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ABSTRACT

With the advent of Microsoft Kinect, the landscape of various vision-related

tasks has been changed. Firstly, using an active infrared structured light sensor,

the Kinect can provide directly the depth information that is hard to infer from

traditional RGB images. Secondly, RGB and depth information are generated

synchronously and can be easily aligned, which makes their direct integration

possible. In this thesis, I propose several algorithms or systems that focus on

how to integrate depth information with traditional visual appearances for ad-

dressing different computer vision applications. Those applications cover both

low level (image segmentation, class agnostic object proposals) and high level

(object detection, semantic segmentation) computer vision tasks.

To firstly understand whether and how depth information is helpful for im-

proving computer vision performances, I start research on the image segmentation

field, which is a fundamental problem and has been studied extensively in natural

color images. We propose an unsupervised segmentation algorithm that is care-

fully crafted to balance the contribution of color and depth features in RGB-D

images. The segmentation problem is then formulated as solving the Maximum

Weight Independence Set (MWIS) problem. Given superpixels obtained from

different layers of a hierarchical segmentation, the saliency of each superpixel is

estimated based on balanced combination of features originating from depth, gray

level intensity, and texture information. We evaluate the segmentation quality

based on five standard measures on the commonly used NYU-v2 RGB-Depth

dataset. A surprising message indicated from experiments is that unsupervised

image segmentation of RGB-D images yields comparable results to supervised

segmentation.
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In image segmentation, an image is partitioned into several groups of pixels (or

super-pixels). We take one step further to investigate on the problem of assigning

class labels to every pixel, i.e., semantic scene segmentation. We propose a novel

image region labeling method which augments CRF formulation with hard mutual

exclusion (mutex) constraints. This way our approach can make use of rich and

accurate 3D geometric structure coming from Kinect in a principled manner.

The final labeling result must satisfy all mutex constraints, which allows us to

eliminate configurations that violate common sense physics laws like placing a

floor above a night stand. Three classes of mutex constraints are proposed: global

object co-occurrence constraint, relative height relationship constraint, and local

support relationship constraint.

Segments obtained from image segmentation can be either too fine or too

coarse. A full object region not only conveys global features but also arguably

enriches contextual features as confusing background is separated. We propose

a novel unsupervised framework for automatically generating bottom up class

independent object candidates for detection and recognition in cluttered indoor

environments. Utilizing raw depth map, we propose a novel plane segmentation

algorithm for dividing an indoor scene into predominant planar regions and non-

planar regions. Based on this partition, we are able to effectively predict object

locations and their spatial extensions. Our approach automatically generates

object proposals considering five different aspects: Non-planar Regions (NPR),

Planar Regions (PR), Detected Planes (DP), Merged Detected Planes (MDP)

and Hierarchical Clustering (HC) of 3D point clouds. Object region proposals

include both bounding boxes and instance segments.

Although 2D computer vision tasks can roughly identify where objects are

placed on image planes, their true locations and poses in the physical 3D world

are difficult to determine due to multiple factors such as occlusions and the un-
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certainty arising from perspective projections. However, it is very natural for

human beings to understand how far objects are from viewers, object poses and

their full extents from still images. These kind of features are extremely desirable

for many applications such as robotics navigation, grasp estimation, and Aug-

mented Reality (AR) etc. In order to fill the gap, we addresses the problem of

amodal perception of 3D object detection. The task is to not only find object

localizations in the 3D world, but also estimate their physical sizes and poses,

even if only parts of them are visible in the RGB-D image. Recent approaches

have attempted to harness point cloud from depth channel to exploit 3D features

directly in the 3D space and demonstrated the superiority over traditional 2D rep-

resentation approaches. We revisit the amodal 3D detection problem by sticking

to the 2D representation framework, and directly relate 2D visual appearance to

3D objects. We propose a novel 3D object detection system that simultaneously

predicts objects’ 3D locations, physical sizes, and orientations in indoor scenes.
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Chapter 1

RGB-Depth Unsupervised Image Segmentation
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Unsupervised Image Segmentation (UIS) is one of the oldest and most widely

researched topics in the area of computer vision, of which the goal is to partition

an image into several groups of pixels that are visually meaningful using only the

information provided by the single image.

In the past few decades, many great accomplishments have been made in

this field from the early techniques [7, 43], which usually are based on the re-

gion splitting or merging framework to more recent works which tend to either

integrate global constraints into grouping task, such as intra-region consistency

and inter-region dissimilarity [18, 76, 1, 6], or formulate segmentation problem

under clustering framework [10]. However, unsupervised image segmentation has

remained an unsolved problem of computer vision, since RGB color information

alone of a single image often does not provide sufficient information to success-

fully complete this task. There are many reasons for this, e.g., lack of distinctive

features and instability of features due their sensitivity to illumination variation.

Generally speaking, UIS is extremely difficult since incorrect segmentations (ei-

ther too fine or too coarse) can be easily derived, even when employing algorithms

that require the user to guess the number of segments.

Recently, with the advent of Microsoft Kinect, the landscape of various vision-

related tasks has been changed. Firstly, using an active infrared structured light

sensor, the Kinect can provide directly the depth information that is hard to

infer from traditional RGB images. Secondly, RGB and depth information are

generated synchronously and can be easily aligned, which makes their direct

integration possible. A wide range of research works have demonstrated that

RGB-D information is useful for improving the performance of vision tasks such

as object recognition [56], scene labeling [79], body pose estimation [77], saliency

detection [57] etc. The depth information itself is also very helpful for scene

geometric structure estimation.
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(a) (b)

(c) (d)

Figure 1.1: A typical indoor scene and our segmentation results. (a) Original
RGB image obtained from Kinect camera. (b) Depth image, the missing values
of which has been filled by the approach in [60]. (c) Ground truth segmentation.
(d) Final segmentation result based on the proposed method.
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The main goal of this paper is to explore the impact of RGB-D information

on improving the unsupervised image segmentation. As we will demonstrate, the

improvement is dramatic to the point that for many scenes the segmentation re-

sults are comparable to the results of supervised segmentation. Both supervised

and unsupervised image segmentation that return a single scale complete image

segmentation face the same problem of obtaining image segments correctly rep-

resenting the scene objects of varying sizes. In particular, segments belonging

to a single segmentation result may differ dramatically, some segments may fill

nearly the whole image, representing objects like sofas in close view, and some

may have area smaller that 1/100 of the image area. To solve this problem, we

formulate the single scale segmentation as finding a maximum weight indepen-

dent set (MWIS). This way we can automatically partition an RGB-D image

into several salient regions with no need to specify either the number or sizes of

regions in advance. A representative example is shown in Fig. 1.1.

The MWIS segmentation has been proposed for RGB images in [6]. It yields

good segmentation results when foreground objects are very different from the

background, since only then the region saliency measure is able to provide useful

segment weights. Due to specific of RGB-D images, our saliency measure is very

different and more informative. The main contribution of the proposed approach

is a definition of region saliency measure that incorporates both RGB and depth

information. As stated above such measure needs to properly balance the color

and depth information, since for many objects only one of them is informative.

We test our method on the NYU depth dataset [79] and compare it to su-

pervised hierarchical segmentation approaches in [79, 33]. [79] starts from an

over-segmentation, and adapts the algorithm in [42] to iteratively merge regions

based on boundary strength. This approach is supervised, since the boundary

strength needs to be learned from labeled instances. Similarly, [33] trains oriented
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contour detectors based on features extracted from watershed over-segmentation

contours. Finally, initial over-segmentation regions are merged based on the aver-

age strength of oriented contour detectors. Although our method is unsupervised,

it obtains comparable results to [79, 33]. Moreover, we also compare our approach

to an unsupervised segmentation method in [84]. It extends the work of [18] by

creating an extra edge on the original graph, of which the weight is measured

based on the angle difference of surface normals obtained from depth informa-

tion. In addition, we also use gpb-owt-ucm as a baseline where depth information

is not used. We evaluate the segmentation quality based on five standard mea-

sures: Probabilistic Rand Index (PRI) [89], Variation of Information (VI) [66],

Global Consistency Error (GCE) [65], Boundary Displacement Error (BDE) [22]

and Jaccard Index (JI)[1]. Our approach significantly outperforms [84] in all five

measures, which clearly demonstrates the superiority of the proposed combina-

tion of color and depth information.

1.1 Related Works

Image segmentation is a fundamental problem and has been studied exten-

sively. Classic image segmentation approaches include normalized cuts [76], min-

imum spanning tree [18], meanshift [10], and gPb-OWT-UCM[1]. However, these

approaches can only obtain segmentation results comparable to humans if their

parameters are known in advance or in other words manually tuned. For exam-

ple, the normalized cuts requires assigning a specific number of regions at the

beginning. Therefore, these algorithms are usually run with different parameter

settings, which yields multi-scale image segmentation results. While multi-scale

results are very useful for many supervised methods for object detection, scene

labeling or image segmentation, it is hard to utilize them to obtain a single seg-

mentation result of an RGB image in unsupervised setting.
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One common drawback of these unsupervised segmentation techniques is that

they have no prior knowledge about the geometric structure of the scene, which

leads to the segmentation to be either too coarse if two spatially separated regions

have similar appearance or too fine when one planar region contains subregions

with different textures. Although recent approaches that try to infer the 3D

structure of the scene given only a single RGB image, e.g., [41, 38, 39, 58, 30],

they are limited to very simple structures.

The emergence of the RGB-D technology provides a great opportunity to take

advantages of merits from both RGB and depth information. Some of the recent

works on unsupervised RGB-D segmentation integrate the image segmentation

with plane fitting [29, 16]. In [29], the RGB-D segmentation is formulated as

iterative refinement of the pixel-to-plane assignment and optimized as discrete

labeling in a Markov Random Field (MRF), with plane merging controlled by

a threshold. [16] formulates the plane fitting as a linear least-squares problem

and infers the segmentation of the scene in a Bayesian framework. The other

unsupervised segmentation works are trying to adapt the classic segmentation

algorithms into the RGB-D field. [86] first detects edges on RGB images and

computes triangular tessellation of images based on edge information by the De-

launay Triangulation algorithm. Then a variant of N-cut is applied to the graph

constructed from the triangular regions. Finally the segments from N-cuts are

used to suggest groupings of depth samples from depth image. [87] extends the

work in [86] to segment the Manhattan structure of an indoor scene from a single

RGB-D frame into floor plane and walls. In contrast to these approaches, our

method is not limited to planar structures in the scene. Similar to our work, in

[45], image segmentation is formulated as finding high-scoring maximal weighted

cliques in a graph connecting non-overlapping putative figure-ground segment hy-

pothesis. In [59], the pylon model is proposed to find a globally optimal subset of
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segment pool and their labels through graph-cuts and max-margin learning. But

both [45] and [59] are supervised whereas ours is an unsupervised method. Ex-

cept for unsupervised segmentation, supervised segmentation also benefits from

the RGB-D technology. One of the most recent works is [79], where regions with

minimum boundary strength are iteratively merged in a hierarchical framework.

The boundary is predicted by a trained boosted decision tree classifier based on

labeled instances. The other one proposed in [33] utilize depth information to

train several oriented contour detectors. Hierarchical segmentation is constructed

by merging regions of initial over-segmentation based on the average strength of

those oriented contour detectors. Unlike the above works, the proposed approach

is completely unsupervised, since it does not require any parameter learning from

labeled instances, nor we make any assumptions about the number of regions to

be segmented.

1.2 General Framework

1.2.1 Hierarchical image segmentation

To partition one image into superpixels, there are several excellent algorithms

such as the gPb-OWT-UCM method of [1], the minimum spanning tree segmen-

tation [18], the multi-scale normalized cuts [12], mean shift segmentation [10],

and watershed based segmentation [67]. In this paper, we adapt the method

introduced in [1] to integrate both RGB and depth information for hierarchi-

cal segmentation. In [1], firstly an over-segmentation is derived based on the

watershed transformation of the gradient map, which is a linear combination of

brightness, color, texture gradients and spectral signal. Following the multiple

cues combination framework, we integrate depth and normal gradients directly

into the final gradient map. Suppose we denote an image as I(x, y), the gradient
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map G(x, y) is represented as

G(x, y) = wbGb + wcGc + wdGd + wnGn + wsGs, (1.1)

where Gb and Gc are brightness and color gradient signals respectively, which

are computed in the CIE-LAB color space. Gd is the gradient signal estimated

based on depth image. Gn represents the normal signal where the difference of

two normal vectors ni and nj is measured as

Dist(ni,nj) = sin(acos(
ni • nj
|ni||nj|

), (1.2)

and Gs is the spectral signal. All the gradient signals except for the spectral signal

are estimated by convolving a 3 × 3 sobel kernel with signals themselves. Then

an over-segmentation is obtained by applying the watershed transformation to

G(x, y). In order to present the hierarchical segmentation, Ultrametric Contour

Map (UCM) is used to capture the average strength of shared boundary between

two adjacent regions based on G(x, y). For an input RGB-D image, we obtain

7 scales of hierarchical image segmentation by adjusting the strength threshold

θg on the UCM. We denote with V the set of all superpixels from all scales and

from both RGB and D images.

1.2.2 Saliency measure of superpixels

The goal of this section is to compute the saliency measure for each super-

pixel in V . For RGB-D segmentation, a critical issue is how to integrate depth

information with RGB information in order to obtain a weight of each superpixel.

Previous works such as [71] and [29] assign a fixed importance weight to RGB and

depth information respectively based on parameter training or empirical setting.

However, it is not the case that depth information is more important than RGB
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information nor vice versa. In reality, when we are trying to identify a salient

object from its background, the criteria used always change. For example, based

on depth it is easy to separate the surface of a desk from the floor. Whereas,

to distinguish a bedsheet from a bed frame, color or texture properties are more

helpful. Based on this intuition, we propose a novel weighting scheme to estimate

the saliency of superpixels in RGB-D images.

