried out on a personal computer with an Intel(R) Core
(TM) i7 CPU (3.20 GHz) and 64 GB memory.

Owing to the well optimized matrix multiplication, the
average query time of the three methods can be controlled
within milliseconds on most datasets, even on the relative
larger TU Berlin sketch datasets with 20 K objects. On the
Oxford5K dataset, the approximate version of RDP is
also efficient to handle the query-by-region case. On the
Oxford105K dataset, the average query time of the truncated
version of RDP is 809 ms, also acceptable in the scalable set-
ting. In the meantime, it can be expected that the indexing
procedure can be significantly accelerated on distributed sys-
tems like MapReduce.

The Impact of Parameters. There are two key parameters in
the proposed RDP, i.e., the regularizer u and the number of
nearest neighbors on the affinity graph .
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Retrieval accuracy
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Fig. 7. The influence of the regularizer u and the number of nearest
neighbors k on the retrieval performance on the YALE dataset.

In Fig. 7a, we plot the influence of 1 on the retrieval accu-
racy on the YALE dataset. As it shows, the retrieval perfor-
mance of RDP changes from 73.88 to 77.07 and arrives the
peak value 78.07 at u = 0.18. As suggested in [1], [14], itis cru-
cial to determine the number of nearest neighbors. Fig. 7b
presents that different values of k affects the retrieval perform-
ances dramatically. The best performance 78.07 is achieved at
k = 5, while the worst performance is only 56.14. How to auto-
matically determine the value of & is still an open issue for all
approaches that use the pairwise similarity matrices.

6 CONCLUSIONS

In this paper, we focus on improving object retrieval with
diffusion process. Our primary contributions are three ten-
sor-order affinity learning algorithms, customized for dif-
ferent retrieval settings:

1) RDP handles simple object retrieval as related
works, such as [1], [16]. However, in contrast to those
only focusing on the iterative model, the novelty of
RDP lies in its regularization framework, which the-
oretically explains why diffusion process on tensor
product graph is more capable in retrieval tasks. Spe-
cifically, one can clearly observe that RDP is mini-
mizing a kind of relationship among four tuples at
each iteration, so that high order information pro-
vided by tensor product graph is necessary.

2)  ARDP adapts RDP to cross-modal retrieval. The bidi-
rectional context that ARDP imposes to the iterative
similarity propagation is derived from two different
data domains. Therefore, it can learn the similarity
across domains by utilizing the inherent relationship
within each individual domain.

3) HRDP further generalizes RDP to tackle non-pair-
wise input relationships. To this end, affinity learn-
ing is done on the tensor product of the hypergraph,
where the hyperedges are used to capture the com-
plex relationships.

As a result, our work is a generic tool for object retrieval,
with the capacity of learning more faithful similarities in most
commonly-used retrieval settings. Comprehensive experi-
ments on 10 retrieval benchmarks firmly demonstrate the gen-
eralization and the effectiveness of our work. Meanwhile, it
can be expected that our work can be a practical guide for other
applications, such as geometric verification [18], point registra-
tion, graph matching [77], [78] and low-shot learning [19].
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