We estimate the saliency by combining three kinds of information: depth,

gray level intensity, and textures. Suppose we denote a superpixel as Si ∈ V

and given depth image Id(x, y), and RGB image Ic(x, y). We extract gray scale

image Ig(x, y) from Ic(x, y). The corresponding saliency measures Cd(Si), Cg(Si),

Ct(Si) are defined below. The higher their values, the more uniform is superpixel

Si. We define the saliency of superpixel Si as their weighted average

w(Si) = Warea(w1Cd(Si) + w2Cg(Si) + w3Ct(Si)), (1.3)

where w1, w2, w3 ≥ 0, w1 + w2 + w3 = 1,

Warea = (1− exp(−η |Si|
|I(x, y)|

))

is used to slightly favor larger regions. The weights w1, w2, w3 are dynamically

assigned so that the value of most informative of the three saliency measures

Cd(Si), Cg(Si), Ct(Si) has the higher weight. We have three constant values

α > β > γ > 0 for the weights and assign the largest value to the largest feature,

e.g., if Cd(Si) > Cg(Si) > Ct(Si), then w1 = α,w2 = β, w3 = γ.

Unlike [57] where the relationship between saliency and depth is trained by

fitting a GMM, we directly define the confidence from depth information Cd(Si)
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as

Cd(Si) = exp(
−std({Gd(p)|p ∈ Si})

|avg
p∈Si

({Id(p)})− avg
p∈Si

ext

({Id(p)})|
) (1.4)

where p = (x, y) represents a pixel at position (x, y), Siext denotes the neighbor-

ing area of Si, and Gd(x, y) represents the gradient map of Id(x, y). This term

encourages the planar region that has high contrast to its surrounding area on

the depth value.

The gray scale confidence is defined as

Cg(Si) = exp(
−std
p∈Si

({Ig(p)})

std
p∈Si

ext

({Ig(p)})
). (1.5)

The region where pixels have similar intensity value within it and dissimilarity is

high with respect to its neighbor area should be assigned a heavier weight.

In order to estimate the weight from the texture perspective, we firstly apply

the Maximum Response (MR8) filter bank [90] to the gray scale image Ig(x, y).

MR8 filter bank consists of 38 filters (6 orientations at 3 scales for 2 oriented

filters and 2 isotropic filters) and the number of filter responses is reduced to

eight. Each pixel of Ig(x, y) is attached with a filter response vector fr. Then K-

means clustering are used to extract k ”vector words”. Each vector fr is assigned

an integer label of the ”vector word” which is closest. In order to measure the

texture saliency, we use the J-measure proposed in [14] that is based on spatial

distributions of pixels of similar properties. Suppose there are nc different labels

in Si, Ci denotes all pixels in Si with the same quantized label, and Ni is the

number of pixels in Ci. The center of Ci is denoted as mi = 1
Ni

∑
p∈Ci

p. We

define

SW =
nc∑
i=1

∑
p∈Ci

||p−mi||2 (1.6)

and observe that SW is small if there are compact clusters of labels in Si while
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it is large if pixels with different labels are uniformly distributed in Si. We also

define the spread of all pixels in Si as

ST =
∑
p∈Si

||p−m||2 (1.7)

where m is the central point of Si. The texture salience is then defined as

Ct(Si) = exp(
SW − ST
SW

) (1.8)

If all the pixel labels are distributed uniformly over the entire superpixel area,

the value of Ct(Si) is large. In contrast, it is small if there are compact clusters

of labels in Si.

1.2.3 Final Segmentation as MWIS

We first construct a graph composed of superpixels Si ∈ V as its nodes,

where |V | = n We assign to each node Si ∈ V a weight wi = w(Si) defined

in formula (1.3). We observe that all weights are nonnegative and denote with

w = [w1, w2, ..., wn]> the weight vector.

The adjacency matrix M is defined as follows. An edge exists between two

superpixels Si and Sj if they overlap, i.e., Mij = 0 if Si ∩ Sj = ∅ and Mij = 1

otherwise. We obtain an undirected graph G = (V,M,w) .

In graph theory, an independent set is a set of vertices in a graph where no

two vertices are adjacent. The maximal independent set is an independent set

which has the largest number of vertices. In the case we have a weight attached

to each vertex, the maximum weight independent set (MWIS) is an independent

set with the largest sum of the node weights.

An indicator vector, x = [x1, x2, ..., xn]> ∈ {0, 1}n, is used to denote any sub-

set B of the graph nodes, where xi = 1 means node Si ∈ B and xi = 0 means

11



node Si 6∈ B. When B is an independent set and x its indicator vector, we have

∀(i, j), xi ·xj = 0 if Mij = 1. Hence it holds that x>Mx = 0. Therefore, x∗ repre-

senting the MWIS can be obtained as the solution of the following quadratically

constrained integer linear program

x∗ = argmax
x

w>x

s.t. ∀i ∈ V : xi ∈ {0, 1}, and x>Mx = 0

(1.9)

We solve the program (1.9) with the algorithm introduced in [6]. The solution

vector x∗ selects superpixels that compose our final single scale segmentation of

a given image.

1.3 Experiments

This section presents both qualitative and quantitative evaluation of our unsu-

pervised segmentation algorithm on 1449 pairs of aligned RGB and depth images

from the NYU Depth Dataset V2 [79]. Detailed ground truth segmentation is

provided for each image. This data set is very challenging for segmentation, even

with RGB-D information, because of poor illumination, often rendering RGB in-

formation useless, cluttered non-planar stuff (eg. bedsheets, sofa, clothes etc),

which strongly limits the depth cues, large variation of scene types, and non-

perfect depth measurement. In particular, depth images contain ”black holes”

due to missing data, and random error of depth measurements increase quadrat-

ically with the increasing distance from the sensor [50]. Also the average density

of depth measurements decreases when the distance to the objects increases, since

the resolution of Kinect is fixed at 480 ∗ 640.

In order to evaluate our algorithm quantitatively, five standard evaluation

measures are employed. The first one is Probabilistic Rand Index (PRI), which
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estimates the ratio between pairs of pixels, whose labelings are consistent in both

ground truth and estimated segmentation, and the total number of pixel pairs.

Variation of Information (VI) measures the distance between two segmentations

by the average conditional entropy of one segmentation given the other. Global

Consistency Error (GCE) measures the extent to which one segmentation can be

viewed as a refinement of the other. The Boundary Displacement Error (BDE)

measures the average displacement error of boundary pixels between two seg-

mented images. Particularly, it defines the error of one boundary pixel as the

distance between the pixel and the closest pixel in the other boundary image.

The Jaccard Index (JI) measures similarity between two segmentations, and is

defined as the size of the intersection divided by the size of the union of the two

segmentations.

We first compare our method to the two baseline UIS methods: in [1], depth

information is not used and in [84], normal vector information is applied. For

[1], we select the best layer from the hierarchical segmentation based on the five

evaluations. As can be seen in Table 1.1, our method significantly outperforms

both of the baseline methods on all five evaluation measures. Surprisingly, the

result of [1] is slightly better than [84]. We also compare our approach to two

recent RGB-D supervised segmentation methods proposed in [79, 33]. Therefore,

following the same dataset split setting, training set contains 795 images, and

performance is evaluated on 654 test images. Since the algorithm in [79] outputs

a hierarchical segmentation composed of five segmentation levels, we choose the

best result based on the five standard evaluation measures out of the five levels for

each image. [33] similarly outputs a hierarchical segmentation of 99 segmentation

levels. We use the best layer as evaluated in their paper (threshold = 0.54).

Although our method is unsupervised, for fair comparison, we also evaluate it on

the 654 test images. As can be seen in Table 1.1, the performance of our method
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Figure 1.2: Two examples to illustrate the benefits of using depth information.
The first column contains two original RGB images from Kinect. The second
column is the segmentations only based on RGB information. The third col-
umn contains the corresponding segmentations based on both RGB and depth
information.

is very close to theirs. This is very surprising for at least three reasons: 1)

Our method is unsupervised, while the method in [79, 33] are supervised. 2) Our

method is much simpler than the methods in [79, 33]. 3) Our segmentation result

sometimes shows more details than the ground truth, since it is not restricted to

known object classes, which incorrectly lowers our accuracy.

In order to visually compare supervised segmentation results [79, 33] with our

unsupervised segmentation results, we list 8 different samples in the Fig. 1.3. in

varieties of scene categories such as bookstore, living rooms, offices, classrooms

and so forth. As can be seen the segmentation of our result is very competitive.

Our approach is robust to the variation of illumination, even when scenes are

dark (eg. the scene in the bathroom) or when scenes are extremely bright, e.g.,

the blinds of the living room in Fig. 1.1 and the surface of the blackboard in the

conference room, or when shades are projected on objects, e.g., the shades on
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Method PRI GCE VI BDE JI

RGB [1] 0.889 0.178 2.253 9.236 0.527

RGBD [84] 0.875 0.298 2.165 11.381 0.488

RGBD [79] 0.917 0.122 1.706 7.509 0.605

RGBD [33] 0.916 0.162 1.501 7.808 0.622

Ours RGBD 0.914 0.120 1.891 8.488 0.583

Table 1.1: Segmentation accuracy evaluated on 654 test RGB-D images in the
NYU Depth Dataset V2 [79], since methods in [79] and [33] are supervised. The
values are: PRI (larger is better), VI (smaller is better), GCE (smaller is better),
BDE (smaller is better) and JI (larger is better).

the floor and wall of the bedroom scene. Our approach also works well in very

cluttered indoor scenes, like the scenes in the bookstore and the lady’s office.

The results in Fig. 1.2 also demonstrate that depth information is really help-

ful in our framework for distinguishing objects with similar colors but different

locations from each other. As can be seen in the kitchen scene, the surface of

the table, the wall, and the refrigerator have similar white color, and in the liv-

ing room scene, the sofa and the blanket on the floor also have similar color.

So when only RGB information is used, different objects are inclined to be seg-

mented as one superpixel. However, when the depth information is added, all of

them become correctly separated.

The average run time per image segmentation is listed in Table 1.2. It was

evaluated on a PC computer with AMD Eight-core CPU @ 3.1HZ and 16GB

RAM. Except for [84] which runs in C++, our method is much faster than GPb-

OWT-UCM and other two supervised methods.

Parameter setting: The input to our segmentation are superpixels obtained

from hierarchical segmentations. As is mentioned in Section 1.2.1, we obtain

segmentations at different levels by changing the value of the strength threshold θg
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[79] our method [84] [1] [33]

in Matlab in Matlab in C++ in Matlab in Matlab

122.1 68.8 7.39 301.1 > 300

Table 1.2: The average run time in seconds to segment a single image.

which falls between 0 and 1. When θg increases, the number of regions segmented

is reduced. Experimentally, we find that if the segmentation in each layer is too

fine, it may produce many areas that consists of only several pixels. They are not

only meaningless but also tend to increase the burden of computation. On the

other hand, if the segmentation in each layer is too coarse, it also can not provide

good candidate regions. Therefore, we set the θg to [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6].

For the weights of different gradient signals, we simply set them as wb = 1.0,

wc = 0.5, wn = 3.0, wd = 2.0 and ws = 3.0 since depth information and global

spectral signal are much more reliable than brightness and color. In addition, we

set constants α, β, and γ to 0.5, 0.3, 0.2 respectively. The constant η is set to 10

in our experiment.

1.4 Conclusion

In this paper, we propose an unsupervised segmentation method for RGB-D

image segmentation. It integrates both color and depth information effectively

and partitions one RGB-D image into several most salient regions without the

need to know the number or the size of segments in advance. Our experiments

on the NYC depth dataset show that the segmentation accuracy of our method

is very competitive with respect to both unsupervised and supervised methods.

Also the fact that our method is very efficient due to its simplicity, makes it very

suitable for many applications from object to action recognition.

16



Figure 1.3: Examples of unsupervised indoor scene segmentation obtained by our
method and supervised methods in [79, 33]. Column 1 shows the original RGB
images. Column 2 shows results in [79]. Column 3 shows results in [33]. Column
4 shows our segmentations and last column shows the ground truth.
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Chapter 2

Semantic Segmentation of RGBD Images with

Mutex Constraints
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2.1 Introduction

This paper addresses the fundamental problem of semantic scene segmenta-

tion of indoor scenes. Assigning class labels to every pixel in real-world images

is challenging, as objects may be heavily occluded, appear in a wide range of

configurations, and viewed from different camera viewpoints and distances. In

addition, indoor scenes typically consist of a relatively large number of alike ob-

jects that are often cluttered and in disorder, reflecting various lifestyles. Our goal

is to partition the image by identifying subimage ownership among occurrences

of distinct object classes.

The recent advent of Microsoft Kinect alleviated some of these challenges,

and thus enabled an exciting new direction of approaches to semantic scene seg-

mentation [71, 79, 33, 78, 11, 49, 34, 54]. Equipped with an active infrared struc-

tured light sensor, Kinect is able to provide the depth information of objects in

the scene which is aligned synchronously with their color images. Since indoor

scenes are typically characterized by large planar surfaces (e.g., floor, walls, table

tops), and objects can often be interpreted in relation to those surfaces, semantic

scene segmentation can be largely facilitated by properly integrating visual cues

with detailed and accurate geometric structure of the scene surfaces provided by

Kinect.

Recent work has demonstrated that the depth information can be readily used

to leverage rich geometric structure of indoor scenes toward their robust semantic

segmentation. The SLAM technology was used to merge multiple RGBD images

into a single point cloud and densely label it with Markov Random Field (MRF)

[54]. Scenes were labeled by incorporating SIFT features and 3D location priors

into a Conditional Random Field (CRF) [78]. A CRF with higher order cliques

was used to encourage all regions in them to take the dominant label [49]. [71]
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extended the Kernel Descriptors (KDES) [3] by introducing depth gradient and

spin normal descriptors, and labeled scenes by combining MRF with segmen-

tation tree. In [33], geometric features were integrated with traditional visual

features through support vector machines, or with high level features from object

detection [34]. Instead of designing hand crafted features, a multiscale convolu-

tional network was used to learn features directly from RGBD images [11].

Although designing distinct features from RGBD images has achieved much

progress for indoor semantic segmentation, how to jointly model local and long

range object spatial configurations by taking advantage of available geometric

structure of indoor scenes is not fully explored. We find that there is still room

for improvement.

In this paper, we propose a holistic framework for reasoning about object

classes and their co-occurrences, and spatial layouts based on geometric struc-

ture of indoor scenes as well as on common sense knowledge. We model the scene

by a CRF grounded to regions of the low-level generalized gPb-UCM segmenter

[33]. Geometric and visual information of objects are integrated into unary poten-

tials. The pairwise potentials encode local object configurations based on several

typical geometric patterns. In this way, we pose semantic scene segmentation as

the problem of assigning class labels to image regions in the CRF inference. As

common, we cast CRF inference as a quadratic programming (QP) problem.

As our key contribution, we incorporate in our QP qualitative common-sense

constraints from domain knowledge in a principled manner. We focus on mutual

exclusion (mutex) constraints that specify negation (inconsistency) rules about

object configurations in the real physical world. For example, a chair should not

be on top of a TV, and a floor should not occur above a dishwasher. In scene

labeling, mutex constraints are binary relations specifying inconsistent class la-

bel assignments to pairs of image regions, and can be expressed without any
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higher-order potentials. Also, model expressiveness is significantly increased as

they can enforce long-range consistency constraints on the solution. With mutex

constraints, our approach can make use of rich and accurate geometric structure

coming from Kinect in a principled manner.

Prior works have already demonstrated the importance of domain constraints,

in general, as they help resolve competing hypotheses when visual cues are not

sufficient for scene interpretation. Constraints are typically incorporated in CRFs

as features of the pairwise potentials [28, 23, 79]. More sophisticated methods

use higher-order constraints, beyond pairwise [53, 55, 49]. Instead of working our

way through higher-order constraints, we focus on exclusion common-sense rules,

i.e., hard rules that exclude nonsense configurations.

In this paper, we show that mutex constraints can be compactly expressed in

a quadratic equality form, and rigorously enforced in a principled manner. As

smoothness and constraints are typically combined in the pairwise potential, tra-

ditional formulations of CRF inference may not guarantee that hard constraints

are all satisfied. This could yield non-sensical results. We address this problem

by expressing the mutex constraints as quadratic constraints of our QP. The most

closely related works are [74] and [64], both of which utilize mutex relations to

constrain the CRF inference. However, both [74] and [64] work with 2D images

only. The goal of [74] is foreground object segmentation in videos, while [64] is

focused on scene labeling. In contrast, the focus of our work is on 3D mutex

relations representing common sense knowledge. Since understanding RGB-D in-

door scenes is an arguably more complex task [71, 70], in addition, we utilize 3D

geometric patterns and spatial object correlation for edge potential estimation,

instead of the standard Potts model in [74]. Moreover, we are using a sparsely

connected CRF model.

In this paper, we empirically demonstrate that enforcing qualitative mutex
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constraints can significantly improve quantitative measures of performance. The

effectiveness of our approach is evaluated on the indoor scene NYU dataset V2

[79] and a recent SUN3D dataset [93]. Our labeling accuracy significantly out-

performs the state of the art [33, 34].

In the rest of this paper: Sec. 2.2 formulates our CRF model and CRF in-

ference as QP for semantic segmentation; Sec. 2.3 specifies unary and pairwise

potentials that are used to compute the affinity matrix for our QP; Sec. 2.4

describes how to estimate mutex constraints from training data; and Sec. 3.3

presents experimental results and related discussion.

2.2 CRF for Semantic Segmentation

This section formulates our CRF model of a scene grounded on low-level

segments (also called superpixels), and casts semantic segmentation as the MAP

assignment of class labels to superpixels. We begin by specifying the quadratic

objective of the MAP assignment problem, and then extend that formulation to

include mutex constraints, resulting in our integer QP with quadratic constraints.

2.2.1 CRF and the MAP Assignment as QP

As in [79, 33, 34], we partition an image, I(x, y), into a set of segments

S = {si : i = 1, . . . , N}, |S| = N , using variants of the gPb-UCM hierarchical

segmentation algorithm [1]. Each segment, si ∈ S, can take one object class label,

li, from the set of labels li ∈ L, |L| = L. Each label assignment to a superpixel,

(si, li), can be represented as a node of the association graph G = (V,E, A), where

V = S × L is the set of nodes, |V| = N · L, and E ⊂ V × V is the set of graph

edges. We define ((si, li), (sj, lj)) ∈ E if si and sj are spatially adjacent, which

means that their shared boundary in I(x, y) contains at least one pixel and the

minimal 3D distance between point clouds projecting to si and sj is very close.
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A is the adjacency matrix (or the affinity matrix) of G, with size (N ·L)×(N ·L).

We define a CRF over G. To this end, we associate a latent binary random

variable Xsi,li ∈ {0, 1} with every node (si, li) ∈ V. When Xsi,li is instantiated to

value xsi,li = 1 then the CRF assigns class label li ∈ L to superpixel si ∈ S. The

column vector of all instantiations of the assignment random variables is denoted

as x = [. . . , xsi,li , . . . ]
> ∈ {0, 1}N ·L.

We use the affinity matrix A to specify the unary and pairwise potentials of

the conditional log-likelihood of the CRF. In particular, the diagonal elements

A((si, li), (si, li)) encode the unary potentials corresponding to log-likelihoods of

label assignments xsi,li = 1. The off-diagonal elements A((si, li), (sj, lj)) encode

the pairwise potentials corresponding to joint log-likelihoods of label assignments

xsi,li = 1 and xsj ,lj = 1.

From above, the conditional log-likelihood of the CRF is specified as

logP (x|G) =
∑

(si,li)∈V

A((si, li), (si, li))xsi,li

+
∑

((si,li),(sj ,lj))∈E

A((si, li), (sj, lj))xsi,lixsj ,lj − Z(G),

(2.1)

where Z(G) is the partition function.

From (2.1), it follows that the semantic scene segmentation problem can be

formulated as finding the MAP assignment x∗ = arg maxx∈Ω P (x|G), where Ω is

the space of allowed solutions. Note that the MAP assignment is independent

of Z(G). Thus, we can compactly express the MAP assignment problem as the

following integer QP with linear constraints:

QP-L : maximize x>Ax

s.t. for all si ∈ S,
∑
li∈L

xsi,li = 1, x ∈ {0, 1}N ·L .
(2.2)
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The linear constraints in the QP-L, given by (2.2), ensure that every superpixel

in the image gets assigned a unique class label. In the following, we extend QP-L

such that the resulting QP encodes mutex constraints.

2.2.2 QP with Mutex Constraints

This section formulates mutex constraints in a quadratic equality form, com-

bines them with the linear constraints of QP-L, and thus expresses the MAP

assignment problem as an integer QP with quadratic equality constraints.

Mutex constraints are aimed at prohibiting certain non-sensical label assign-

ments to superpixels in the image. We eliminate this hypothesis by enforcing

xsi,li ·xsj ,lj=0. That is, only one of the two label assignments is allowed. If one

is accepted as a solution then it automatically prevents the other one. Using the

notation introduced in Sec. 2.2.1, it follows that all mutex constraints can be

compactly represented as

Quadratic mutex constraints (QMC) : x>Mx = 0, (2.3)

where M is a (N · L) × (N · L) binary mutex matrix. Note that when matrix

elements are set to one, M((si, li), (sj, lj)) = 1, then the corresponding assign-

ments are prohibited and hence xsi,li = 0 and/or xsj ,lj = 0 in order to enforce

xsi,li ·1·xsj ,lj=0. Conversely, when M((si, li), (sj, lj)) = 0 then superpixels si and

sj may be assigned any class labels, because xsi,li · 0 · xsj ,lj = 0. If the sum of

each row of M is at least one, then M represents global mutex constraints. This

means that at least one constraint applies to each variable.

Further, it is convenient to merge the set of linear constraints of QP-L —

namely that for all si ∈ S,
∑

li∈L xsi,li = 1 — with the quadratic mutex con-

straints (QMC) in (2.3). For every superpixel si, we set all matrix elements
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M((si, li), (si, l
′
i)) = 1, if li 6= l′i. This prohibits illegal assignments of two (or

more) distinct labels to a single superpixel.

From (2.2) and (2.3), we finally derive the MAP assignment problem as the

integer QP with quadratic constraints:

QP-Q : maximize xTAx

subject to xTMx = 0 , x ∈ {0, 1}N ·L.
(2.4)

For solving QP-Q in (2.4), we follow the line search algorithm of [64] by

relaxing QP-Q to the continuous domain

x∗ = arg max
x

x>(A− λM)x subject to x ∈ [0, 1]N ·L (2.5)

where λ > 0 is a sufficiently large regularization parameter.

Let f(x) = x>(A− λM)x denotes the target function. The algorithm in [64]

seeks binary solutions in each step. For a given initial vector x0 with f(x0) > 0, it

increases f in each iteration until it converges to a MAP assignment x∗. Although

the formulation is relaxed the returned solutions x∗ are binary in all experiments

in [64] and in all our experiments.

Now we show that a binary solution x∗ implies that all mutex constraints

are satisfied, i.e., (x∗)>(M)x∗ = 0. Suppose that this fact is not true, i.e., there

exists i with x∗i = 1 that violates a mutex constraint. Then (x∗)>Mx∗ ≥ 1. Let

λ be equal to the sum of all elements of A. Because then (x∗)>Ax∗ ≤ λ, we

obtain

f(x∗) = (x∗)>Ax∗ − λ(x∗)>Mx∗ ≤ 0.

A contradiction, since f(x∗) ≥ f(x(0)) > 0.

In the following two sections, we explain how to compute the affinity matrix

A, and estimate the mutex matrix M from training data. In the experimental
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section we discuss our initialization strategy of selecting initial vectors x0.

2.3 The affinity matrix A

This section explains how to compute the unary and pairwise potentials or-

ganized in the affinity matrix A.

2.3.1 The Unary Potential

Recall that elements of the affinity matrix A encode the unary and pairwise

potentials of our CRF (see Sec. 2.2.1).

We specify the unary potential of each label assignment (si, li) as follows:

A((si, li), (si, li))=

P (li|F,m), if m = 1

P (li|F, a, h, pt), otherwise
(2.6)

where F are appearance and geometric features of region si used in [33], a is

the angle between normal vector of si and gravity direction ([0, π]), h is the

estimated absolute height above ground, pt is detected plane type P (pt|li) [79]

(vertical boundary, horizontal boundary, vertical plane, horizontal plane, plane,

non-plane), and the binary variable m indicates if a majority of depth information

is missing in si. For simplicity, we ignore denotation si in the following formulas.

Assume these observations are independent from each other, then (2.6) can be

further decomposed based on Chain Rule:

A((si, li), (si, li))=

P (li|F )P (m|li), if m = 1

P (li|F )P (a|li)P (h|li)P (pt|li), o.w.
(2.7)

Probability Estimation: The posterior probability P (li|F ) is the output of

Multi-Class Logistic Regression in [33]. The likelihoods of P (pt|li) and P (m|li)
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are estimated directly as corresponding histograms on training dataset. For the

estimation of likelihood P (h|li), it is worth noting that the absolute height h

is different from the relative height in previous works such as [79, 33], where

it is defined as the height above the lowest point in the image. Typically, the

relative height information becomes misleading when the floor doesn’t show up

in the image. As shown in the left image of Fig.2.1, the horizontal plane is very

close to the lowest point of the 3D scene, but actually it is a counter instead of

a floor. To solve this problem, we assume that indoor images are captured by

human in a natural way. We firstly extract statistical distribution of absolute

camera height hcam and for each object class from a training set. We plot the

normalized histogram of absolute camera height of training set in the right image

of Fig.2.1. It is observed that it roughly obeys a Gaussian distribution. Since

height is continuous, the probability density of object li, fli(h), is derived by

Kernel Density Estimation:

fli(h) =
1

nb

n∑
i=1

K(
h− hi
b

) (2.8)

where K is a Gaussian kernel smoother and b is bandwidth. Then the likelihood

P (h|li) is computed as follows:

P (h|li) =

∫ µc−h′+3σc

µc−h′−3σc

fli(h) dh (2.9)

where µc and σc are mean and variance of absolute camera height respectively,

and h′ is a relative height difference between object and camera. The likelihood

P (a|li) is estimated in a similar way.
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Figure 2.1: Left image: an example of indoor scene (point cloud attached with
colors). Camera position and orientation are represented by three orthogonal
color sticks. Right image: the normalized histogram of absolute camera height
on training set of NYU-V2. The mean value of camera height is around 131 cm.
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Figure 2.2: Geometric pairwise patterns. Red arrow represents normal vector
direction. Blue or green planes indicate that the superpixel is covered by one
detected plane structure.

2.3.2 The Pairwise Potential

Further, for all edges in the association graph G, ((si, li), (sj, lj)) ∈ E, we en-

code the pairwise potentials as the off-diagonal elements of the affinity matrix A.

Consider the available 3D geometric information, we define five special pairwise

patterns, as is shown in Fig 2.2. While detected edges in 2D image often indi-

cate object boundaries, pairwise patterns imply certain local configurations in

3D space. For example, ”cabinet” and ”counter” usually satisfy the first pattern,

while the fourth pattern implies ”table” or ”counter” supports other ”props”.

Co-occurrence Probability Estimation: Except for the five defined patterns

above, the other pairwise patterns are considered as one category. We compute

adjacency co-occurrence probabilities of the two classes Ψ(k)(li, lj), k = 1, 2, ...6

from training data as

Ψ(k)(li, lj) =
N (k)(li, lj)

N (k)(li) +N (k)(lj)−N (k)(li, lj)
(2.10)

where N (k) is a function that counts the total number of training images where

the event shows up in pattern k. It is worth noting that the first five adjacency

co-occurrence probabilities are asymmetric. They also differ from mutex con-

straints in that the latter captures long-range inconsistency constraints, whereas

the former are treated as “soft” constraints that only favors certain pairs of labels
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at spatially adjacent locations, but in no way strictly prohibit any particular pair.

2.4 Mutex Constraints for Scene Labeling

This section defines the mutex constraints and describes how to estimate

them. We use three types of mutex constrains.

Global object co-occurrence constraints encode which objects cannot

occur together in a scene. They are called global, because these constraints do

not account for a particular spatial layout of co-occurrence. For example, under

normal conditions, it is impossible to see both toilet and white board in the

same room. In [55], similar co-occurrence constraints are incorporated into the

energy function as negative logarithmic potential. Instead, we formulate them as

hard constraints using the (NL)× (NL) binary matrix mutex Mco for each pair

vi = (si, li) and vj = (sj, lj):

Mco(vi, vj) =


1, if regions si and sj with labels

li and lj never co-exist in a scene

0, otherwise

(2.11)

Relative height relationship constraints: We observe that relative height

relationships typically hold in most indoor scenes. For example, the floor should

be lower than chairs, and the ceiling should be higher than pictures. Thanks to

Kinect technology, we can easily access depth data for each pixel. Given raw

depth data, we align 3D points with gravity direction so that the floor plane lies

in X−Z plane, and Y axis represents the height information. The relative height
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relationship is represented as the (NL)× (NL) binary matrix Mrh:

Mrh(vi, vj) =



1, if estimated height relation between

regions si and sj contradicts true

relative locations of objects li and lj.

0, otherwise

(2.12)

Object local support relationship constraints encode basic physical con-

figuration rules of indoor scenes. For instance, counters are usually supported by

cabinets, and televisions are supported by dressers. The inverse of these support

relations would contradict common-sense knowledge about the real world. We

call these constraints local, since they only regulate support relationship between

two spatially adjacent regions. In order to evaluate the support relationship of

two neighboring regions, we first project 3D points of both regions onto the X-Z

plane. If these two projected regions have overlapping area, a support relation-

ship does exist between them. We use a variant of Jaccard Index to measure a

ratio of the overlapping area. Let α(s′i) denote the area of the projected region

si onto the ground plane. Then, we define the variant of Jaccard Index as

αratio(s
′
i, s
′
j) =

α(s′i
⋂
s′j)

min(α(s′i), α(s′j))
(2.13)

In practice, considering errors from Kinect depth measurement [50] and low level

segmentation, we relax the condition to tolerate small overlaps that αratio is below

certain threshold θ. We set θ = 0.1 in all experiments. The support relation
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constraints are then encoded into the (NL)× (NL) binary matrix Msup:

Msup(vi, vj) =


1, if si cannot support sj w.r.t. real

support relation of objects li and lj

0, otherwise

(2.14)

Generally, we say region si can support sj when the corresponding αratio > θ,

and the centroid height of si is lower than that of sj, given object li can support

object lj in the real world.

Finally, the aforementioned three mutex matrices are merged into the unique

mutex matrix M as

M(vi, vj) = Mco(vi, vj) ∨Mrh(vi, vj) ∨Msup(vi, vj) (2.15)

To merge the set of linear constraints of QP-L in (2.2), we set all matrix elements

M((si, li), (si, l
′
i)) = 1, if li 6= l′i.

Mutex constrains learning: Denote a pair of nodes as vi = (si, li) and vj =

(sj, lj). We make the assumption that the training set is sufficiently large. For

global object co-occurrence constraints, if object class li and lj have been observed

present together in at least one training image, then Mco(vi, vj) = 0, otherwise

Mco(vi, vj) = 1.

For relative height constraints, we use two auxiliary matrices MauxH and

MauxL obtained from training images to encode height relationship rules w.r.t

highest point and lowest point respectively. For example, MauxH(li, lj) = 1

means the highest point of class li always is higher than that of class lj, while

MauxL(li, lj) = 1 indicates the lowest point of class li always is lower than that

of class lj. Otherwise, no height relative constraint applies to class pair (li, lj).

Therefore, Mrh(vi, vj) = 0 when observed height relationship between node vi
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and vj does not violate any one of rules encoded in auxiliary matrices, otherwise

Mrh(vi, vj) = 1.

For local support constraints, we compute the probability of class li support

class lj, Ps(li, lj), as the number of positive instances divided by the total number

of spatially adjacent regions assigned with labels li and lj. Here,two regions are

spatially adjacent if their shared boundary contains at least one pixel and the

minimal 3D distance between point clouds is less than 5cm. Class li can not

support class lj if Ps(li, lj) < 5%.

2.5 Experiments

We evaluate our framework on the New York Univeristy (NYU) Depth dataset

(v2) and Princeton University SUN3D dataset [93]. The NYU dataset contains

1449 pairs of aligned RGB and depth images which are captured from 27 different

indoor scene categories, such as bedrooms, classrooms, kitchens, furniture stores

and so forth. In [79] 894 subclasses were grouped into four super-categories:

ground, furniture, props and structure for sematic segmentation. [33] extended

the total number of object classes for sematic segmentation task from four to 40

classes. In our experiments we follow the settings in [33]. Since only a small

portion of images has been labeled in the SUN3D dataset, we use the officially

released eight annotated sequences and extract 65 keyframes that cover the con-

tent of sequences as much as possible.

Inference settings: As is described in section 2.3.1 , the number of nodes

in the weighted graph is relevant to both over-segmentation and class labels. For

some extremely complex scenes, the number of regions in the over-segmentation

is around 600. But typically the number is around 140. We sort the unary po-

tentials in decreasing order and choose the first k labels as candidates for each

superpixel in graph construction stage. If k is too large, it will increase the com-
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putational cost and reduce the chance of selecting a correct label. If k is too

small, it has a high probability that correct label is not in the candidate list. In

the experiment, we set k = 5.

As the solver for finding maximum weight subgraph [64] usually converges

to a local optimum, multiple initializations are needed to obtain a better per-

formance. We train a SVM classifier by taking unary potentials as features for

predicting confidence of each region and rank regions in decreasing order accord-

ing to it. Then a weighted sampling mechanism is adopted to select a triple of

regions as initializations each time. In other words, we set x(0)(i) = 1 if region vi

is selected as one of the three initialization regions. Otherwise, x(0)(i) = 0. Start

from x(0), we obtain a subgraph denoted by the indicator vector x∗. In order to

enforce the final solution always satisfies the mutex constraints x>Mx = 0, the

parameter λ is set to 1000. We compute x∗ in (2.5) t times and select the one

with highest energy score as the best solution according to f(x∗) = x∗>Ax∗. In

our experiment, t is set to 1000.

Performance on NYU dataset: We present both qualitative and quanti-

tative evaluation of our semantic segmentation algorithm. In order to compare

our performance directly with the state of the art results in [33, 32, 34], we use

the same three metrics: pixel frequency weighted average Jaccard Index, average

Jaccard Index and pixel accuracy. We present the quantitative evaluation results

in Table. 2.1. We list the best labeling result from [33, 32, 34] in the first three

rows of the table respectively. [32] is a journal version of [33]. [34] improved

the performance of [33] by using object detections to compute additional features

for superpixels. The last row contains labeling results of our inference with mu-

tex constraints. We achieve the best performance in the 40-class segmentation

task. In particular, we outperform [33] by 3.4% (fwavacc), 5.4% (avacc) and 5.9%
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(pixacc), and outperform [34] by 1.5% (fwavacc), 3.1% (avacc) and 3.5% (pixacc).

In order to demonstrate the effectiveness of mutex constraints, we list the

corresponding labeling results obtained by removing mutex constraints from our

CRF model in the forth row. In addition, we replace our unary potential in (2.6)

with the output of multi-class logistic regression from [33] while keeping the rest

of our model unchanged. As shown in fifth row, the performance is slightly worse

than our best performance. It indicates that the proposed unary potential for-

mulation in Sec. 2.3.1 is useful for the CRF inference.

Performance on SUN3D dataset: It is worth noting that all 65 images

are only used as test set, since we used the system trained on the NYU dataset.

In other words, all the parameters and classifiers are exactly the same as those

used in the NYU dataset. As only 33 classes are present in the labeled images

based on the definition of 40 classes task above, after we obtain the semantic

segmentation results for original 40 classes, we project unseen 7 labels into 33

classes. ”floor mat” merges to ”floor” class, ”dresser” merges to ”other furniture”

and the other five merge to ”other props”. As is shown in Table.2.2, our model

outperforms [33] by 2.8% (fwavacc), 3.4% (avacc) and 5.6% (pixacc). This results

clearly demonstrate the generalization power of the proposed model with mutex

constraints. We can observe that there are several zero terms in Table.2.2. This

might because of the difference in variance of object instance appearances between

training set in NYU dataset and SUN3D dataset.

We study the impact of each of our three classes of mutex constraints on the

performance of our proposed system in Table 4.2. As can be seen all the con-

straints contribute to the performance. The most significant mutex constraints

are co-occurrence followed by relative height.

Finally we provide some qualitative examples to demonstrate the effectiveness
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[33] 1.4 21.5 45.4 32.5 23.3 32.6 0 8.0 3.9 21.6 45.1 26.1 57.9

[32] 1.4 17.9 48.1 45.1 31.1 19.1 0.0 7.6 3.8 22.6 45.9 26.8 58.3

[34] (R-CNN) 0.2 27.2 55.1 37.5 34.8 38.2 0.2 7.1 6.1 23.1 47.0 28.4 60.3

Ours (noMutex) 5.7 21.7 47.1 36.5 23.3 32.6 0 7.8 5.4 23.3 44.8 26.6 60.5

Ours ([33]+mutex) 6.0 18.1 50.4 35.0 29.2 28.9 0 9.4 8.6 24.9 47.9 30.4 63.1

Ours (mutex) 9.6 30.6 48.4 41.8 28.1 27.6 0 9.8 7.6 24.5 48.5 31.5 63.8

Table 2.1: Performance on 40-class semantic segmentation on the NYU-Depth
V2 data set. We compare directly with the best results obtained in [33, 34, 32].
The fourth row shows results of our model without mutex constraints. The fifth
row shows results of our model with mutex constraints where our unary potential
is replaced with the output of multi-class logistic regression in [33]. The last row
contains labeling results of our full model.
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[33] 0 23.7 13.8 0 0 21.2 0 1.6 10.7 48.2 24.8 60.1

Ours (noMutex) 0 24.3 11.1 0 0 17.8 0 3.4 11.8 48.8 25.5 61.2

Ours ([33]+mutex) 0 20.3 1.0 0 0 15.5 0 2.8 12.7 50.1 27.6 64.7

Ours 0 15.3 2.2 0 0 5.6 0 2.3 11.0 51.0 28.2 65.7

Table 2.2: Performance of 33 classes semantic segmentation task on the SUN3D
dataset. All 64 images are used as the test set. Note: since [32] and [34] did not
report any results on SUN3D, we cannot include them here.

NYUV2 SUN3D

fwavacc avacc pixacc fwavacc avacc pixacc

no co-occur 47.2 28.9 61.9 49.4 27.1 64.1

no rel-h 48.0 30.6 63.2 49.8 27.3 64.5

no support 48.4 31.0 63.6 50.9 28.0 65.3

full 48.5 31.5 63.8 51.0 28.2 65.7

Table 2.3: Ablation Study: We remove the different mutex constraints from the
full system and study how the performance degrades.
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of our CRF inference model with mutex constraints in Fig. 2.3. The region

labelings shown in the second column are directly from [33]. It can be observed

that some common sense object configuration rules are violated. For example,

the counter (row 2, col 2) is fully supported by a door, and the sofa region (row

4, col 2) has been divided into sofa and bed. The labeling of the same scene

turns out to be much more reasonable after enforcing mutex constraints during

inference. As is shown in the row 2 and column 3 image, the door area is labeled

correctly as cabinet and the labelings of other regions are improved too. Also the

big sofa region (row 4, col 3) has been correctly recognized after our inference.

The last row shows one labeling example from SUN3D dataset.

2.6 Conclusion

We present a novel method for indoor scene semantic segmentation from RGB-

Depth images. We effectively utilize available 3D geometric structures of indoor

scenes and learn object relationships directly from training set. Our experimental

results demonstrate incorporating hard mutex constraints into a soft CRF model

can significantly increase the labeling accuracy. The proposed approach outper-

forms the state of the art methods on very challenging NYU-v2 RGBD dataset

and SUN3D dataset for indoor scene semantic segmentation.
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Figure 2.3: Examples of indoor scene semantic segmentation obtained by our
system. Column 1 shows the original RGB images, column 2 shows the results
from [33], column 3 shows our results after inferring with hard mutex constraints
and column 4 shows the ground truth (black areas are unlabeled). Recommend
to view in color.
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Chapter 3

Unsupervised Object Region Proposals for RGB-

D Indoor Scenes
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3.1 Introduction

Automatically generating high quality class independent object segmenta-

tions is important for many high level computer vision problems such as object

detection and recognition. For object recognition, since feature extraction relies

directly on the information of its supporting region, the full object region not only

conveys global features but also arguably enriches contextual features as confus-

ing background is separated [27]. For object detection, an object can be located

at any position and scale in the image. Most of existing work [91, 17] is based

on sliding window strategy where exhaustive searching is conducted at various

scales and window aspect ratios. However, expensive computation prevents this

strategy from utilizing sophisticated feature representations. As an alternative,

providing a small set of high quality location hypotheses makes it possible to

adopt richer features and complex learning algorithms [27, 37, 15].

Many previous works are dedicated to propose class independent object hy-

potheses. Uijlings et al. [88] proposed a selective search strategy that hierarchi-

cally groups similar neighbor superpixels obtained from [18] for predicting object

locations. In contrast, besides predicting object bounding boxes, we also aim

at providing pixel-level object segments. Carreira et al. [8] generated a set of

object segments by solving one constrained parametric min-cut (CPMC) prob-

lem for each configuration of predefined foreground and background seeds. Lin

et al. [61] simply extends CPMC by integrating depth for computing potentials.

Instead of treating all image region uniformly, we tactically generate hypotheses

according to classified regions. Gupta et al.[33] generalized gPb-UCM hierarchi-

cal segmentation [1] by making effective use of depth information. Arbelaez et

al. [2] proposed Multiscale Combinatorial Grouping (MCG) to collect segments

from multiscale aligned gPb-UCM segmentations. Gupta et al. [34] extend MCG
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Figure 3.1: The diagram of the proposed system for generating object regions in
indoor scenes. Taking one color image and corresponding registered raw depth
map from Kinect sensors as inputs, our approach automatically generates object
proposals considering five different aspects: Non-planar Regions (NPR), Planar
Regions (PR), Detected Planes (DP), Merged Detected Planes (MDP) and Hi-
erarchical Clustering (HC) of 3D point clouds. Object region proposals include
both bounding boxes and instance segments. The bottom row shows several
examples of generated instances and bounding boxes (green color).

to utilize depth cues for region proposals. While [33, 2, 34] need to learn contour

models or/and Pareto front for combinatorial purpose, our approach proposes

object regions in an unsupervised way.

We have designed and implemented an integrated system for automatically

proposing both object bounding boxes and pixel-level segments in RGB-D images.

All the object candidates are generated without any training stage. The overall

architecture is presented in the diagram shown in Figure 3.1. The source code of

this work will be available online.

We first estimate a general scene layout by fitting planes to 3D points re-

covered from depth maps. Hence we utilize a common strategy of distinguish-

ing clutter regions from planar regions. In contrast to earlier works like Hedau

et al. [38], we do not make any assumptions that edges representing joints of

walls/floor/celling are visible. Such assumptions were necessary when only RGB

data is given. Since we also utilize depth data, the planar surface may represent
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different objects like table top or other furniture tops. Then we classify planar

regions into boundary and non-boundary planes, where a boundary plane is a

plane with no objects behind it, e.g., walls and floors. Depending on the scene a

table top can also be a boundary plane. Crude bounding box (BB) object propos-

als are obtained by fitting BBs to planar regions and to segments obtained from

Multi-Channel Multi-Scale (MCMS) segmentations and 3D point cloud clustering

with the guidance of the estimated scene layout. Finally, we utilize GrabCut [73]

to generate segment proposals and refined BB proposals. GrabCut is an excellent

foreground object segmenter that is able to dynamically model global object and

background properties. However, it has two major limitations. It was developed

as (1) interactive human in the loop approach, and it is based on the assumption

that (2) the input image contains only one salient object and its background.

We address both limitations in the proposed framework and turn GrabCut into

a fully automatic, unsupervised segmenter. A general outline of the proposed

approach is as follows:

1. Estimate scene layout (Section 3.2.2)

(a) fitting planes to reconstructed 3D points

(b) classify planar regions into boundary and non-boundary planes

2. Generate crude BB object proposals (Section 3.2.3)

(a) Multi-Channel Multi-Scale (MCMS) segmentations

(b) Euclidean point cloud clustering

(c) five strategies to generate crude BB proposals

3. Use extended GrabCut to generate segment proposals and refined BB proposals

(Section 3.2.1)

We evaluate the proposed approach on standard NYU-v2 RGBD dataset [79]

and recent released large scale SUN RGBD dataset [81] in Section 3.3.
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To summarize, the main contributions of our approach are: 1) A novel scene

structure guided framework for generating bottom-up object region candidates in

cluttered indoor scenes. The framework is completely unsupervised, so there is no

need to access ground truth information for region proposals, and no bias resulting

from the selection of training data. 2) The number of proposed object regions is

much less than the state-of-the-arts while the performance is comparable. Hence

the proposed framework has a great potential for high-level computer vision tasks

such as object detection and recognition. 3) A novel 3D plane segmentation

algorithm that is able to detect and segment predominant planar structures of

indoor scenes. It is demonstrated to be robust to noise in structured light and

other depth sensors.

3.2 Object region proposals in RGBD images

3.2.1 GrabCut Extension

In this section we describe our extension of GrabCut that generates final

object segments and BB proposals. The input are initial crude BBs generated by

component two.

GrabCut [73] is an iterative GraphCut [4] based segmentation algorithm.

Given a region of interest (ROI) in an image, pixels inside ROI are initially

labeled as ”unknown” and outside are labeled as ”background”. The goal of

GrabCut is to identify the object pixels within this ”unknown” region. In gen-

eral, two Gaussian Mixture Models (GMMs) of K components (K = 5 typically)

are used to model foreground and background color distributions, respectively.

Model parameters π, µ,Σ are weights, mean and covariance matrices of the 2K
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Gaussian components:

θ = {π(α, k), µ(α, k),Σ(α, k), α = 0, 1, k = 1...K}, (3.1)

where α represents the foreground or background. A Gibbs energy function E is

defined on the graph G in Eq. (3.2), where each pixel is taken as a node.

E =
n∑
i=1

D(pi, α, θ) +
∑

(u,v)∈C

γ ∗ [αu 6= αv] ∗ exp(−β‖pu − pv‖2) (3.2)

The data term D encodes the probability of pixel pi belonging to foreground or

background. It is defined as GMM of K components. The smoothness term en-

courages regional coherence when pixels have similar properties. γ is a constant

for balancing data term and smoothness term. C represents the set of pairs of

adjacent pixels (we use 4-connectivity), and the constant β is set as inverse of

expectation of pixel differences over C defined in Eq. (3.3). At each iteration,

the optimal label assignment is obtained by minimizing energy E using Graph-

Cut. Then GMMs parameters in Eq. (3.1) are updated according to the label

assignment.

β =

∑
(u,v)∈C 1

2
∑

(u,v)∈C(
√
‖pu − pv‖2)

(3.3)

GrabCut is an interactive segmentation algorithm in that it needs human to

provide some hint such as a bounding box around the object candidate. Moreover,

it is designed for images consisting of one single salient object with nearly uniform

background, e.g., see Figure 3.2.

We observe that when GrabCut is initialized with BBs around object propos-

als both requirements are met. Our initial guess for object locations is obtained

as crude image segments described in Section 3.2.3. Therefore, we initialize it
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Figure 3.2: Image samples comparison. The first three images are from GrabCut
dataset. The last one from NYU-V2 dataset presents a typical cluttered indoor
scene.

with BBs around crude segments. In order to increase the chance to cover the

whole object by the BB region, we in practice slightly enlarge the BB region.

The initial foreground object model is then estimated on the BB region while

the initial background model is estimated on the remaining part of the image. It

is worth noting that while the whole image is needed for foreground and back-

ground model estimations, the object segments are only based on local solution

to Eq. (3.2), i.e., the nodes of graph G are pixels within this region. By solving

Eq. (3.2) locally for each proposal BB we convert GrabCut into a fully automatic,

multiple object segmenter.

Although original GrabCut algorithm shows good performance on foreground

segmentation, it often fails to segment objects which have similar color distri-

butions as background, or sometimes decomposes objects into several separated

components in image plane. For example, in Figure 3.3, the foreground derived

from GrabCut consists of several disconnected pieces and some parts that should

belong to the toilet instance are missing.

In order to avoid assigning different labels to pixels that are spatially close, we

extend GrabCut by utilizing depth information. We first fill missing data in raw

depth map using colorization scheme of [60] and extract 3D points (x, y, z). Then

3D point coordinates (in cm unit) are simply concatenated with RGB channels

at each pixel. Hence we consider 6 dimensional GMMs.

Although on average the extended GC3D outperforms the original one due to
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Color Image GC GC3D

Color Image GC GC3D

Figure 3.3: Examples for foreground segmentation comparison between GrabCut
(GC) and its 3D extension (GC3D) both initialized with BBs in yellow frames.

utilization of depth data, e.g., as is shown in Figure 3.3, the toilet instance has

been segmented well even if it has similar color distribution to the background, the

performance of GC3D may degrade when noise in depth is present. One example

is shown in the right scene of Figure 3.3, where a small piece of background is

mis-classified. In this case the original GrabCut works well, since the color of the

foreground object differs significantly from the background. Therefore, we output

the segments from both GrabCut and GC3D as our final segment candidates.

3.2.2 Scene Layout Estimation

Structured indoor environments are often filled with man-made structures and

objects, which can be approximately represented with planar segments. We first

focus on extracting predominant planar regions such as wall, floor, blackboard,

cabinet etc from dense point clouds derived from the depth image, not only

because planar regions themselves are meaningful but also they are helpful for

generating object hypotheses by focusing on point cloud not explained by major
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planes. As is well known, comparing to laser range finder, depth information

from Kinect and similar sensors has low depth resolution and a limited distance

range. To deal with such kind of noise contained in the depth image, traditional

plane segmentation methods [79, 49] resort to appearance based cues from RGB

image. For example, [79] infers the assignment of points to planes by modeling

Graph-Cuts with color and depth information, while [49] utilizes detected line

segments in color image to decide about region continuity. However, we believe

that integrating color information here is a double sword, since the RGB image

maybe noisy. Therefore, we use only 3D point clouds for plane detection and

propose a plane segmentation algorithm that is designed to work with point

clouds generated by Kinect like sensors.

Plane Segmentation: We first determine the direction of gravity [33] and then

rotate the point clouds to make them aligned with room coordinates. A normal

vector Np is estimated for each point p that has valid depth information, which

we call a valid point. To initialize plane candidates, we uniformly sample triple

point sets on the depth map and store them in set T = {(pi1, pi2, pi3), i = 1, 2, ...}.

Then for each ti ∈ T we find inliers Si in the 3D space and a plane candidate Pi

in RANSAC framework [20]. Each inlier is represented by a pixel in the depth

map and a corresponding 3D valid point. See steps 1-6 in Algorithm 1. The

definition of inliers follows below.

In general, a point is considered as an inlier when its distance to the plane

is within certain constant range [36, 69]. However, as indicated in [51], depth

resolution (i.e., minimum depth difference that can be measured by a sensor)

is inversely proportional to the depth, which is defined in Eq (3.4), where f is

focal length, b is base length of Kinect sensors, m is the parameter of a linear

normalization and Z represents depth value. Therefore, we vary plane inlier

distance tolerance based on depth resolution rather than heuristically choosing
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one constant threshold.

Dtol = (
m

fb
) ∗ Z2 (3.4)

We define a point p to be an inlier of plane Pi if d(p, Pi) < Dtol(d), where d

is the Euclidean distance in 3D space. We then remove plane candidates which

have small number of pixels and merge spatially close and nearly coplanar planes.

However, many fake planes which consider points of other non-planar objects as

inliers exist due to noisy surface normals and depth. To filter out fake planes

(steps 10-20 of Algorithm 1), we first compute connected components CCi =

{ci1, · · · , cij, · · · } of pixels in Si in the depth map. Then we fit a plane Pcij to

3D points in each connected component cij and estimate the plane parameters,

including its normal NPcij
. We assume that NPcij

should be at least similar to

NPi
. Hence, if the angle between NPi

and NPcij
is large, we remove the connected

component cij from CCi. We then re-estimate plane parameters of Pi based on

inlier points in survived components.

For plane segmentation, which is performed on the depth map, we assign to

plane Pi corresponding pixels in image plane if d(p, Pi) < 3Dtol(p). The goal is to

avoid artificial holes on plane segments on the depth map. Since now preliminary

plane segments are available, we further remove false positive plane segments

by checking statistical features, i.e., average to-plane distance davg and average

normal angle angleavg between the average of normals of points in Si and plane

normal NPi
. More details are illustrated in Algorithm 1. To our best knowledge,

we are the first to segment multiple indoor planes by considering quadratic sensor

noise model and relying purely on 3D point cloud. [51] only proposed the depth

noise model but did not apply it to multiple plane segmentation. [79] use a linear

noise model to detect planes and use color information for pixel assignment.

Plane Classification: After major planar regions are detected, we further

classify them into boundary and non-boundary planes, where a boundary plane
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is a plane with no objects behind it. Supposed that the normal vector of a plane

points towards the viewer, we compute the ratio r of points on the other side of

the plane to the total number of points in the room. Ideally, a planer region is a

boundary plane if r is zero. We set r to 0.01 to tolerate the sensor noise.

Algorithm 1 Plane Segmentation of Indoor scenes

Require: Raw depth map and its 3d point cloud {pi, i = 1, 2, ...} in room coor-
dinate system.

Ensure: A series of major plane segments.
1: compute distance tolerance Dtol according to Eq. 3.4 and normal vector Np

for each valid point.
2: uniformly sample triple point sets T on image grid.
3: for t ∈ T do
4: get plane candidate Pi and its inlier set Si = {p|d(p, Pi) <
Dtol(p), 〈NPi

, Np〉 < thN}
5: discard plane Pi if the inlier number in Si is less than thmin pts.
6: end for
7: sort {Pi} w.r.t # of inliers in decreasing order and remove heavily overlapping

ones.
8: merge spatially close and nearly parallel plane candidates.
9: remove points that have multiple plane IDs from sets {Si}.

10: for each survived Pi do
11: compute connected components CCi = {ci1, · · · , cij, · · · } of Si in the

depth map.
12: for each component cij do
13: remove cij from Si if its size is small. O/W, estimate plane Pcij by

RANSAC.
14: if acos(NPi

, NPcij
) > 10◦ then

15: add new plane Pcij to the plane set if size(cij) > thmin pts;remove
points cij from Si.

16: end if
17: end for
18: discard Pi if the remaining inliners is less than thmin pts.
19: end for
20: re-estimate plane parameters for Pi by RANSAC on its current inliers.
21: re-sort planes w.r.t their number of inliers in descreasing order.
22: assign pixels to planes one by one if d(p, Pi) < 3 ·Dtol(p) and 〈NPi

, Np〉 < thN
23: for each plane, remove its components where davg > Dtolavg and angleavg > tha
24: filter out plane component whose size is less than thmin pts.
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3.2.3 Initial crude region and BBs proposals

Indoor scenes are usually composed of several predominant planar geometric

structures such as ceiling, floor, wall, cabinet, etc and many small cluttered

things including clothes, bottles, cups, etc. Based on this prior knowledge, we

propose to generate object regions by different strategies with respect to the

geometric properties of image regions, rather than treating all image regions

uniformly. Since low level image segmentations often indicate cues for object

candidate shapes and locations, we adopt Multi-Channel Multi-Scale (MCMS)

segmentations for obtaining crude object segments. Note that segments obtained

from MCMS segmentation are crude (either too coarse or too fine), and they do

not represent final instance segments we are looking for. We utilize five different

strategies, described below, to select crude segments for initializing object BB

proposals.

For objects in Non-Planar Regions (NPRs) (e.g., cups, faucets etc.) all seg-

ments except those that have small overlapping area with NPRs are used, while

for objects in Planar-Regions (PRs) (e.g., pictures, papers, etc.) only segments

that are generated from RGB channel segmentation and lie in the planar areas

are reserved. Segments from Detected Planes (DPs) can be used directly for ob-

jects such as ceiling, wall, floor, etc. However, sometimes big objects are inclined

to be decomposed into several planar regions (e.g., bed and sofa), and then it is

very likely that the proposed bounding boxes are not covering the whole object.

To address this problem, we focus our attention on non-boundary planes,

which usually represent big objects like bed or other furniture. For each non-

boundary planar region, we then find its border points, which are used to compute

minimum distance to other non-boundary planer regions. This distance is used

to merge non-boundary planar regions that are close in 3D space (within 5cm)

to obtain Merged Planar Regions (MPRs). BBs are then fitted to MPRs.
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In addition, we apply Hierarchical Clustering (HC) to 3D point cloud to obtain

object instances that are ambiguous in the color image while separated well in

3D world.

3.2.3.1 Multi-Channel Multi-Scale (MCMS) image segmentations

Indoor scenes typically consists of a relatively large number of alike objects

that are often cluttered and in disorder, which makes our task of finding a small

set of high quality class independent object candidates non-trivial. Moreover, the

contents in images are intrinsically organized in a hierarchical way. For example,

in Figure 3.5, the ”bed” can refer only to mattress and box part or include

everything on its top such as sheet and pillows. Besides, indoor scene objects

are always in different sizes, colors and shapes, and presented under various light

conditions. Therefore, it seems impossible to get object partitions from a generic

segmentation strategy that relies on a single signal. Based on these observations,

we propose to initialize object locations by using low level segmentations from

multiple signal channels and image scales.

In this paper, we get low level segments based on two unsupervised segmen-

tation methods: graph based segmentation (GBS) [18] and watershed based seg-

mentation (WBS) [67] for their high computing efficiency, but other excellent

generic image segmenters such as gPb-UCM [1] could also be used in our frame-

work. For GBS, except for using color image alone, we use depth map and

combined RGB-D channels for computing the edge weights of neighboring pixels

at different scales respectively. To be more specific, in total we collect superpixels

from 10 different layers based on GBS including 4 scales from color channel, 3

scales from depth channel and 3 scales from RGB-D fusion channels. In RGB-D

fusion channels, we normalize associated 3D point coordinates extracted from raw

depth into [0, 255], and compute affinity weights as the maximum gradient value
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of RGB and depth channels. In practice, the segmentations from multi-scale GBS

are helpful for finding most of object locations but are inclined to ignore some

salient objects that only occupy small number of pixels in images. To fixed the

problem, we adopt WBS as a complementary segmentation tool, which shows

more respect to salient object boundaries.

In WBS, we first smooth input maps using a 9 × 9 Gaussian mask and then

compute gradient magnitude maps. Since we care more about strong boundaries,

we normalize gradient maps into [0, 1] range and keep values that are above a

predefined threshold (we use 0.1 in this paper). This is also useful for avoiding

generating segments that are too fine. Then we apply watershed algorithm to

gradient maps estimated from intensity image in CIELAB color space, rawDepth

map, inpainted depth map, and normals map, respectively. For each gradient

map, we obtain one single layer segmentation. As is mentioned in Section 3.2.3,

using superpixels from color channel GBS only for object proposal in planar

regions is an effective strategy for reducing redundant proposals obtained from

other signals. But we do not apply the same strategy to WBS segmentations.

3.2.3.2 Euclidean clustering of point cloud

The goal of point cloud clustering is to partition 3D points into several mean-

ingful structures. Taking advantage of 3D geometry of 3D scenes, it is able to

remove ambiguities between object instances caused by similar colors or poor il-

luminations in indoor environments. Take the two chair instances that are within

the yellow bounding box in Figure 3.4, for example. While it is very difficult to

distinguish them based on color image alone, they are well separated in the 3D

world. We adapt the Euclidean clustering algorithm in [75] for generating object

candidates from 3D points.

We first remove detected predominant planes (both horizontal and vertical)
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(a) (b)

(c) (d)

Figure 3.4: An example of Euclidean clustering of 3D point cloud. (a) Color
image: two adjacent blue chair instances within yellow bounding box share similar
appearance. (b) The plane segmentation (refer to section 3.2.2). (c) 3D point
clusters at 5 cm scale. (d) Proposed bounding boxes (red) based on point clusters.
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from point cloud before clustering. Then we create a Kd-tree representation for

the remaining 3d points. As depth data from Kinect sensor are noisy, we filter

out sparsely distributed or isolated points (less than 30 points within 1cm3) and

get a point cloud P . Starting from any point pi ∈ P as one cluster, we search for

its unlabeled neighbors that are within certain radius dth and add them into the

cluster. Then we keep searching neighbors for each member of current cluster

until the size of cluster is stable. Clustering terminates when all points in P are

assigned a cluster label. Similar to 2D segmentation, we set multiple radii dth for

getting multiple scale clusters (dth ∈ {2, 5, 10}cm). In Figure 3.4, we present one

example of Euclidean clustering in a typical office environment, where both blue

chair instances and green plant instances are well identified. Moreover, planar

instances such as door and white board are also identified. We use red bounding

boxes to mark identified instances.

3.3 Experiments

We compare our method with the state-of-the-art methods on the NYU Depth

V2 dataset [79]. Since some of baselines generate their object proposals with

supervised learning, for fair comparison, we follow the standard split (i.e., 795

training images / 654 test images), and report results on test set, except for plane

segmentation evaluation which is measured on the whole dataset. To demon-

strate, the general applicability of our approach, we also test on a large scale

dataset ”SUN RGBD” [81] without changing any parameters.

In our approach, we provide two sets of bounding boxes: one called BB-init,

which are all bounding boxes used to initialize foreground segmentations (FG)

in Section 3.2.1, and the other called BB-full that includes bounding boxes fitted

to segments obtained by FG plus bounding boxes fitted to segments obtained by

plane and watershed segmentations.
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3.3.1 Evaluating Plane Segmentations

We compare with two state of art works [79, 49] with respect to plane segmen-

tation on RGB-D images. For qualitative evaluation, we provide segmentation

results under different indoor scenarios in Figure 3.5. Both [79] and [49] utilize

color image with depth map for region smoothness consideration. However, they

either fail to detect certain predominant planar regions or have planar regions

spread across multiple object boundaries, while our method shows more respect

to geometric boundaries and have most major planes detected (e.g., the window

frame plane in the office). In addition, we provide quantitative evaluation in

Table 3.1. Following [49], we consider both Exactly Planar Classes (EPC) (e.g.,

floor, ceiling, wall, cabinet etc) and Exact and Nearly Planar Classes (E+NPC)

(e.g., bookshelf, books, sofa, bed etc) for evaluation. We compare the obtained

planar segments with planar object instances by averaged Jaccard Index. In both

cases, our method outperforms the other two methods.

Failure cases analysis

In the Figure 3.5, we present 4 scenes that have failure detection cases. One case

is false positive. For example, in the fifth row, the man’s body and part of his

arm has been identified as one plane. And in the 6th row, the surface of the

ladder is merged with the green bag since they are co-planar in the space. The

other case is missing detection. Taking the 7th row for example, a majority part

of scene is lacking of depth data since infra-red light was lost under a strong sun

shine. Another example is from last row where the table is transparent so that

the raw depth does not reflect a real plane surface.
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Figure 3.5: Examples of qualitative plane segmentations for RGB-D indoor
scenes. The 1st column are original color images. The 2nd column presents
plane segmentations by Silberman et al. [79]. The 3rd column shows plane seg-
mentations by Khan et al. [49]. We present our segmentation results in the last
column. The black pixels mark non-planar objects. The last four rows show some
failure cases.

57



Method Silberman
et al. [79]

Khan et al.
[49]

Ours

EPC JI 34.15% 33.87% 36.72%

E+NPC JI 30.91% 32.33% 32.67%

Table 3.1: Performance comparison of plane segmentations on NYU Depth V2
dataset. Jaccard Index (JI) is used as metric for evaluating obtained planar
segments w.r.t. both Exactly Planar Classes (EPC) and Exact and Nearly Planar
Classes (E+NPC).

3.3.2 Evaluating Object Region Proposals

3.3.2.1 NYU-V2 Dataset

In this section, we compare our object proposal approach with five state-of-

the-art class independent object proposal methods on NYU-V2 RGBD dataset.

MCG[2], MCG3D[34], and gPb3D [33] are supervised methods, and CPMC [8],

CPMC3D [61] are unsupervised methods (excluding segments ranking). Follow-

ing MCG [2], for object segmentation evaluation, we compute global Jaccard

Index (i.e., intersection over the union of two sets) at instance level as the av-

erage best overlap for all the ground truth instances in the dataset, in order to

avoid bias on object sizes. For object location proposals, we define bounding box

proposal recall score as the ratio of positive predictions that exceed 0.5 Jaccard

score, over the number of all ground truth object instance locations. As is shown

in Table 3.2 and Figure 3.6, our method achieves the best performance (91.1%)

for object location proposals while our number of maximum proposals is only

40% of the rank-2 method MCG3D[34]. Moreover, our initial bounding boxes

require even less proposals (21% of [34]) while the recall score only degrades 2%

w.r.t the best performance.

For object instances proposal, our method also show very competitive per-

formance: our score is 0.9% less than the best performance but our number of

proposals is less than half of theirs. It is worth noting that we do not rank our
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Figure 3.6: Quantitative evaluation of object region proposals with respect to the
number of object candidates on NYU-V2 RGBD dataset. Left: recall curves on
proposed bounding boxes evaluation. Right: average best Jaccard Index curves
on proposed segments evaluation. Note the curves of MCG3D and CPMC3D are
based on supervised ranking of segments, while the other curves including ours
do not use any ranking.
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[33] [8] [61] [2] [34] Ours-BB-init Ours-BB-full

Global Best (bbox) 0.74 0.706 0.473 0.879 0.901 0.893 0.911

Global Best (seg) 0.67 0.646 0.478 0.737 0.779 - 0.77

# Proposals 1051 885 138 4202 7482 1575 3066

Table 3.2: Performance comparison of best global Jaccard Index at instance level
for both bounding box and segment proposals on NYU-V2 RGBD dataset.

bounding box proposals in our result presentation, while [34, 61] perform super-

vised ranking. Since we already provide high quality object segmentations with

much less number of proposals in a complete unsupervised framework, ranking

proposals is beyond the scope of this paper.

In addition, we provide results of global Jaccard index at class level for both

object location and segmentation proposals in Figure 3.7. We divide 894 classes

into 40 classes following the definition of [33] including 37 specific object classes

and 3 abstract classes: ”other struct”, ”other furniture” and ”other props”, which

include 68, 82, 707 subclasses respectively. We obtaine best performance on 26

classes for object location proposals and 9 classes for segment proposals. It is

worth noting that our method achieves best performances on the three abstract

classes for object location proposals. It indicates that our approach is general

to different object types since abstract classes cover 95.8% subclasses and 32.3%

instances on the test set.

Except for quantitative evaluation, we also provide qualitative evaluation for

proposed object regions in Figure 3.8. The first six scenes show objects that

have been segmented successfully, and in the last two rows we list several failures

cases. The grabcut segmenter is inclined to fail either when the foreground and

background have similar color information, or when the foreground object is too

small or has irregular shapes (e.g, plants).

Ablation Study

In order to understand the individual impact of the five proposal strategies on
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Figure 3.7: Classwise (40-class) performance comparisons based on the standard
PASCAL metric (Jaccard Index) at object instance level for both bounding box
and segment proposals on the NYU-v2 RGB-D dataset.

no NPR no PR no DP no HC no MPR Ours-full
Global Best (bbox) 0.666 0.813 0.889 0.897 0.901 0.911
Global Best (seg) 0.610 0.699 0.733 0.748 0.753 0.77

Table 3.3: Ablation study: each time we remove one of the five object proposal
strategies from the full system and report how the performance degrades with
respect to both bounding box and segment proposals.
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the performance of our RGB-Depth object proposal system, we evaluate our

algorithm on the NYU-V2 RGB-D dataset by removing one strategy each time.

The corresponding results are listed in the table 4.2. As can be seen all the

strategies contributes to the performance. The ranking of strategies in decreasing

significance order is NPR, PR, DP, HC, and MPR.

3.3.2.2 SUN RGBD Dataset

We also test our unsupervised approach without changing any parameters on

the recently released SUN RGBD dataset. SUN RGBD is a large scale indoor

scenes dataset with a similar scale as PASCAL VOC. It contains 10, 335 RGB-

D images in total, which are collected from four different active sensors: Intel

RealSense, Asus Xtion, Microsoft Kinect v1 and v2. While the first three sensors

obtain depth map using IR structured light, the Kinect v2 (kv2) estimates the

depth based on time-of-flight. With respect to raw depth data quality, kv2 can

measure depth with the highest accuracy but at the same time there are a lot

of small black holes in the depth map due to light absorption or reflection. The

RealSense has the lowest raw depth quality.

SUN RGB-D dataset [81]
Sensors Kinect v1 Kinect v2 RealSense Xtion

Resources B3DO [46] NYUV2 * * SUN3D [93]
Global Best (bbox) 0.929 0.911 0.908 0.909 0.912

Global Best (segment) 0.742 0.77 0.746 0.745 0.752
# proposals 2972 3066 2971 4628 2969

Table 3.4: Performance evaluation of our method on the large scale SUN RGB-D
dataset, the images of which are collected from four different RGB-D sensors. *:
newly captured RGB-D images in [81].

As can be seen in Table 3.4, in general, our approach exhibits similar per-

formance to the NYUV-2 dataset. We observe that while the bounding box

predictions show consistent performance, the accuracy of instance proposals de-
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Figure 3.8: Qualitative performance evaluation for proposed object segments on
NYU-V2 RGBD dataset. Object proposals are highlighted with green color. And
several failure cases are provided at the last two rows.
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grades around 2%. This reasonable degradation might be due to higher variance

in sensor depth resolution. The average number of proposals is similar to the

number on NYUV-2 dataset except for the tests on RealSense data, where it in-

creases by around 50%. This is expected as the effective depth range of RealSense

is very short (depth becomes very noisy or missing beyond 3.5m).

3.4 Conclusion

We propose an unsupervised unified framework for class independent object

bounding box and segment proposals. Our method produces object regions with

very comparable qualities to the state-of-the-arts while requiring much less pro-

posals, which indicates its great potential for high level tasks such as object

detection and recognition. The source code is available on authors’ websites.

(https://github.com/phoenixnn/RGBD-object-propsal).
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Chapter 4

Amodal Detection of 3D Objects:

Inferring 3D Bounding Boxes from 2D Ones in

RGB-Depth Images
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4.1 Introduction

Object detection is one of the fundamental challenges in computer vision, the

task of which is to detect the localizations of all object instances from known

classes such as chair, sofa, etc in images. Traditionally, detected object instances

are represented by 2D bounding boxes around visible counterparts on images.

Although 2D rectangles can roughly indicate where objects are placed on image

planes, their true locations and poses in the physical 3D world are difficult to

determine due to multiple factors such as occlusions and the uncertainty arising

from perspective projections. However, it is very natural for human beings to

understand how far objects are from viewers, object poses and their full extents

from still images. These kind of features are extremely desirable for many ap-

plications such as robotics navigation, grasp estimation, and Augmented Reality

(AR) etc. In order to fill the gap, a variety of efforts were made in the past decade

including inferring 3D object localizations from monocular imagery [19, 40, 68, 9],

and 3D object recognitions on CAD models [92, 85]. But these works either rely

on a huge number of ideal 3D graphics models by assuming the locations are

known or are inclined to fail in cluttered environments where occlusions are very

common while depth orders are uncertain.

The recent advent of Microsoft Kinect and similar sensors alleviated some of

these challenges, and thus enabled an exciting new direction of approaches to 3D

object detection [62, 52, 35, 31, 63, 82, 83]. Equipped with an active infrared

structured light sensor, Kinect is able to provide much more accurate depth lo-

cations of objects associated with their visual appearances. The RGB-Depth

detection approaches can be roughly categorized into two groups according to

the way to formulate feature representations from RGB-Depth images.

In general, 2D approaches start by exploiting proper 2D feature representa-
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tions on image planes for object detection and building models to convert 2D

results to 3D space. While 3D approaches start by putting detection propos-

als directly in 3D space for extracting features from 3D point cloud within 3D

windows. The competition to determine whether 2D or 3D approaches represent

the right direction for 3D amodal object detection is super intense: [82] utilized

3D sliding window to directly infer detections in 3D space and demonstrate its

merits for dealing with occlusions, viewpoints etc over 2D approaches. Then 2D

approach [31] outperformed [82] by starting with well established 2D reasoning

and aligning CAD models with 2D detections. The most recent work [83] out-

performed [31] by a significant margin by introducing a 3D ConvNet model to

encode 3D geometric features directly. So far, 3D centric sliding shapes leads the

3D detection performance on the challenging NYUV2 RGB-Depth dataset [79].

Although utilizing 3D geometric features for detection is promising, in prac-

tice the reconstructed 3D shapes are often incomplete (when projecting pixels of

one single depth map back to 3D space), noisy and sparse (due to occlusions,

reflections and absorptions of infrared lights). Hence, the quality of obtained

surfaces is very different from that of CAD models with 360◦ panoramas, which

makes fitting 3D bounding boxes to 3D points a very challenging task. In partic-

ular, when the majority of an object area on the depth map is in a ”black hole”,

the recovered 3D shape hardly delivers salient features. However, light signals

recorded in the 2D image plane are dense and structured, and humans still can

perceive the objects and estimate their 3D locations from such images. There-

fore, it should be possible to mimic the human 3D perception and leverage 2D

image features directly using current deep learning techniques. As the proposed

approach demonstrates this is indeed the case.

In this paper, we revisit the 3D amodal object detection problem from the 2D

point of view. We start with 2D bounding box proposals obtained from extended
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multiscale combinatorial grouping (MCG) class independent object proposals

[2, 35]. We design a novel 3D detection neural network based on Fast-RCNN

framework that naturally integrates depth information with the corresponding

visual appearances to identify object classes, orientations and their full extents

simultaneously in indoor scenes, where 2D bounding boxes around superpixels

together with RGB-Depth images are taken as inputs. To sum up, the highlights

of the main contributions of this work are as follows:

• To the best of our knowledge, we are the first to reformulate the 3D amodal

detection problem as regressing class-wise 3D bounding box models based

on 2D image appearance features only.

• Given color, depth images and 2D segmentation proposals, we designed

a novel 3D detection neural network that predicts 3D object locations,

dimensions, and orientations simultaneously without extra step of training

SVMs on deep features or fitting 3D CAD models to 2D detections.

• We do not make any Manhattan world assumption like 3D detectors do

[82, 83] for orientation estimation, since objects in rooms are often cluttered

and in disorder, reflecting various lifestyles and such assumptions may have

dangerous consequences for autonomous systems like mobile robots.

• In addition, in order to benefit the future amodal 3D detection research, we

improved the 3D ground-truth bounding boxes for the NYUV2 dataset by

fixing many errors such as wrong labeling, partial extents, false negatives

etc.
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Figure 4.1: Overview of the proposed 3D object detection system. For each
2D segment proposal, we firstly initialize the localization of a 3D box (yellow
dash box) based on depth information and its size according to classwise prior
knowledge. Then object class and 3D regression offsets are jointly learned based
on 2D features only, with the goal of obtaining the final 3D detection (green solid
box) by adjusting the location, dimension, and orientation of the initial 3D box.

4.2 Related Works

Object detection is one of the oldest and most fundamental problems in com-

puter vision. A huge number of works [91, 13, 17, 26] were proposed in the past

few decades to infer bounding boxes around visible object parts within image

planes. As human beings can effortlessly infer objects as a whole and complete,

[48] took one step further towards obtaining similar levels of perception ability by

addressing the full extent object inference problem on 2D image planes. Although

this kind of object representation is richer than traditional modal inferences, it

is still far from human perception level in the physical world and from the re-

quirements for some robotic applications where robots are expected to interact

with the environments. In order to fill the gap, an increased number of 3D ob-

ject detection related research has been proposed, especially after active sensors

become available in the consumer market. In the following, we briefly review the

3D detection algorithms for RGB-D images.

2D approaches in RGB-D images
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2D approaches generally refer to methods where depth images are treated in a

similar fashion as color images in traditional 2D detection task. [52] adapted the

DPM algorithm to RGB-D images by utilizing the 3D euclidean distances from

depth map. Handcrafted features were extracted from both color images within

the output bounding boxes of existing 2D detectors and projected 3D point clouds

within their associated foreground object segmentation masks. Their object lo-

cations are parametrized using 3D ellipsoids. [62] firstly generated 3D candidate

cuboids by adapting the CPMC algorithm, and then incorporated 2D appearance

features, object-object and object-scene context relationships into a Conditional

Random Field (CRF) model for semantic labels inference.

Recently, feature engineering has been gradually replaced by deep Convolu-

tional Neural Networks (CNNs) in 2D image based object detection. The most

popular representative works are R-CNN [26], Fast-RCNN [24] and Faster-RCNN

[25]. Inspired by [82], [63] adopt an exhaustive 3D sliding window strategy in the

3D point cloud where cross-modality features were extracted by feeding pro-

jected 2d bounding boxes to pretrained R-CNNs and the following bimodal deep

Boltzman Machine trained separately. Detections were then determined by an

ensemble of trained exemplar SVMs. Different from the previous sliding window

framework, [35] built their detectors on the top of precomputed object segmen-

tation candidates. They extended the R-CNN [26] to utilize depth information

with HHA encoding (Horizontal Disparity, Height above ground and Angle of lo-

cal surface normal w.r.t gravity direction). However, the outputs of their system

were still limited to 2D bounding boxes. [31] extended [35] by firstly estimating

3D coarse poses for each detected 2D object and then aligning 3D CAD models to

3D points projected back from depth image that belongs to segmentation mask

with Iterative Closest Point (ICP) algorithm.

The difference of the proposed method from the previous works above in

70



three-folds: 1) no extra training examples or 3D CAD models are leveraged.

2) the model is trained end-to-end instead of piecewise. 3) no need for fitting

point clouds lifted from depth map, which is often noisy and incomplete due to

occlusions.

3D approaches in RGB-D images

3D approaches make use of depth map in a different way in that 3D points are

reconstructed first, and the main processing is based on analyzing point clouds.

[82] extended the traditional 2D sliding window strategy to 3D by putting 3D

boxes within an estimated room box. A bunch of exemplar SVMs were trained

with synthetic depths rendered from 3D CAD models, and then applied to each

3D detection window in a 3D indoor scene. 3D handcrafted features were built

directly on discretized 3D space. Although the approach showed encouraging

detection performance, the required computations are extremely expensive. [83]

improved [82] dramatically with respect to both performance and efficiency by

proposing 3D region candidates and extracting 3D features directly from 3D

convolutional neural networks. Similar to [82], [72] designed handcrafted 3D

features on point clouds for both 3D cuboid detection and Manhattan room

layout prediction. In favor of better 3D features analysis, both [83] and [72]

utilized enhanced depth map derived by fusing multiple nearby depth map frames

to denoise and fill in missing depth. In contrast, our method naturally models the

relationships between 2D features and 3D object localizations and full-extents in

single frame RGB-D data.
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4.3 3D Object Detection in RGB-D Images

4.3.1 Amodal 3D Object Detection

Given a pair of color and depth images, the goal of the amodal 3D object

detection is to identify the object instance locations and its full extent in 3D

space. As is well-known typical indoor environments in real life are very compli-

cated, because objects may be heavily occluded and appear in a wide range of

configurations. Encouraged by the success of 3D CAD model retrieval, the avail-

able depth map makes encoding 3D geometry features directly for detection very

promising. However, the quality of depth map is far from perfect in reality due

to measurement errors, and more importantly, the geometry of object instances

is incomplete and its variations are determined by the camera view, e.g., see

examples shown in Fig. 4.4. This may seriously limit the representation power

from direct 3D reconstruction. Therefore, in this section we revisit the task of

RGB-D amodal object detection and stick to the 2D representation by making

the assumption that underlying relationships between 2D feature representations

and 3D object locations and orientations exist. In the following, we explore how

to effectively utilize RGB and depth for this task.

2D RoI proposals: Information contained in color and depth images are demon-

strated to be complimentary to each other by varieties of RGB-D research works.

While color encodes distinctive visual appearance features, depth conveys the

geometric structures of objects. However, in 3D detection, one additional dimen-

sion significantly enlarges the search space. Since starting with well established

2D reasoning is arguably more efficient and accurate than starting from 3D rea-

soning [31]. We obtain the ROI proposals by using the adapted MCG algorithm

in RGB-D images [35].
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Figure 4.2: An example for the process of 3D box proposal and regression. The 3D
box in dash line represents box initialized with class-wise averaged dimension in
tilt coordinate system. The black solid line 3D box is translated from the dash-line
box based on 2D segment. Finally, we regress the 3D box based on the features
of the 2D segment to obtain the green 3D box. The yellow vector determines the
orientation angle of 3D box to the principal axis (z-axis) in θ ∈ [−π/2, π/2], e.g.,
θ = 0 if the yellow vector aligns with z-axis.

3D box proposal and regression:

Lifting 2D inferred object proposals to 3D bounding boxes by fitting a tight

box around the 3D points projected from pixels in the instance segmentation [62,

31, 83] is not robust for 3D object detection due to both imperfect segmentations

and noisy depth data. On the other hand, significantly extended 3D search space

makes it inefficient to explore solutions in a brutal-force way [82]. One of the

main contributions of this paper is initializing 3D proposals from 2D segments

and reformulating the 3D amodal detection problem as regressing class-wise 3D

bounding box models based on 2D visual appearance features only. As is shown

73



in Figure 4.2, for each 2D segment proposal, we compute one 3D box counterpart

as the 3D proposal. Then 3D proposals are transforming towards 3D ground

truth according to learned high level 2D representations.

In this paper, the 3D bounding box is parametrized into one seven-entry

vector [xcam, ycam, zcam, l, w, h, θ]. [xcam, ycam, zcam] is its centroid under camera

coordinate system. [l, w, h] represents its 3D size, and θ is the angle between prin-

cipal axis and its orientation vector under tilt coordinate system (see Figure 4.2).

The tilt coordinate system is converted from original camera coordinate system

by aligning point clouds with gravity direction without any rotation around the

y-axis:

XY Zcam = R−1
tilt ∗XY Ztilt (4.1)

Rtilt = Rx ∗Rz, (4.2)

where Rtilt is the transform matrix between tilt and camera system, and Rx and

Rz are rotation matrices around x-axis and z-axis, respectively.

3D box proposals are derived from corresponding 2D segment proposals. For

box size in 3D proposals, we simply use averaged class-wise box dimensions esti-

mated from training set as base 3D box size. It is better than fitting 3D points

projected back from 2D segment pixels, which would significantly increase vari-

ance of box dimensions for regression. It is inspired by the cues of familiar size in

human 3D perception [21, 48]. For example, when people are looking for an object

like a bed, they have a rough object dimensions in their mind, which constraints

the detection of bed instances. The center of proposed 3D box [xini, yini, zini] is

initialized based on 3D points projected from 2D segment pixels. Since depth

maps are usually noisy and have missing data, we set zini to zmed which is the

median depth value of segment points for the sake of robustness. In the case that

the whole segment is a ”black hole”, we use interpolated depth map instead. xini
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and yini are computed as described in Eq. (4.3): f is focal length of RGB camera,

(ox, oy) is the principal point, (cx, cy) is the center of 2D box proposal.

xini = zmed ∗ (cx − ox)/f

yini = zmed ∗ (cy − oy)/f
(4.3)

In contrast to [83], we do not make any Manhattan world assumption, since

objects in rooms may appear in diverse orientations. In this work, the orientation

angle θ is explicitly introduced as a parameter of 3D bounding box model. We

define the orientation vector of a 3D box as the vector perpendicular to its longer

edge in xz-plane (the yellow vector in Fig. 4.2). The initial orientation angle

θini is set to zero for all 3D box proposals, i.e., parallel to the x-axis in the tilt

coordinate system, which is the case when box orientation vector aligns with

camera principal axis. The range of θ is [−π/2, π/2].

The 3D box regressor net will reshape the proposed raw 3D shape model based

on the learned 2D appearance features. We represent the regression offsets as a 7-

element vector [δx, δy, δz, δl, δw, δh, δθ] for each positive example and ground truth

boxes during training stage. Instead of finding the closest matching of major

directions between detected box and ground-truth boxes [83] for computing box

dimension differences, we can directly compare corresponding length, width and

height parameters and normalize them by the size of the detected box, which is

possible due to our parameterization of 3D bounding boxes. Similar to [24], the

target for learning is then normalized by statistical information from proposed

boxes.

Multi-task Loss: Each training example is associated with a ground-truth class

c and corresponding ground-truth 3D bounding box. To jointly train for classifi-
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cation and bounding box regression, the loss function is defined as follows:

L(p, c, tc3d, v3d) = Lcls(p, c) + λ(c >= 1)L3d(t
c
3d, v3d), (4.4)

where tc3d expresses the regression offsets w.r.t ground truth locations, v3d are

regression targets, p is the predicted probability of the object class, Lcls is defined

as softmax function, and L3d is L1 smooth loss as defined in [24].

Post processing: We apply typical Non-Maximum Suppression (NMS) scheme

to the 2D detected boxes. No NMS is used in 3D. In contrast to [83], we do not

perform any further pruning of the results, e.g., based on object size statistics.

4.3.2 Convolutional Network Architecture

There have been many deep convolutional network models proposed recently

for 2D image based recognition. In this paper, we adopt the Fast-RCNN [24] as

the raw base model due to both of its one single stage training architecture and

high efficiency by sharing features computation. As is shown in Figure 4.1, color

and depth images go through two VGG16 [80] Conv-Nets for computing shared

feature maps, respectively. Features extracted from RoI pooling layer based on

2D object proposals and their enlarged contextual patches are concatenated for

multiple tasks learning.

Mini-batch sampling

For training deep neural network models, a small set of examples is randomly

selected from training set to update model parameters at each iteration for the

sake of computation efficiency. It is very important to properly define and select

positive and negative examples from RoI pool for image based object detections.
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Figure 4.3: Red: two examples of 2D ground truth bounding boxes from [81].
Green: 2D RoI proposals. If compared 2D RoI proposals directly to red bounding
boxes, the two positive chair examples are wrongly treated as negative ones.
To solve this problem, we added yellow (dashed) gt2dsel boxes for mini-batch
sampling.

Typically, one RoI is treated as positive if it has intersection over union (IoU)

overlap with ground truth box greater than 0.5, and negative if IoU is between

0.1 and 0.5. However, directly applying this rule to mini-batch sampling using

2D annotations provided by [81] would cause a serious problem. [81] provides

two kinds of 2D ground truth bounding boxes for NYUV2 dataset: 1) projected

2D bounding boxes by fitting visible point clouds, and 2) projected 2D bounding

boxes from amodal 3D bounding boxes. Using either kind for mini-batch sampling

with 2D representations, the detection performance degrades dramatically since

the true positive segments may be treated as negative ones if comparing them

directly to the 2D ground truth provided by [81], as is illustrated in Fig. 4.3.

To fix the problem, we added new 2D ground truth box named gt2dsel to the

training set for determining positive and negative examples from proposed 2d

segments only. We stress that the amodal 2D bounding boxes provided by [81]

can be still used as targets for the 2D box regression task.
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Each mini-batch consists of 256 randomly selected 2D box proposals from

N = 2 images (128 RoIs per image). The ratio of positive and negative examples

is set to 1 : 3.

For data augmentation, we flip horizontally images and their corresponding

3D bounding boxes. No other extra data is used during training.

4.4 Improved 3D annotations on NYUV2

The labeled NYU Depth V2 dataset [79] is a most popular but very challenging

dataset in the RGBD scene understanding research community. The original

version provides 1449 RGB-Depth indoor scene images with dense 2D pixelwise

class labels. To enrich the labeling features and encourage 3D object detection

research, in the SUN RGBD dataset [81] (superset of NYUV2) Xiao et al. added

extra 3D bounding boxes and room layouts to ground truth annotations. Since

depth maps are imperfect in reality due to measurement noise, light reflection

and absorption, and occlusion etc, they also refined the quality of depth maps by

integrating multiple RGB-D frames from the NYUV2 raw video data.

However, the extended 3D annotations in [81] have some notable issues: 1)

3D boxes were labeled independently from the original 2D object instances in

NYUV2. This inconsistency leads to many salient objects being unlabeled or

mislabeled, which causes unnecessary false negatives during the detection task.

2) 3D amodal annotations are mixed with modal ones. Amodal bounding boxes

cover the full-extent of objects, while modal ones only encompass the visible

parts (e.g., see the beds in Figure 4.4). This is a very undesirable feature for

the ”amodal” detection as perused in this paper following the approaches in

[5, 48, 83]. 3) Inconsistent labelings among scenes that have overlapping areas.

4) Inaccurate 3D extents or locations of object instances.

In order to provide better 3D labelings for amodal 3D object detection re-
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Figure 4.4: Examples of improved 3D annotations for 19 amodal 3D object de-
tection classes and comparisons with annotations in SUN RGBD dataset [81].
Column 1: color images. Column 2: original single frame raw depth maps. Col-
umn 3: refined depth maps by integrating multiple depth maps within nearby
video frames. Column 4: Ground truth 3D bounding boxes (red color) from [81].
Blue question marks represent missing object annotations. Green arrows point to
problematic object annotations. Column 5: our improved 3D annotations (green
color). As is shown in Column 4, notable issues include missing bounding boxes
for salient objects, e.g., 2 sofas, 1 table and 1 pillow are missing in (a), 1 table
is missing in (c), 1 lamp, 1 nightstand and several pillows are missing in (d),
modal boxes for partial visible objects are incomplete, e.g., all bounding boxes
for beds in (b) and (d), inaccurate 3D extensions and locations, e.g., 1 chair in
(c) is mis-located, 1 lamp in (b) is floating above table surface, 1 box object in
(b) has very loose bounding box. In comparison to examples shown in Column
4, we provide much more reasonable annotations for amodal 3D object detection
research purpose. In this paper, we use original single frame depth maps as in
column 2 as input instead of refined ones that were adopted in [83].
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Methods

[83](old gt3d) 64.4 82.3 20.7 4.3 60.6 12.2 29.4 0.0 38.1 27.0

[83] 62.3 81.2 23.9 3.8 58.2 24.5 36.1 0.0 31.6 27.2

Ours 36.1 84.5 40.6 4.9 46.4 44.8 33.1 10.2 44.9 33.3

Methods mAP

[83](old gt3d) 22.1 0.7 49.5 21.5 57.8 60.5 49.8 8.4 76.6 36.1

[83] 28.7 2.0 54.5 38.5 40.5 55.2 43.7 1.0 76.3 36.3

Ours 29.4 3.6 60.6 46.3 58.3 61.8 43.2 16.3 79.7 40.9

Table 4.1: 3D Object Detection Performance Comparisons on 19 Classes on
NYUV2 dataset. 1st row is evaluated using 3D annotations in [81]. The oth-
ers are evaluated using the improved 3D annotations (see Sec 4.4).

search, we provide improved ground truth 3D bounding boxes annotations for 19

indoor object classes (bathtub, bed, bookshelf, box, chair, counter, desk, door,

dresser, garbage bin, lamp, monitor, nightstand, pillow, sink, sofa, table, tv, toi-

let) by complying with the following stricter principles: 1) Amodal for all: all the

3D bounding boxes should encompass the whole 3D instance of the object, even

if only object parts are visible. 2) Place tight boxes around 3D object extents

with reasonable orientations. 3) Comply with the physical configuration rules.

For example, table and chair rest on the floor, and the height of door should not

be too short. 4) Labeling is as consistent as possible with the NYUV2 2D object

instances.

In the improved annotation set, we provide 3D amodal bounding boxes, 2D

amodal bounding boxed cropped by image plane and rotation matrix Rtilt for

gravity alignment etc. Some examples and comparisons with annotations in [81]

are shown in Figure 4.4. The improved annotations will be released on the au-

thors’ website.
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Methods

img 27.9 64.5 24.5 1.5 33.1 46.0 20.3 1.7 28.7 32.1

img+HHA 33.1 83.9 29.8 6.0 43.1 46.3 25.3 1.87 30.9 32.9

img+d 38.9 85.2 37.5 11.4 46.5 47.1 29.9 4.2 43.3 37.3

img+d+ct 36.1 84.5 40.6 4.9 46.4 44.8 33.1 10.2 44.9 33.3

img+d+ct-3dreg 8.3 5.0 14.3 2.1 14.1 3.6 0.6 0.7 4.1 29.5

Methods mAP

img 24.6 3.0 43.4 27.7 49.6 46.7 27.6 1.3 66.0 30.0

img+HHA 24.3 4.1 58.3 40.3 54.8 59.6 39.6 3.5 69.5 36.2

img+d 30.8 1.3 59.8 44.1 57.7 63.8 39.4 11.6 75.5 40.1

img+d+ct 29.4 3.6 60.6 46.3 58.3 61.8 43.2 16.3 79.7 40.9

img+d+ct-3dreg 27.1 2.4 23.0 31.4 20.5 34.5 4.6 1.7 67.6 15.5

Table 4.2: Ablation study on NYUV2 dataset. ”img”: use color image only
as input to our detection network. ”HHA”: depth embedding of [35]. ”d”:
normalized depth map. ”ct”: context information. ”3dreg”: 3d regression offsets.
”+”: with. ”-”: without.
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4.5 Experiments

In this section, we compare our algorithm with the currently best performing

3D detector [83] on the NYUV2 dataset [79] with the improved 3D bounding

box annotations as described in Sec 4.4. Control experiment analysis and related

discussions are also provided for better understanding the importance of each

component in the designed 3D detection system. In the standard NYUV2 dataset

split, the training set consists of 795 images and test set contains 654 images. We

follow this standard for all the experiments. For our algorithm, we use the single

frame depth map provided by the NYUV2 instead of the refined version in SUN-

RGBD dataset.

3D Amodal Detection Evaluation

In order to compare the proposed approach to deep sliding shapes [83], we perform

evaluation on 19 object classes detection task. We evaluate the 3D detection

performance by using the 3D volume intersection over union (IoU) metric firstly

defined in [82]. A detected bounding box is considered as a true positive if the IoU

score is greater than 0.25. In the experiment, we set λ to 1 in the loss function.

We use momentum 0.9, weight decay 0.0005, and ”step” learning rate policy in

Caffe, where base learning rate is 0.005, and γ is 0.1. We run SGD for 40000

mini-batch iterations during the training stage. In order to reduce the internal

covariate shift, we normalized activations by adding BatchNorm Layers [44] to

the 3D detection network.

In Table 4.1, we quantitatively compare with the state-of-the-art 3D ap-

proach algorithm ”deep sliding shape” [83] on a 19-class detection task on the

NYUV2 RGB-D dataset. Our method significantly outperforms [83] by a clear

margin 4.6% measured by mean Average Precision score (mAP). In particular,

we achieve much better detection performances on difficult object categories re-
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ported in [83] such as door, tv, box, monitor. The reason is that in [83] the 3D

box proposals network (RPN) relies on the quality of recovered 3D point cloud.

But, in practice, the depth data from Kinect alike sensors are noisy and incom-

plete. Therefore, if the point cloud is sparse or empty for object instances such

as tv or monitor, then the corresponding 3D anchor boxes are treated as negative

3D proposals and discarded. In contrast, our approach is more robust in such

cases, since our 3D box initialization uses median value of segment pixel depths

and 3D regression are based on learned 2D features (see Sec. 4.3.1), and hence

neither depend on density nor geometries of 3D point clouds.

In addition, we list the results of [83] evaluated on the 3D annotations of [81]

as a reference. Their results based on the improved 3D annotations are slightly

better, which might be due to the fact that wrong labelings have been corrected

in the new annotations.

We also provide qualitative results in Figure 4.5 and 4.6. True positive de-

tections in Figure 4.5 indicate that 2D representation features are useful for de-

tecting 3D objects with various of orientations, sizes and locations in complexed

indoor scenes. In Figure 4.6, we list several failure cases including wrong box

size, inaccurate locations, wrong box orientations, and mis-classifications.

Ablation Study

To understand the importance of each component of our system, we conduct

control experiments and list detection results in Table 4.2. We are reaching

the following conclusions: 1) Color images contain rich 2D features for inferring

object 3D full-extents. 2) The features encoded in depth map are complimentary

to those in color images. 3) We normalized the depth map by truncating depth

value beyond 8 meters. It achieves 2.9% improvement than using HHA embedding

as Horizontal disparity, Height above ground and Angle of local surface normal

with inferred gravity direction. 4) Contextual information slightly improves the
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performance by 0.8%.

In order to demonstrate effectiveness of 3D regression learned by the proposed

system, we remove 3D offsets and evaluate the initial 3D boxes in ”img+d+ct-

3dreg”. The performance degrades dramatically by 25.4%.

Computation Speed

Our 3D detection system is developed based on the open source Caffe CNN library

[47]. The training of 3D detector takes around 15 hours on an Nvidia Titan X

GPU using CUDA 7.5 and cuDNN v4 support. The GPU usage is around 9 GB.

During testing, the detection net takes 0.739s per RGB-D image pair, which is

nearly 20x faster than the Object Recognition Network (ORN) in [83].

4.6 Conclusion

We present a novel amodal 3D object detection system that directly learns

deep features in RGB-D images without performing any 3D point reconstruction.

Hence our system learns 2D visual appearance features from pairs of color and

depth images. Experiments demonstrate that the 2D visual features are corre-

lated to 3D object sizes, locations, and orientations. Our approach significantly

outperforms the best performing 3D detector [83], which is truly a 3D approach,

since it analyzes 3D point clouds.
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Figure 4.5: Examples of detected true positive 3D amodal bounding boxes on
NYUV2. 3D detections are rendered in 3D space in green. The corresponding
object 2D locations are marked with red bounding boxes.
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Figure 4.6: Examples of failure cases. 3D detections are rendered in 3D space in
blue. The corresponding objects are marked with red bounding boxes. We show
four types of failures. F1: box dimension errors. F2: orientation errors. F3: 3D
location errors. F4: classification errors ((a) door detected as bathtub, (b) sink
detected as toilet, (c) chair detected as tv, (d) chair detected as table).
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